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Abstract—Tandem mass spectrometry experiments generate
from thousands to millions of spectra. These spectra can
be used to identify the presence of proteins in biological
samples. In this work, we propose a new method to identify
peptides, substrings of proteins, based on clustered tandem
mass spectrometry data. In contrast to previously proposed
approaches, which identify one representative spectrum for
each cluster using traditional database searching algorithms,
our method uses all available information to score all the
spectra in a cluster against candidate peptides using Bayesian
model selection. We illustrate the performance of our method
by applying it to seven-standard-protein mixture data.
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I. INTRODUCTION

The field of proteomics attempts to study all expressed
proteins in an organism (i.e. the proteome) rather than
single proteins as was traditionally practiced [1]. Although
understanding the roles and interactions of all proteins in
an organism simultaneously is very challenging, the devel-
opment of high performance liquid chromatography-tandem
mass spectrometry (HPLC-MS/MS) methods, commonly
referred to as shotgun proteomics, creates the possibility
of success. Additionally, the development of bioinformatics
tools to analyze the large MS/MS data sets created by these
shotgun proteomic experiments, makes the following four
goals achievable [1]: 1) identifying all (or many) of the
proteins in a sample, 2) profiling differences in protein
expression between varying conditions, 3) determining how
proteins interact with each other in the living systems,
and 4) identifying how and where proteins are modified.
Among these four goals, we are interested in the first goal,
which can be accomplished by identifying as many peptides
(i.e. short stretches of amino acid polymers) in a sample
as possible. Recently, several research groups proposed
methods to save computational database searching time in

the sequence matching step by first clustering similar tandem
mass spectra and then using the clustered spectra, rather
than individual spectra, for peptide identification [2]–[4].
Assuming that tandem mass spectra within each cluster are
repeated observations of the same peptide, one can treat the
tandem mass spectra within each cluster as repeated exper-
imental observations. Two common approaches to clustered
tandem mass spectral analysis proceed by either taking a
single “highest quality” representative spectrum from each
cluster [3], [4] or by averaging all spectra in the cluster
and finding the best matching peptide for this representative
pseudo-spectrum [2], [3]. The rationale behind both of these
approaches is to increase the database searching speed by
eliminating redundant queries and to improve the signal-to-
noise ratio. Although current methods for clustered spectral
analysis can reduce the database searching time, these meth-
ods do not fully explore all information offered by clustered
spectra. We propose a formal statistical approach that we
refer to as BaMS2 (Bayesian Model Selection for tandem
Mass Spectra) that uses repeated experimental observations,
afforded by clustered tandem mass spectra, more efficiently.

Taking a statistical point of view, we treat peptide identifi-
cation as a model selection problem assuming that individual
tandem mass spectra within a cluster represent repeated
fragmentations of the same peptide. As demonstrated in
Figure 1, a tandem mass spectrum, obtained together with an
associated precursor ion peptide mass-to-charge (m/z) value,
contains both m/z and intensity values of the selected pre-
cursor ion’s fragment ions. Given clustered observed tandem
mass spectra, we may have hundreds to thousands of peptide
candidates selected based on the precursor ion peptide mass.
Assuming each candidate peptide defines a model for gen-
erating multiple observed tandem mass spectra in a cluster,
we formulate a probabilistic data generating model. Next, we
follow the Bayesian paradigm and measure relative model
fit by the probability of each candidate model/peptide given



Figure 1. Database searching example. Cluster A contains several observed
spectra (on the left). Candidate peptide sequences, stored in a database, are
shown on the right. The cluster is scored via the Bayesian model selection
method against all candidate peptides in the database. Higher scores are
shown with thicker arrows and the highest scoring peptide is depicted in
bold italic.

