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Mapping evolutionary trajectories of discrete traits onto phylogenies receives considerable attention
in evolutionary biology. Given the trait observations at the tips of a phylogenetic tree, researchers are
often interested where on the tree the trait changes its state and whether some changes are
preferential in certain parts of the tree. In a model-based phylogenetic framework, such questions
translate into characterizing probabilistic properties of evolutionary trajectories. Current methods of
assessing these properties rely on computationally expensive simulations. In this paper, we present an
efficient, simulation-free algorithm for computing two important and ubiquitous evolutionary
trajectory properties. The first is the mean number of trait changes, where changes can be divided
into classes of interest (e.g. synonymous/non-synonymous mutations). The mean evolutionary
reward, accrued proportionally to the time a trait occupies each of its states, is the second property.
To illustrate the usefulness of our results, we first employ our simulation-free stochastic mapping to
execute a posterior predictive test of correlation between two evolutionary traits. We conclude by
mapping synonymous and non-synonymous mutations onto branches of an HIV intrahost
phylogenetic tree and comparing selection pressure on terminal and internal tree branches.

Keywords: stochastic mapping; counting processes; evolutionary rewards;
posterior predictive diagnostics
1. INTRODUCTION AND BACKGROUND
Reconstructing evolutionary histories from present-day

observations is a central problem in quantitative

biology. Phylogenetic estimation is one example of
such reconstruction. However, phylogenetic recon-

struction alone does not provide a full picture of an

evolutionary history, because evolutionary paths (map-

pings) describing trait states along the phylogenetic tree

remain hidden. Although one is rarely interested in

detailed reconstruction of such mappings, certain

probabilistic properties of the paths are frequently

used in evolutionary hypotheses testing (Nielsen 2002;
Huelsenbeck et al. 2003; Leschen & Buckley 2007).

For example, given a tree and a Markov model of

amino acid evolution, one can compute the expected

number of times a transition from a hydrophobic to a

hydrophilic state occurs, conditional on the observed

amino acid sequence alignment. Such expectations can

inform researchers about model adequacy and provide

insight into the features of the evolutionary process
overlooked by standard phylogenetic techniques

(Dimmic et al. 2005).

Nielsen (2002) introduced stochastic mapping of

trait states on trees and employed this new technique in

a model-based evolutionary hypothesis testing context.
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The author starts with a discrete evolutionary trait X
that attains m states. He further assumes that this trait
evolves according to an evolutionary model described
by a parameter vector q, where q consists of a tree t

with n tips and branch lengths TZ ðt1;.; tBn
Þ, root

distribution pZ ðp1;.;pmÞ and a continuous-time
Markov chain (CTMC) generator QZ{qij} for
i; jZ1;.;m. Let mapping MqZ ðfX1tg;.; fXBnt

gÞ be
a collection of CTMC trajectories along all branches of
t and H(Mq) be a real-valued summary of Mq. Clearly,
even when parameters q are fixed, h(Mq) remains a
random variable. Nielsen (2002) proposed to test
evolutionary hypotheses using prior and posterior
expectations E½HðMqÞ� and E½HðMqÞ jD�, where
DZ ðD1;.;DnÞ are trait values observed at the n tips
of t. Since these expectations are deterministic
functions of q and D, they can be used as discrepancy
measures for posterior predictive p-value calculations
(Meng 1994; Gelman et al. 1996).

A major advantage of Nielsen’s stochastic mapping
framework is its ability to account for uncertainty in
model parameters, including phylogenies. A major
limitation of stochastic mapping is its current
implementation that relies on time-consuming
simulations. In describing his method for calculating
E½HðMqÞ� and E½HðMqÞ jD�, Nielsen (2002) wrote ‘In
general, we can not evaluate sums in equations 5 and 6
directly, because the set [of all possible mappings] is
not of finite size.’ However, the infinite number of
possible mappings does not prevent one from explicitly
This journal is q 2008 The Royal Society
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calculating E½HðMqÞ� for some choices of H. For
example, if

HðMqÞZ
1 if Mq is consistent with D

0 if Mq is inconsistent with D;

