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1. Prior Sensitivity

In all our examples, we placed a Gamma prior on the precision parameter θ with parameters α = 0.001 and β = 0.001.
This precision parameter, unknown to us a priori, controls the smoothness of the GP prior. We investigate the sensi-
tivity of our results to the Gamma prior specification using the Egyptian HCV data. In the first plot of Figure 1, we
show the prior and posterior distributions of θ under our default prior. The difference in densities suggests that prior
choices do not have an impact on the posterior distribution. Since the mean of a Gamma distributed random variable
is α/β, we investigate the sensitivity by fixing β = .001 and setting the value of α to 0.001, 0.002, 0.005, 0.01 and 0.1,
corresponding to prior means 1, 2, 5, 10 and 100 and variances 1000, 2000, 5000, 10000 and 100000, and by trying two
extremes: α = 1, β = .0001 and α = .001, β = 1, to examine the posterior distribution of θ under these priors. The
posterior sample boxplots displayed in Figure 6 demonstrate that our results are fairly robust to different choices of α.

2. Sensitivity to the Order of the Gaussian Process

We evaluate our GP-based method for three different Gaussian Process priors for the Egyptian HCV genealogy. In Figure
2, we show the recovered trajectories for Brownian Motion (BM), Ornstein-Uhlenbeck (OU) and approximated Integrated
Brownian motion (IBM) (Lindgren and Rue, 2008). The common characteristic of these three priors is the sparsity of their
precision matrices (inverse covariance matrix), allowing for computational tractability. Figure 2 shows that the order of the
process does make a difference, but only in regions with large posterior uncertainty, where prior influence is more pronounced.

Appendix A: Coalescent Simulation Algorithms

Proposition 1: Algorithm 1 generates tn < tn−1 < · · · < t1, such that

P (tk−1 > t|tk) = exp

[
−
∫ t

tk

Ckdx

Ne(x)

]
, (A.1)

where Ne(t) is known deterministically.

Proof. Let Ti = tk +E1 + . . .+Ei, where {Ei}∞i=1 are iid exponential Exp(Ckλ) random numbers. Given tk, Algorithm 1
generates and accumulates iid exponential random numbers until Ti is accepted with probability 1/λNe(Ti), in which case,
Ti is labeled tk−1. Let N(tk, t] = #{i ≥ 1 : tk < Ti ≤ t} denote the number of iid exponential random numbers generated
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Figure 1. Prior sensitivity on the GP precision parameter. Left plot shows the prior and posterior distributions represented
by dashed line and vertical bars respectively. Right plot shows the boxplots of the posterior distributions of the precision
parameter when the prior distributions differ in mean and variance of the precision parameter θ. These plots are based on the
Egyptian HCV data.
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Figure 2. Egyptian HCV recoverd by placing three different Gaussian process priors. The first plot (left to right) corresponds
to a Brownian motion (BM), the second – to Ornstein-Uhlenbeck (OU) and the last one – to the approximated integrated
Brownian motion (IBM).

in (tk, t]. Then, {N(tk, t], t > tk} constitutes a Poisson process with intensity Ckλ. Then, given N(tk, t] = 1, the conditional
density of a point x in (tk, t] is 1/(t− tk) and the probability of accepting such a point as a coalescent time point with variable
population size is 1/λNe(x). Hence

P (tk−1 ≤ t|tk, N(tk, t] = 1) =
1

λ(t− tk)

∫ t

tk

dx

Ne(x)
, (A.2)

and

P (tk−1 > t|tk, N(tk, t] = m) =

(
1− 1

λ(t− tk)

∫ t

tk

dx

Ne(x)

)m
. (A.3)

Then,

P (tk−1 > t|tk) =

∞∑
m=1

P (tk−1 > t|tk, N(tk, t] = m)P (N(tk, t] = m)

=

∞∑
m=1

(
1− 1

λ(t− tk)

∫ t

tk

dx

Ne(x)

)m
(Ckλ(t− tk))m exp [−Ckλ(t− tk)]

m!

= exp [−Ckλ(t− tk)]

∞∑
m=1

(
Ckλ(t− tk)− Ck

∫ t
tk

dtk−1

Ne(tk−1)

)m
m!

= exp

[
−
∫ t

tk

Ckdx

Ne(x)

]
.

Algorithm 2 Simulation of isochronous coalescent times by thinning with f(t) ∼ GP(0,C(θ))

Input: k = n, tn = 0, t = 0, ij = 0, mj = 0, j = 2, . . . , n, λ
Output: T = {tk}nk=1, N = {{tk,i}mk

i=1}
n
k=2, fT ,N

1: while k > 1 do
2: Sample E ∼ Exponential(Ckλ) and U ∼ U(0, 1)
3: t=t+E
4: Sample f(t) ∼ P (f(t)|{f(tl)}nl=k, {{f(tl,i)}ml

i=1}
n
l=k; θ)

5: if U ≤ 1
1+exp(−f(t)) then

6: k ← k − 1, tk ← t
7: else
8: ik ← ik + 1, mk ← mk + 1, tk,ik ← t
9: end if

10: end while

Algorithm 3 and 4 are analogous heterochronous versions of Algorithm 1 and 2.
An R implementation of these algorithms is available at

http://www.stat.washington.edu/people/jpalacio.
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Algorithm 3 Simulation of heterochronous coalescent by thinning - Ne(t) is a deterministic function