the observed clustered tandem mass spectra. This procedure
allows us to capture more data features than merely the mean
intensities of a cluster. The focus of the paper is not on
clustering algorithms for tandem mass spectra, but rather
on novel peptide identification methods based on already
clustered spectra. We first cluster tandem mass spectra using
the algorithm of Frank et al. [3]. We then use our clustered
tandem mass spectra-based database searching algorithm to
assign the top-ranked peptide sequence for each cluster.
Then, we differentiate correct peptide identifications from
the incorrect ones using a false discovery rate (FDR) pro-
cedure coupled with a decoy database analysis [5], [6]. The
FDR procedure is needed because the top-ranked peptide
sequence for a cluster may not be a correct assignment. To
validate our approach, we apply our method to a standard
mixture of seven proteins. We show that BaMS2 identifies
more peptides than the competing method [3] combined
with traditional peptide identification algorithms, such as
Sequest [7]. The advantage of our method becomes even
more apparent as the cluster size increases. We believe that
our model-based approach shows great promise, because
in contrast to model-free approaches, our model can be
further improved more easily and refined to yield better
performance.

II. METHOD

A. Data

To test our method, we used thirty HPLC-MS/MS data
sets acquired on mixtures of known proteins [8]. There
were six samples that contained seven proteins with varying
concentrations. From these experiments, 7,478 clusters with
a size greater than two (spectra) were used for our analysis.
About 15% of the clusters (Standard dataset A) were used
for the model tuning, while the rest of clusters (Standard

dataset B) were used for the model evaluation and model
comparison with a Frank et al.’s approach [3]. For the
protein database, we attached a shuffled yeast database and
the contaminant database (human keratins, porcine trypsin,
bonvine trypsin) to the seven-standard-protein database and
treated this combined database as a target database.

B. Preprocessing

Before modeling tandem mass spectrometry data, per-
forming adequate preprocessing steps is essential [9]. This
is necessary because inadequate preprocessing may cause
mild to serious model violations as well as low performance
in assigning the correct peptide sequence to a cluster. Our
preprocessing steps included clustering tandem mass spectra,
binning m/z values of peaks, and rescaling peak intensities in
each spectrum. Recently developed clustering algorithms
for tandem mass spectra have only a few differences among
them [2]–[4]. Encouraged by results of [3], who synthesized
two previously published methods, we used their software,
MS-Clustering (available from http://peptide.ucsd.edu) to
cluster tandem mass spectra. MS-Clustering starts by re-
moving low-quality spectra, which are not likely to yield
peptide identifications. For convenience in model building,
we considered only a certain range of m/z values (200-
2,000Da) [9] and removed peaks within a 10Da window
around the precursor mass-to-charge value to eliminate the
possibility of matching a predicted fragment ion to the
mass-to-charge ratio of the precursor ion [7]. Then, we
discretized spectrum i by dividing the m/z values into B
bins and collecting the total intensities per bin into a vector
Xi = (Xi1,Xi2,...,XiB). The bin width is related to the
resolution of the instrument. Using the fact that fragment
mass tolerance of the LTQ is about 0.8 [10], we set 1 Da
as a bin width. In our model formulation, we assumed that
log-intensities of bin j in spectra within the same cluster
were generated from a normal distribution with a common
mean intensity value. However, peak intensities of different
spectra were not on the same scale due to the difference
in their precursor ion intensities. We therefore normalized
each spectrum i by subtracting an arithmetic mean of log-
transformed non-zero intensities in spectrum i from all log-
transformed non-zero intensities in spectrum i.

C. Bayesian Peptide Identification

1) Probabilistic Data Generating Model: We formulated
a probabilistic data generating model given a theoretical
tandem mass spectrum. In our theoretical spectrum, we
included the first and second isotope peaks of predominant
ions, which are called b- and y-ions. Our method can be
easily extended to include more types of ions (i.e. z-, c-, and
a-ions [11]) by simply adding more ions in the theoretical
spectrum. Since intensity values of the theoretical spectrum
were unknown, our theoretical spectrum was represented
by a binary vector T = (T1, . . . , TB), where Tj = 0



indicates the absence of a signal peak in bin j and Tj = 1
indicates that we expect to see a signal peak in this bin.
Given these indicators of signal peak absence/presence, we
modeled the observed intensities of signal and noise peaks.
When Tj = 1, we observe a signal peak in bin j with a
probability p and log-intensities of signal peaks are normally
distributed with mean µj and variance σ2