(
ð1:1Þ

then E½HðMqÞ�ZPrðDÞ, the familiar phylogenetic
likelihood that can be evaluated without simulations
(Felsenstein 2004). Therefore, hope remains that other
choices of H may also permit evaluation of E½HðMqÞ�

and E½HðMqÞ jD� without simulations.
In this paper, we consider a class of additive

mapping summaries of the form

HðMqÞZ
X
b2U

hðfXbtgÞ; ð1:2Þ

where hðfXbtgÞ is a one-dimensional summary of the
Markov chain path along branch b and U is an arbitrary
subset of all branches of t. Moreover, we restrict our
attention to the two most popular choices of function h.
Let L3f1;.;mg2 be a set of ordered index pairs that
label transitions of trait X. For each Markov path {Xt}
and interval [0, t), we count the number of labelled
transitions in this interval and arrive at

h1ðfXtgÞZNL - number of state transitions labelled by setL
ð1:3Þ

where we omit dependence on q and t for brevity.
Although our second choice of h is more abstract, it is
motivated by Huelsenbeck et al. (2003), who used
Nielsen’s stochastic mapping algorithm to calculate the
mean dwelling time of a trait in a particular state. Let
wZ ðw1;.;wmÞ be a set of rewards assigned to each
trait state. Trait X is ‘rewarded’ the amount t!wi for
spending time t in state i. We obtain the total reward of
Markov path {Xt} by summing up all rewards that X
accumulates during interval [0, t),

h2ðfXtgÞZRw - evolutionary reward defined by vector w:

ð1:4Þ

To obtain dwelling times of X in a predefined set of trait
states, we set wiZ1 if i belongs to the set of interest and
wiZ0 otherwise.

For these two choices of function h, we provide
an algorithm for exact, simulation-free computation of
E½HðMqÞ� and E½HðMqÞ jD�. Similar to phylogenetic
likelihood calculations of Pr(D), this algorithm relies on
the eigen decomposition of Q and requires traversing t.
Our work generalizes and unifies exact calculations
previously developed for stochastic mapping (Holmes &
Rubin 2002; Guindon et al. 2004; Dutheil et al. 2005).
Despite the restricted form of the considered mapping
summaries, our results cover nearly all current appli-
cations of stochastic mapping. We conclude with two
applications of stochastic mapping illustrating the
capabilities of exact computation. In our first example,
we examine coevolution of two binary traits and
demonstrate that a previously developed simulation-
based test of independent evolution can be executed
without simulations. We then turn to a large codon
Markov state space, on which simulation-based stochas-
tic mapping generally experiences severe comput-
ational limitations. Using our exact computations, we
Phil. Trans. R. Soc. B (2008)
study temporal patterns of synonymous and non-
synonymous mutations in intrahost HIV evolution.
2. LOCAL, ONE BRANCH CALCULATIONS
In this section, we provide mathematical details needed
for calculating expectations of stochastic mapping
summaries on one branch of a phylogenetic tree.
We first motivate the need for such local computations
by making further analogies between calculations of
Pr(D) and expectations of stochastic mapping sum-
maries. The additive form of H reduces calculation
of E½HðMqÞ� and E½HðMqÞ jD� to compute branch-
specific expectations E½hðfXbtgÞ� and E½hðfXbtÞg jD�.
Recall that according to the most phylogenetic models,
trait X evolves independently on each branch of t,
conditional on trait states at all internal nodes of t. This
conditional independence is the key behind the dynamic
programming algorithm that allows for efficient calcu-
lation of Pr(D) (Felsenstein 1981). For this likelihood
calculation algorithm, it suffices to compute finite-time
transition probabilities PðtÞZ fpijðtÞg, where

pijðtÞZPrðXt Z j jX0 Z i Þ; ð2:1Þ

for arbitrary branch length t. Similarly, to obtain
E½hðfXtgÞ� and E½hðfXtgÞ jD�, we require means of
computing local expectations Eðh; tÞZ feijðh; tÞg,
where

eijðh; tÞZE
�
hðfXtgÞ1fXtZjg jX0 Z i

�
ð2:2Þ

and 1{$} is the indicator function. After illustrating
how to compute EðNL; tÞ and EðRw; tÞ without
resorting to simulations, we provide an algorithm
that efficiently propagates local expectations E(h, t)
and finite-time transition probabilities P(t) along t

to arrive at E½hðfXtgÞ� and E½hðfXtgÞ jD�.

