SISMID Module 8 2023

MCMC I for Infectious Diseases

View the Project on GitHub

Course Description

This module is an introduction to Markov chain Monte Carlo (MCMC) methods with some simple applications in infectious disease studies. The course includes an introduction to Bayesian statistics, Monte Carlo, MCMC, some background theory, and convergence diagnostics. Algorithms include Gibbs sampling, Metropolis-Hastings and their combinations. Familiarity with the R statistical environment or other computing language is important.

Logistics

Time: July 17-18, 8:30 am - 5:00 pm, July 19, 8:30 am - 12:00 pm :date:

Place: FSH 107

Instructors: Kari Auranen, M. Elizabeth Halloran, Volodymyr Minin :man_scientist: :woman_scientist: :man_scientist:

Teaching Assistant: Isaac Goldstein :man_scientist:

Schedule:: mcmc_time_table.pdf :alarm_clock:

R tutorials: R for Beginners, Swirl (Learn R, in R), SISMID/SISG Introduction to R :school:

Stan installation: Stan Installation Instructions :ice_hockey:

Course materials :open_book:

Introduction to Bayesian inference and Gibbs sampling :telescope:

Slides/Notes :green_book: Practicals :microscope: Code :computer:
slides_bayesintro.pdf PracticalBayes.pdf bayesintro2023.R
  PracticalGibbs.pdf chainGibbs_reduced.R
    chainGibbs.R

Classical Monte Carlo and Markov chain theory :diamonds: :spades: :hearts: :clubs: :game_die:

Slides/Notes :green_book: Practicals :microscope: Code :computer:
mc_mcmc2023.pdf (pages 8-14) import-sampling-lab.pdf imp_sampl_reduced.R
    imp_sampl.R
  ehrenfest_diff-lab.pdf ehrenfest_diff_reduced.R
    ehrenfest_diff.R
    beta_monte_carlo.R

Metropolis-Hastings algorithm :frog:

Slides/Notes :green_book: Practicals :microscope: Code :computer:
mc_mcmc2023.pdf (pages 14-18) mh-lab.pdf norm_mh_reduced.R
    norm_mh.R
    infect_time_reduced.R
    infect_time.R

Gibbs sampling and chain binomial model :chains:

Slides/Notes :green_book: Practicals :microscope: Code :computer:
mc_mcmc2023.pdf (pages 18-20) PracticalGibbs.pdf chainGibbs.R

Metropolis-Hastings and Gibbs combined :octopus:

Slides/Notes :green_book: Practicals :microscope: Code :computer:
mc_mcmc2023.pdf (pages 20-21) betabin-lab.pdf beta_bin_reduced.R
    beta_bin.R

Chain binomial model revisited :chains:

Slides/Notes :green_book: Practicals :microscope: Code :computer:
chain_bin_revisited.pdf chain-bin-revisit-lab.pdf checkmodel_reduced.R
    checkmodel.R
    chain_hierarchical_reduced.R
    chain_hierarchical.R
    check_hierarchical.R

Hamiltonian Monte Carlo and stan :ice_hockey: :octopus:

Slides/Notes :green_book: Practicals :microscope: Code :computer:
intro_to-stan.pdf Beta-binomial in Stan beta_binomial_example.Rmd
    beta_binom.stan
bayes_ode.pdf SIR ODE in Stan stan_sir_example.Rmd
    SIR.stan

General epidemic (SIR) model :smile: :sneezing_face: :smile:

Slides/Notes :green_book: Practicals :microscope: Code :computer:
sir_lecture.pdf sir-lab.pdf SIRaugmentation_reduced.R
    SIRaugmentation.R

Monte Carlo error and MCMC diagnostics :woman_mechanic:

Slides/Notes :green_book: Practicals :microscope: Code :computer:
mc_mcmc2023.pdf (pages 21-22) diagnostics-lab.pdf diagnostics_reduced.R
    diagnostics.R

SIS model :smile: :sneezing_face: :smile: :sneezing_face: :smile: :sneezing_face: :smile:

Slides/Notes :green_book: Practicals :microscope: Videos :movie_camera: Code :computer:
sis_lecture.pdf sis-lab.pdf   simulateSIS_N.R
      MH_SIS.R

Useful Books: 📘

Other Resources: 🗒️