j . When Tj = 0,
we observe a noise peak with a probability q and log-
intensities of noise peaks are normally distributed with a
mean ν and a variance γ2. Note that the signal model
has bin-specific means and variances while the noise model
has a common mean and a common variance. We also
point out that we transformed observed intensities to the
log scale. This choice of transformation was dictated by
mathematical convenience rather than by physical modeling.
The logarithmic transformation itself allowed us to use
normal distribution for noise peak intensities or bin-specific
signal peak intensities, and we empirically confirmed that
a normal distribution is appropriate for the log-transformed
clustered mass spectrometry data observed in practice. In
order to obtain the likelihood of the observed clustered
spectra, we made two assumptions. The first assumption was
that observations corresponding to the same bin are indepen-
dent and identically distributed (iid) across spectra within
a cluster. In this assumption, we considered the intensities
of common peaks from the same peptide (with the same
charge state) were generated from the same distribution. This
assumption is reasonable when our rescaling preprocessing
step is performed properly. Furthermore, we assumed that
intensities across bins are independently distributed. Thus,
the peak intensity in one bin is not associated with the peak
intensity in another bin. This assumption is disputable due to
dependences among isotopic peaks, between b- and y-ions,
among the same ions with different charge states [12], [13],
and due to rescaling in our preprocessing step. However,
we prefer to build a simple and computationally efficient
model with the hope that our crude approximation of reality
will be sufficient for peptide identification. Under our two
assumptions, the likelihood of observed clustered spectra can
be written as

Pr(X | T, p, q,µ,σ, ν, γ) =
B∏

j=1

N∏
i=1

[
(1− p)1[xij=0]

{
p

σj
φ

(
log(xij)− µj

σj

)}1[xij>0]

]Tj

[
(1− q)1[xij=0]

{
q

γ
φ

(
log(xij)− ν

γ

)}1[xij>0]

]1−Tj

,

(1)

where N is the number of spectra in a cluster, X =
(X1,X2, . . . ,XN ) is a matrix of observed peak intensities
for a given cluster, (p, q,µ,σ, ν, γ) are model parameters,
and φ(x) is the standard normal density. The clusters with
a minimum cluster size of 3 (N ≥ 3) were used for this

model.
2) Bayesian Model Selection Method: Now, suppose we

want to compare K peptides/models, T1, . . . ,TK , using
the same observed spectral cluster X. Taking a statistical
point of view, we need to measure relative fit of these
models to the observed data. Notice that such a comparison
is complicated by the fact that model parameter vectors,
θ1, . . . ,θK , may have different numbers of components,
where θ = (p, q,µ,σ, ν, γ). There are several approaches
to this model selection problem. We took one of them,
which is based on integrated likelihood [14], [15]. First, we
assigned conjugate prior distributions to model parameters,
Pr(θm | Tm), which is a choice based on mathematical con-
venience. The prior distributions for signal bin parameters
are:

p ∼ Beta(ap, bp),
µj | σ2

j ∼ Normal(µj0, σ
2
j /κj1),

σ2
j ∼ Inverse−Gamma(αj1, βj1).

(2)

We can interpret prior parameters in terms of prior observa-
tions if we look at the posterior expectation as a weighted
average of the prior and empirical expectations [16]. We
interpret ap as a prior observed number of non-zero signal
bins, where ap + bp is a prior sample size of all signal
bins. We think of µj0 as the prior sample mean of κj1
non-zero signal bins with variance σ2

j . The interpretation
of βj1/αj1 is a prior sample variance of non-zero signal
intensities in bin j, where the prior sample size is 2αj1.
Parameters of prior noise bin distributions listed below in
(3.3), can be interpreted similarly to prior parameters for
signal bins except that ν0 and γ2/κ0 are not bin-specific:

q ∼ Beta(aq, bq),
ν | γ2 ∼ Normal(ν0, γ2/κ0),
γ2 ∼ Inverse−Gamma(α0, β0).