(a) Expected number of labelled

Markov transitions

Abstracting from phylogenetics, let NLðtÞ count the
number of labelled transitions of a CTMC {Xt} during
time interval [0, t). It follows from the theory of Markov
chain-induced counting processes that

EðNL; tÞZ

ðt
0

eQz
QLeQðtKzÞ dz; ð2:3Þ

where QLZ fqij!1fði; j Þ2Lgg (Ball & Milne 2005). Since
most evolutionary models are locally reversible, we can
safely assume that Q is diagonalizable with eigen decom-
position QZU!diagðd1;.; dmÞ!UK1, where eigen-
vectors of Q form the columns of U, d1;.; dm are the
real eigenvalues of Q, and diagðd1;.; dmÞ is a diagonal
matrix with elements d1;.; dm on its main diagonal.
Such analytic or numeric diagonalization procedure
permits calculation of finite-time transition proba-
bilities PðtÞZU !diagðed1t ;.; edmtÞ!UK1, needed for
likelihood calculations (Lange 2004). Minin & Suchard
(2008) have shown that one can use the same eigen
decomposition of Q to calculate local expectations

EðNL; tÞZ
Xm
iZ1

Xm
jZ1

SiQLSj IijðtÞ; ð2:4Þ
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where SiZUEiU
K1, Ei is a matrix with zero entries

everywhere except at the ii-th entry, which is one, and

IijðtÞZ

tedi t if di Z dj ;

edi tKedj t

diK dj
if disdj :

8>>><
>>>:

ð2:5Þ

(b) Expected Markov rewards

For the reward processRw(t), we define a matrix cumul-
ative distribution function V ðx; tÞZ fVijðx; tÞg, where

Vijðx; tÞZPrðRwðtÞ%x; Xt Z j jX0 Z i Þ: ð2:6Þ

Neuts (1995, ch. 5) demonstrated that local reward
expectations can be expressed as

EðRw; tÞZK
d

ds
V

�ðs; tÞ
���
sZ0

; ð2:7Þ

where

V
�ðs; tÞZ

ðN
0

eKsx dV ðx; tÞZ e½QKdiagðw1 ;. ;wmÞs�t ð2:8Þ

is the Laplace–Stieltjes transform of V(x, t). It is easy to
see that the matrix exponential in equation (2.8) satisfies
the following differential equation:

d

dt
V

�ðs; tÞZV
�ðs; tÞ½QKdiagðw1;.;wmÞs�: ð2:9Þ

Differentiating this matrix differential equation with
respect to s, exchanging the order of differentiation and
evaluating both sides of the resulting equation at sZ0, we
arrive at the differential equation for local expectations

d

dt
EðRw; tÞZEðRw; tÞQCeQtdiagðw1;.;wmÞ; ð2:10Þ

where E(Rw, 0) is the m!m zero matrix. Multiplication
of both sides of equation (2.10) by integrating factor eKQt

from the right and integration with respect to t produces
the solution,

EðRw; tÞZ

ðt
0

eQzdiagðw1;.;wmÞe
QðtKzÞ dz: ð2:11Þ

Similarity between equations (2.3) and (2.11) invites
calculation of the expected Markov rewards via spectral
decomposition of Q,

EðRw; tÞZ
Xm
iZ1

Xm
jZ1

Sidiagðw1;.;wmÞSj IijðtÞ: ð2:12Þ

In summary, formulae (2.4) and (2.12) provide a recipe
for exact calculationsof local expectations for the number
of labelled transitions and rewards.
3. ASSEMBLING PIECES TOGETHER OVER
A TREE
(a) Notation for tree traversal

Let us label the internal nodes of t with integers
{1, ., nK1} starting from the root of the tree. Recall
that we have already arbitrarily labelled the tips of t

with integers {1, ., n}. Let I be the set of internal
branches and E be the set of terminal branches of t. For
each branch b2I , we denote the internal node labels of
the parent and child of branch b by p(b) and c(b),
Phil. Trans. R. Soc. B (2008)
respectively. We use the same notation for each
terminal branch b except p(b), which is an internal
node index, while c(b) is a tip index. Let iZ ði1;.; inK1Þ

denote the internal node trait states. Then, the
complete likelihood of unobserved internal node states
and the observed states at the tips of t is

Prði;DÞZpi1

Y
b2I

pip ðbÞic ðbÞ ðtbÞ
Y
b2E

pip ðbÞDc ðbÞ
ðtbÞ: ð3:1Þ

We form the likelihood of the observed data by
summing over all possible states of internal nodes,

PrðDÞZ
Xm
i1Z1

/
Xm

inK1Z1

pi1

Y
b2I

pip ðbÞic ðbÞ ðtbÞ
Y
b2E

pip ðbÞDc ðbÞ
ðtbÞ:

ð3:2Þ

Clearly, when data on the tips are not observed, the
prior distribution of internal nodes becomes

PrðiÞZpi1

Y
b2I

pip ðbÞic ðbÞ ðtbÞ: ð3:3Þ

(b) Posterior expectations of mapping

summaries

Consider an arbitrary branch b� connecting parent
internal node p(b�) to its child c(b�). First, we introduce
restricted moments,

E
�
hðfXb�tgÞ1D

�
ZE

�
hðfXb�tgÞ jD

�
!PrðDÞ: ð3:4Þ

The expectation (3.4) integrates over all evolutionary
mappings consistent with D on the tips of t. Invoking
the law of total expectation and the definition of
conditional probability, we deduce

E
�
hðfXb�tgÞ1D

�
ZE½hðfXb�tÞg jD�!PrðDÞ

Z
X
i

E½hðfXb�tgÞ j i;D�!Prði;DÞ

Z
X
i

E
�
hðfXb�tgÞ j ipðb�Þ; icðb�Þ

�
pi1

Y
b2I

pip ðbÞic ðbÞ ðtbÞ

!
Y
b2E

pip ðbÞDc ðbÞ
ðtbÞ

Z
X
i

eip ðb�Þic ðb�Þ ðh; tb� Þpi1

Y
b2Infb�g

pip ðbÞic ðbÞ ðtbÞ

!
Y

b2Enfb�g
pip ðbÞDc ðbÞ

ðtbÞ: ð3:5Þ

The last expression in derivation (3.5) illustrates that in
order to calculate the posterior restricted moment (3.4)
along branch b� 2I , we merely need to replace finite-
time transition probability pipðb�Þicðb�Þ ðtb� Þ with local

expectation eipðb�Þicðb�Þ ðh; tb� Þ in the likelihood formula

(3.2). Similarly, if b� 2E, we substitute eipðb�ÞDcðb�Þ
ðh; tb� Þ

for pipðb�ÞDcðb�Þ
ðtb� Þ in (3.2). Given matrices PðtbÞ for

bsb� and Eðh; tb� Þ, we can sum over internal node
states using Felsenstein’s pruning algorithm to arrive
at the restricted mean E½hðfXb�tgÞ1D� and then divide
this quantity by Pr(D) to obtain E½hðfXb�tgÞ jD�.

This procedure is efficient for calculating the
posterior expectations of mapping summaries for one
branch of t. However, in practice, we need to calculate
the mapping expectations over many branches and
consequently execute the computationally intensive
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Figure 1. Sandwich formula illustration. (a) An example
phylogenetic tree in which we label internal nodes numeri-
cally and two branches b� and b 0. We break this tree at nodes
3 and 4 into the subtrees shown in (b). Assuming that the
trait states are i and j at nodes 3 and 4, respectively, we mark
each subtree by the corresponding quantity needed for
calculating the posterior expectation of a mapping summary
on branch b�.
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pruning algorithm many times. A similar problem is
encountered in maximum-likelihood phylogenetic esti-
mation during differentiation of the likelihood with
respect to branch lengths. An algorithm, reviewed by
Schadt et al. (1998), allows for computationally efficient,
repeated replacement of one of the finite-time transition
probabilities with an arbitrary function of the corres-
ponding branch length in equation (3.2). This algorithm
finds informal use since the 1980s in pedigree analysis
(Cannings et al. 1980) and is implemented in most
maximum-likelihood phylogenetic reconstruction soft-
ware such as PAUP (J. Huelsenbeck 2007, personal
communication).

Let FuZ ðFu1;.;FumÞ be the vector of forward, often
called partial or fractional, likelihoods at nodeu. Element
Fui is the probability of the observed data at only the tips
that descend from the node u, given that the state of u is i.
If u is a tip, then we initialize partial likelihoods via
FuiZ1fiZDug

. In case of missing or ambiguous data, Du

denotes the subset of possible trait states, and forward
likelihoods are set to FuiZ1fi2Dug

. During the first,
upward traversal oft, we compute forward likelihoods for
each internal node u using the recursion

Fui Z
Xm
jZ1

Fcðb1Þj
pijðtb1

Þ

" #
!