Input: n1, n2, . . . , nm, s1, . . . , sm, 1/Ne(t) ≤ λ, Ne(t), m
Output: for n =

∑m
j=1 nj , T = {tk}nk=1

1: i = 1, j = n− 1, n = n1, t = tn = s1
2: while i < m+ 1 do
3: Sample E ∼ Exp(

(
n
2

)
λ) and U ∼ U(0, 1)

4: if U ≤ 1
Ne(t+E)λ

then

5: if t+ E < si+1 then
6: tj ← t← t+ E
7: j ← j − 1, n← n− 1
8: if n > 1 then
9: go to 2

10: else
11: go to 14
12: end if
13: else
14: i← i+ 1, t← si, n← n+ ni
15: end if
16: else
17: t← t+ E
18: end if
19: end while

Algorithm 4 Simulation of heterochronous coalescent by thinning with f(t) ∼ GP(0,C(θ))

Input: n1, n2, . . . , nm, s1 = 0, . . . , sm, ij = 0, mj = 0, j = 2, . . . , n, λ, m
Output: for n =

∑m
j=1 nj , T = {tk}nk=1, N = {{tk,i}mk

i=1}
n
k=2, fT ,N

1: i = 1, j = n− 1, n = n1, t = tn = s1
2: while i < m+ 1 do
3: Sample E ∼ Exp(

(
n
2

)
λ) and U ∼ U(0, 1)

4: Sample f(t+ E) ∼ P (f(t+ E)|{f(tl)}nl=k, {{f(tl,i)}ml
i=1}

n
l=k; θ)

5: if U ≤ 1
1+exp(−f(t+E))

then

6: if t+ E < si+1 then
7: tj ← t← t+ E
8: j ← j − 1, n← n− 1
9: if n > 1 then

10: go to 2
11: else
12: go to 14
13: end if
14: else
15: i← i+ 1, t← si, n← n+ ni
16: end if
17: else
18: if t+ E < si+1 then
19: tj+1,ij+1 ← t+ E, ij+1 ← ij+1 + 1
20: end if
21: t← t+ E
22: end if
23: end while
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Appendix B: MCMC Sampling

Since the coalescent under isochronous sampling is a particular case of the coalescent model under heterochronous sampling,
we employ here the notation of the heterochronous coalescent, understanding that C0,k = Ck, I0,k = (tk, tk−1] and i = 0 for
isochronous data.
Sampling the number of latent points. A reversible jump algorithm is constructed for the number of “rejected” points.
We propose to add or remove points with equal probability in each interval defined by Equations (3) and (4). When adding
a point in a particular interval, we propose a location uniformly from the interval and its predicted function value f(t∗) ∼
P (f(t∗)|fT ,N , θ). When removing a point, we propose to remove a point selected uniformly from the pool of rejected points in
that particular interval. We add points with proposal distributions qi,kup and remove points with proposal distributions qi,kdown.
Then,

qi,kup =
P (f(t∗)|T ,N , θ)

2l(Ii,k)
, (B.1)

qi,kdown =
1

2mi,k
, (B.2)

and the acceptance probabilities are:

ai,kup =
l(Ii,k)λCi,k

(mi,k + 1)(1 + ef(t∗))
, (B.3)

ai,kdown =
mi,k(1 + ef(t

∗))

l(Ii,k)λCi,k
. (B.4)

Sampling locations of latent points. We use a Metropolis-Hastings algorithm to update the locations of latent points.
We first choose an interval defined by Equations (3) and (4) with probability proportional to its length and we then propose
point locations uniformly at random in that interval together with their predictive function values ft∗ ∼ P (ft∗ |fT ,N , θ). Since
the proposal distributions are symmetric, the acceptance probabilities are:

ai,k =
1 + ef(t)

1 + ef(t∗)
. (B.5)

Sampling transformed effective population size values. We use an elliptical slice sampling proposal described in
(Murray et al., 2010). In both cases, isochronous or heterochronous, the full conditional distribution of the function values
fT ,N is proportional to the product of a Gaussian density and the thinning acceptance and rejection probabilities:

P (fT ,N |T ,N , λ, θ) ∝ P (fT ,N |θ)L(fT ,N ), (B.6)

where

L(fT ,N ) =

n∏
k=2

(
1

1 + e−f(tk−1)

) mk∏
i=1

1

1 + ef(tk,i)
. (B.7)

Sampling hyperparameters. The full conditional of the precision parameter θ is a Gamma distribution. Therefore, we
update θ by drawing from its full conditional:

θ|fT ,N , T ,N ∼ Gamma
(
α∗ = α+

#{N ∪ T }
2

, β∗ = β +
f tT ,NQfT ,N

2

)
, (B.8)

where Q = 1
θ
C−1.

For the upper bound λ on Ne(t)
−1, we use the Metropolis-Hastings update by proposing new values using a uniform proposal

reflected at 0. That is, we propose λ∗ from U(λ − a, λ + a). If the proposed value λ∗ is negative, we flip its sign. Since the
proposal distribution is symmetric, the acceptance probability is:

a =
P (λ∗)

P (λ)

(
λ∗

λ

)#{N∪T }

exp

[
− (λ∗ − λ)

n∑
k=2

mk∑
i=1

Ci,kl(Ii,k)

]
, (B.9)

where P (λ) is defined in Equation (7).
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