(3)

After the priors were determined, we proceeded by calcu-
lating the marginal likelihood for each model Tm:

Pr(X | Tm) =

∫
Pr(X | Tm,θm)Pr(θm | Tm)dθm. (4)

After obtaining integrated likelihoods for all candidate
models, using Bayes’ rule, we arrived at the posterior model
probabilities:

Pr(Tm | X) =
Pr(X | Tm)Pr(Tm)∑K
l=1 Pr(X | Tl)Pr(Tl)

. (5)

Our algorithm selects a model/peptide with the highest
posterior probability. In this analysis, we assumed that
Pr(Ti) = 1/K for all i = 1, ...,K, which means that we
select a model/peptide with the highest integrated likelihood.
The detectibility score [17] is another reasonable choice for
Pr(Ti) since it is the probability of observing a peptide Ti
in a sample.
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Figure 2. The ROC and precision-recall curves. The curves are estimated
based on the correctly identified clusters of the seven-protein mixture data.
The line descriptions in (b) are same as (a).

D. Measuring Uncertainty of Peptide Identification

The predictive ability of scores used for peptide identifica-
tion determines the performance in measuring uncertainty of
peptide/protein identification [18], [19], thus we need good
predictor scores that can distinguish correct from incorrect
identifications. Since the cluster size varies by cluster, the
integrated likelihoods are not comparable across clusters,
preventing us from using them as a predictive score. The
potential scores we considered were the posterior probability
that the observed cluster is generated from a certain pep-
tide/model, the difference between the top two log integrated
likelihoods normalized by the standard deviation of log inte-
grated likelihoods of all candidate peptides (DeltaLIL), the
noise emission probability q̂, the signal emission probability
p̂, the average intensity of noise peaks ν̂, and the average
of µ̂j’s which is the average intensity of signal peaks. We
compared the performance of these scores in differentiating
the correct identifications from incorrect identifications using
precision-recall [20], [21] and receiver operating character-
istic (ROC) curves [22], shown in Figure 2. Seven standard
protein mixture data (Standard dataset A) were used for this
comparison since the correct and incorrect identifications

can be approximated as described in the section II.C. In
Figure 2, the ROC curve closer to the upper-left corner
indicates better performance while the precision-recall curve
closer to the upper-right corner indicates better performance.
Since our data contain a much smaller number of positives
(correct identification) compared to the number of negatives
(incorrect identifications), the precision-recall curves high-
light the important differences among scores better than the
ROC curves [20]. Based on this analysis, we decided to use
DeltaLIL as the predictive score, which performed the best
among the potential scores. Using DeltaLIL, we computed
a p-value to test the null hypothesis that a match between
the observed cluster and the top-ranked peptide occurred by
chance. Since such a null distribution is unknown for real
biological samples, we approximated the score distribution
of incorrect peptide identifications using a decoy database
approach (e.g. a database that contains reversed sequences of
proteins or a shuffled database) [5], [18], [23]. The derived
p-value was the proportion of decoy identifications equal
to or larger than the score of a given identification. Our
computed p-value distribution was most dense near zero
and flat elsewhere. This shape displayed no violations of the
assumptions of methods operating on p-values and suggested
that several clusters were correctly identified [24]. Finally,
we corrected the multiple testing problem by computing the
q-value, which is the minimal positive false discovery rate
(pFDR) for each identification [6]. The database search
time for our Bayesian approach is O(BKC) where B is the
number of bins, K is the number of candidate peptides, and
C is the number of clusters in a dataset. Since the number
of clusters, C is much less than S, the number of spectra in
a particular dataset, the time complexity of this algorithm is
much less than the time complexity of traditional database
searching algorithms, O(BKS). Comparing to traditional
database searching algorithms, we preprocess the spectra
(i.e. clustering, normalizing, extracting sufficient statisticis),
however, the time complexity for this step is only O(BS).

III. RESULTS AND DISCUSSION

On the seven-protein standard mixture data (Standard
dataset B), our BaMS2 method outperformed the model-
free approach in terms of the number of clusters identified
with high confidence. The number of clusters identified
by our approach was consistently larger than the number
of clusters identified by the competing approach for q-
value cutoffs ∈ (0, 0.1) as shown in Figure 3(a). For q-
value< 0.01, BaMS2 identified 20.80% more clusters than
the model-free approach (Table I). Moreover, our BaMS2