Xm
jZ1

Fcðb2Þj
pijðtb2

Þ

" #
; ð3:6Þ
Phil. Trans. R. Soc. B (2008)
where b1 and b2 are indices of the branches descending
from node u and c(b1) and c(b2) are the corresponding
children of u. We denote the directional likelihoods in
square brackets of equation (3.6) by Sb1i

and Sb2i
and

record SbZ ðSb1;.;SbmÞ together with Fu. Finally,
we define backward likelihoods GuZ ðGu1;.;GumÞ,
where Gui is the probability of observing state i at node
u together with other tip states on the subtree of t

obtained by removing all lineages downstream of node u.
A second, downward traversal of t yields Gu given the
precomputed Sb.

For each branch b�, we can sandwich pijðtb� Þ among the
forward, directional and backward likelihoods and write

PrðDÞZ
Xm
iZ1

Xm
jZ1

Gpðb�ÞiSb0ipijðtb� ÞFcðb�Þj ; ð3:7Þ

where b0 is the second branch descending from the parent
node p(b�). Therefore, with Fu, Sb and Gu precomputed
for all nodes and branches of t, we can replace pijðtb� Þwith
any other quantity for any arbitrary branch b without
repeatedly traversing t. In particular, the posterior
restricted moment for branch b� can be expressed as

E½hðfXb�tgÞ1D�Z
Xm
iZ1

Xm
jZ1

Gpðb�ÞiSb0ieijðh; tb� ÞFcðb�Þj :

ð3:8Þ

In figure 1, we use an example tree to illustrate the
correspondence between each quantity in sandwich
formula (3.8) and the part of the tree involved in this
quantity computation. We summarize all steps that lead to
the computation of the global mean E½HðMqÞ jD� in
algorithm 1. Note that Pr(D), needed to transition
between conditional and restricted expectations in
formula (3.4), is computed with virtually no additional
cost in step (iv) of the algorithm.
(c) Pulley principle for evolutionary mappings

Suppose that we are interested in a mean mapping
summary E½HðMqÞ jD�, obtained as a sum of local
mapping summaries over all branches of the phylogen-
etic tree t. We would like to know whether quantity
E½HðMqÞ jD� changes when we move the root of t to a
different location.

Recall that reversibility of the Markov chain {Xt}
makes Pr(D) invariant to the root placement in t if the
root distribution p is the stationary distribution of {Xt}
(Felsenstein 1981). Felsenstein’s pulley principle rests
on the detailed balance condition

pipijðtÞZpjpjiðtÞ ð3:9Þ

and Chapman–Kolmogorov relationship

pijðt1 C t2ÞZ
Xm
kZ1

pikðt1Þpkjðt2Þ: ð3:10Þ

Applying both formulae (3.9) and (3.10) once in
equation (3.2) allows one to move the root to any
position along the two root branches without changing
Pr(D). Therefore, Pr(D) is invariant to moving the root
to any position on any branch of t since we can
repeatedly apply the detailed balance condition and the
Chapman–Kolmogorov equation.

Invariance of Pr(D) to root placement together with
formula (3.4) suggests that root position invariance of



Algorithm 1. Calculating posterior expectations E[H(Mq) jD].

(i) obtain an eigen decomposition of the infinitesimal
generator Q

(ii) use this decomposition to compute PðtbÞ for each
branch b of t

(iii) employing the same eigen decomposition, compute
Eðh; tb� Þ for each branch b� in the set of interest U
using either equation (2.4) or equation (2.12)

(iv) traverse t once and calculate Fu and Sb for each node
u and each branch b. Compute data likelihood Pr(D)
as the dot product of Froot and root distribution p

(v) traverse t the second time and calculate backward
likelihoods Gu for all nodes u

(vi) for each b�2U, apply equation (3.8) to obtain

E½hðfXb�tgÞ1D�

(vii) return E½HðMqÞ jD�Z1=PrðDÞ
P

b�2UE½hðfXb�tgÞ1D�
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conditional expectations E½HðMqÞ jD� holds if and
only if invariance of joint expectations E½HðMqÞ1D� is
satisfied. Consider a two-tip phylogeny with branches
of length t1 and t2 leading to observed trait states D1

and D2, respectively. According to formulae (1.2) and
(3.5), we may expect that

E½HðMqÞ1D�Z
Xm
kZ1

pkekD1
ðh; t1ÞpkD2

ðt2Þ

C
Xm
kZ1

pkekD2
ðh; t2ÞpkD1

ðt1Þ

Z
Xm
kZ1

pD1
eD1k

ðh; t1ÞpkD2
ðt2Þ

C
Xm
kZ1

pD1
ekD2

ðh; t2ÞpD1k
ðt1Þ

ZpD1
eD1D2

ðh; t1 C t2Þ; ð3:11Þ

depends only on the sum t1Ct2. Therefore, we can
move the root anywhere on this phylogeny without
altering the expectations if {Xt} is reversible. It is easy
to see that repeated application of derivation (3.11)
readily allows for extension of the root invariance
principle to n-tip phylogenies.

In derivation (3.11), we use identities

eijðh; t1 C t2ÞZ
Xm
kZ1

�
eikðh; t1Þpkjðt2ÞCekjðh; t2Þpikðt1Þ

�
ð3:12Þ

and

pieijðh; tÞZpj ejiðh; tÞ: ð3:13Þ

Equation (3.12) splits computation of the expected
summary on interval [0, t1Ct2) into calculations bound
to intervals [0, t1) and [t1, t1Ct2) with the help of the total
expectation law and Markov property. This derivation
parallels that of Chapman–Kolmogorov equation
(3.10). Identity (3.13) requires more care as it does not
hold for all choices of function h. Using equation (2.12),
detailed balance condition (3.13) holds for h2ZRw.
However, equation (2.3) suggests that we only can
guarantee the detailed balanced condition (3.13) for
h1ZNL when ði; j Þ2L if and only if ð j; i Þ2L.
Phil. Trans. R. Soc. B (2008)
(d) Prior expectations of mapping summaries

In many applications of stochastic mapping, one wishes
to compare the prior to posterior expectations of sum-
maries (Nielsen 2002). In this section, we derive the
formulae necessary for computing prior expectations.
Similar to our derivation of posterior expectations, we
begin by considering an arbitrary branch b� and use the
law of total expectation to arrive at

E½hðfXb�tgÞ�

Z

P
i eipðb�Þicðb�Þ ðh; tb� Þpi1

Q
b2Infb�g pipðbÞicðbÞ ðtbÞ if b� 2IP

i eipðb�Þ ðh; tb� Þpi1

Q
b2I pipðbÞicðbÞ ðtbÞ if b� 2E;

(

ð3:14Þ

where eiðh; tÞZ
Pm

jZ1 eijðh; tÞ is the marginal local
expectation of the mapping summary.

Identity PðtÞ1Z1 allows us to eliminate summation
over some internal node states in formula (3.14) and
consider only those internal nodes that lie on the path
connecting the root of t and c(b�). If p is the stationary
distribution of {Xt}, then formula (3.14) together with
identities pTPðtÞZpT and PðtÞ1Z1 simplifies prior
local expectations even further,

E½hðfXb�tgÞ�Z
X
i

X
j

pieijðh; tb� Þ

ZpT
Eðh; tb� Þ1Z

pTQL1tb� if hZNL

Xm
iZ1

piwitb� if hZRw

8>><
>>:

ð3:15Þ

The fact that prior local expectations at stationarity
compute with virtually no additional burden has
immediate practical implications. In the context of
the posterior predictive model checking, researchers
often need to simulate L independent and identically
distributed (iid) realizations D1;.;DL of data at the
tips of t and then calculate the summary-based
discrepancy measure 1=L

PL
lZ1 E½hðfXtgÞ jDl� (Nielsen

2002). Since we know the ‘true’ model under
simulation, we can approximate this discrepancy
measure with the prior expectation

1

L

XL
lZ1

E½hðfXtgÞ jDl�z
X
D�

E½hðfXtgÞ jD
��PrðD�Þ

ZE½hðfXtgÞ�; ð3:16Þ

where D� ranges over all possible trait values at the tips
of t. In molecular evolution applications, L is of the
order of 103–105, and hence approximation (3.16)
should work well.
(e) Comparison with simulation-based

stochastic mapping

We comment earlier that the Monte Carlo algorithm for
stochastic mapping is an alternative and a very popular
way to compute expectations of mapping summaries.
This algorithm consists of two major steps. In the first
step, the tree is traversed once to compute Fu for each
node. In the second step, internal node states i are
simulated conditional on D (Pagel 1999). Then,
conditional on i, one simulates CTMC trajectories on
each branch of the tree and computes summaries of



Table 1. Efficiency and accuracy of stochastic mapping. (For
each number of iterations, we report the median number of
rejected CTMC trajectories over the entire phylogenetic tree
per iteration and the sum of absolute errors (SAE) of
simulation-based estimates of the mean number of syn-
onymous mutations along branches of the phylogenetic tree.)

slow evolving site fast evolving site

iterations
rejections/
iteration SAE

rejections/
iteration SAE

100 100 0.0598 38 845 0.4624
500 105 0.0255 39 247 0.3319
1000 102 0.0259 42 075 0.2905
10 000 106 0.0205 40 805 0.2809
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interest. This second step is repeated N times producing
a Monte Carlo sample of mapping summaries whose
averages approximate the branch-specific expectations.