approach identified 18.07% more peptides and 22.06% more
spectra than the model-free method with the same q-value
cutoff. The number of identified spectra was computed
by multiplying the number of identified clusters by their
cluster size under the assumption that all spectra from the
same cluster are from the same peptide. Better BaMS2
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Figure 3. Seven-protein standard mixture analysis. (a) The number of
clusters identified with the corresponding q-value cutoffs. The black curves
in this figure are the numbers of identified clusters given predicted q-value
thresholds while the gray curves are the numbers of clusters given estimated
q-value thresholds. The vertical dotted line marks the q-value threshold
(= 0.01) that we used for our analysis. (b) The plot shows percentages
of identifications with high confidence (q < 0.01) with respect to their
cluster size. Open circles represent results from our BaMS2 method while
filled circles show results of the model-free approach. The 95% confidence
intervals are shown in the plot as vertical bars with whiskers.

performance in identifying spectra rather than clusters (com-
pared to the model-free approach) suggests that our ap-
proach performs better for larger clusters. We examined
the performance of both methods for various cluster sizes
in Figure 3(b). Both methods did better as the number
of spectra per cluster increased. More importantly, as the
cluster size increased, the advantage of our method over the
model-free approach became more pronounced. The latter
pattern emerged because more spectra in a cluster enabled
the BaMS2 algorithm to use information more efficiently.
Surprisingly, our BaMS2 did well even for small clusters
in the standard mixture data. Good performance of the
BaMS2 algorithm on modestly sized clusters (<30 spectra
per cluster) may be due to our choice of prior parameters
which happened to work well for this particular data set.

Figure 3(a) plots the numbers of clusters identified against
q-value cutoffs. Here, we used two types of q-values, the

Table I
PERFORMANCE IN PEPTIDE IDENTIFICATION (Q-VALUE< 0.01).

no. of clusters no. of spectra no. of peptides
BaMS2 784 18,880 647
model-free 649 15,468 548

predicted q-values [6] and estimated q-values. The latter q-
values were approximated based on the information of pro-
teins present in the samples and the shuffled yeast database.
More specifically, for each predictive score (DeltaLIL for
BaMS2 and DeltaCn for the model-free approach) thresh-
old, we estimated pFDR by dividing the number of identified
clusters as a peptide neither from one of seven standard
proteins in the sample nor from one of contaminants by
the number of clusters with the predictive score exceeding
the specified threshold. Then, we computed the q-values
which are the minimum pFDRs at which a given predictive
score is accepted [6]. Figure 3(a) shows that both [6]’s and
estimated q-values are very similar except for very small
q-value thresholds (q-value< 0.01).

IV. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a novel database searching
algorithm, BaMS2, for clustered tandem mass spectra.
By eliminating redundant entries for database search, this
clustering based algorithm has lower time complexity than
the traditional algorithms and can be implemented to reduce
the actual database searching time. Its performance is good
for larger clusters in terms of identifying more peptides with
high confidence. For small clusters, our approach performs
similarly to the model-free approach, but the performance
of our BaMS2 method seems to increase faster than the
model-free method as the cluster size increases. We also
think that our BaMS2 has the potential to improve its
performance since our proposed method is flexible. For
example, we can incorporate better prior knowledge into
our model. In our analysis, we assigned the same weak
informative prior for all the signal bins. However, in reality,
the intensity of a signal peak depends on the fragment
behavior of peptides which can be predicted by the amino
acid composition of the peptide. Thus, it is more appropriate
to assign a prior mean intensity separately for each signal
bin. Combining the efficiency of our method with a better
choice of priors can improve the BaMS2 performance,
especially for small clusters. We can also improve our
method by making our data generating model more realistic
so that it accounts for dependencies among signal bins (i.e.
b- and y-ions, the first and second isotope peaks).

Our BaMS2 algorithm takes advantage of repeated spec-
tra from the same peptide and works well with large clusters
(30 or more). Our approach is useful in the situation where
multiple tandem mass spectra from the same peptides are
produced. For example, researchers can take advantage of



our method for precursor acquisition independent from ion
count (PAcIFIC) [25] which produces many more tandem
mass spectra from the same precursor for one run than reg-
ular mass spectrometry experiments. In general, our method
is timely, especially in light of ongoing developments of the
mass spectrometry experiments that produce a large amount
of often redundant information. We believe that model-
based statistics methods provide a natural framework for
leveraging this redundancy.
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