The running time of the algorithm depends on N and
the computational efficiency of generating CTMC
trajectories. The number of samples N, required for
accurate estimation, varies with Q and T. Unfortunately,
this aspect of stochastic mapping is largely ignored in the
literature and by practitioners. Although more than one
way exists to simulate trajectories conditional on starting
and ending states (Rodrigue et al. 2008), rejection
sampling is the most common (Nielsen 2002). Assessing
the efficiency of rejection sampling is complicated,
because the efficiency depends not only on the choice
of CTMC parameters, but also on the observed data
patternsD. We illustrate these difficulties using a CTMC
on a state space of 64 codon triplets. We take two sites
from an alignment of 129 HIV sequences that we discuss
later in one of our examples. We call the first site slow
evolving as it obtains only three different codons. The
second, fast evolving site emits nine different codons. We
take one-parameter slice of our Markov chain Monte
Carlo (MCMC) sample and run rejection sampling to
estimate the expected number of mutations for all
branches of t. For each trial, we record the total number
of rejections on all branches of t and the absolute errors
of the estimated mean number of synonymous mutations
summed over all branches. We summarize the results of
this experiment in table 1. We see a 400! increase in the
number of rejections required to simulate trajectories
conditional on the fast site compared to equivalent
simulations based on the slow site. The Monte Carlo
error decreases as the number of Monte Carlo iterations
increases, but not as fast as one would hope.

In summary, simulation-based stochastic mapping
requires simulation of CTMC trajectories; this is not a
trivial computational task. Assessing accuracy of
methods is cumbersome and difficult to automate.
Our algorithm 1 replaces both simulation components
from stochastic mapping calculations and therefore
should be a preferred way of calculating expectations of
mapping summaries.
4. EXAMPLES
(a) Detecting coevolution via dwelling times

In this section, we reformulate a previously developed
simulation-based method for detection of correlated
Phil. Trans. R. Soc. B (2008)
evolution (Huelsenbeck et al. 2003) in terms of a Markov
reward process. We consider two primate evolutionary
traits, oestrus advertisement (EA) and multimale mating
system (MS), analysed by Pagel & Meade (2006). These
authors first use cytochrome b molecular sequences to
estimate the posterior distribution of the phylogenetic
relationship among 60 Old World monkeys and ape
species. Using 500 MCMC samples from the posterior
distribution of phylogenetic trees, Pagel and Meade run
another MCMC chain, this time with a reversible jump
component that explores a number of CTMC models
involving EA and MS traits and assess the models’
posterior probabilities to learn about EA/MS coevolu-
tion. The authors find support in favour of a hypothesis
stating that EA presence correlates with MS presence.
The trait data are shown in figure 2 together with a
phylogenetic tree, randomly chosen from the posterior
sample. While this is not the case for Pagel & Meade
(2006), reversible jump MCMC for model selection can
be difficult to implement, especially as the number of trait
states grows. Methods that simply require data fitting
under the null model are warranted. Consequentially, we
revisit this dataset and apply posterior predictive model
diagnostics to test the hypothesis of independent
evolution between EA and MS traits.

Our null model assumes that EA and MS evolve
independently as 2 two-state Markov chains X ð1Þ

t ,
X ð2Þ

t 2 f0; 1g, where 0 and 1, respectively, stand for trait
absence and presence. Let the infinitesimal generators
of the EA and MS CTMCs be

QEA Z
Ka0 a0

a1 Ka1

� �
and

QMS Z
Kb0 b0

b1 Kb1

 !
: ð4:1Þ

We form a product Markov chain YtZ X ð1Þ
t ;X ð2Þ

t

� �
on

the state space fð0; 0Þ; ð0;1Þ; ð1; 0Þ; ð1;1Þg that keeps
track of presence/absence of the two traits simul-
taneously assuming that they evolve independently.
The generator of the product chain is obtained via the
Kronecker sum (4),

FZQMS4QEA

Z

Kða0Cb0Þ b0 a0 0

b1 Kða0Cb1Þ 0 a0

a1 0 Kða1Cb0Þ b0

0 a1 b1 Kða1Cb1Þ

0
BBBB@

1
CCCCA:

ð4:2Þ

The Kronecker sum representation extends to
general finite state-space Markov chains and to an
arbitrary number of independently evolving traits
(Neuts 1995). Computationally, this representation
is advantageous, because eigenvalues and eigenvec-
tors of a potentially high-dimensional product chain
generator derive analytically from eigenvalues and
eigenvectors of low-dimensional individual generators
(Laub 2004).

To test the independent evolution model fit via
posterior predictive diagnostics, we need a discrepancy
measure (Meng 1994). Following Huelsenbeck et al.
(2003), we employ mean dwelling times to form a
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Figure 2. Primate trait data. We plot a phylogenetic tree,
randomly chosen from the posterior sample, of 60 primate
species. Branches of the sampled tree are not drawn to scale,
nor is the tree ultrametric. Taxa names and trait values (‘0’,
absence; ‘1’, presence; ‘K’, missing) for oestrus advertise-
ment (EA) and multimale mating system (MS) are depicted
at the tips of the tree.

Simulation-free stochastic mapping V. N. Minin & M. A. Suchard 3991
discrepancy measure. Let ZZ
PB

bZ1 tb be the tree
length of t. We define the mean dwelling times Zð1Þ

i

and Zð2Þ
i of traits X ð1Þ

t and X ð2Þ
t in state i, and the mean

dwelling time Zij of the product chain Yt in state (i, j )
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for i, jZ0, 1. More formally, we set

Zð1Þ
i ZE Rwi

jDð1Þ
� �

; Z ð2Þ
i ZE Rwi

jDð2Þ
� �

and

Zij ZE Rwij
jDð1Þ;Dð2Þ

h i
; ð4:3Þ

where w1Z ð1;0Þ, w2Z ð0;1Þ, w00Z ð1;0; 0;0Þ,
w01Z ð0; 1;0; 0Þ, w10Z ð0; 0;1; 0Þ, w11Z ð0; 0;0; 1Þ

and D(1), D(2) are observations of the two traits on
the tips of t.

Using the dwelling times, we define ‘expected’ 3ij
and ‘observed’ hij fractions of time the two traits spend
in states i and j,

3ij Z
Zð1Þ
i

Z
!

Z ð2Þ
j

Z
and hij Z

Zij

Z
: ð4:4Þ

We use quotation marks because both quantities are
not observed. To quantify the deviation from the null
hypothesis of independence seen in the data, we
introduce the discrepancy measure,

DðQEA;QMS;DÞZ
X1

iZ0

X1

jZ0

ð3ijK hijÞ
2: ð4:5Þ

This measure returns small values under the null and
implicitly depends on t and branch lengths T. We
account for this dependence and phylogenetic uncer-
tainty by averaging our results over a finite sample from
the posterior distribution of t and T, obtained from the
molecular sequence data.

We use the software package BAYESTRAITS to accom-
plish this averaging and to produce a MCMC sample
from the posterior distribution of QEA and QMS,
assuming the null model of independent evolution of
the two traits (Pagel et al. 2004). Each iteration sample
from the output of BAYESTRAITS consists of ðt;T ;a0;a1;
b0;b1Þ drawn from their posterior distribution. Given
these model parameters, we generate a new dataset
Drep and compute the observed DðQEA;QMS;DÞ and
predicted DðQEA;QMS;D

repÞ discrepancies for each
iteration. We then compare their marginal distributions
by plotting their corresponding histograms (figure 3). In
figure 3, we also plot the observed against predicted
discrepancies todisplay the correlationbetween these two
random variables. The apparent disagreement between
observed and predicted discrepancies is a manifestation
of poor fit of the independent model of evolution. The
observed discrepancy consistently exceeds the predicted
quantity. To illustrate the performance of predictive
diagnostics when the independent model fits data
well, we simulate trait data under this model along one
of the 500 a posteriori supported phylogenetic trees.
Figure 3c,d depicts the result of the posterior model
diagnostics applied to the simulated data. In contrast
to the observed primate data, the simulated data do
not exhibit disagreement between the observed and
predicted discrepancies.

Disagreement between the observed and predicted
discrepancies can be quantified using a tail probability,
called a posterior predictive p value,

pppZPr DðQEA;QMS;D
repÞODðQEA;QMS;DÞ jD;H0

� �
;

ð4:6Þ

where the tail probability is taken over the posterior
distribution of the independent model. In practice,
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Figure 3. Testing coevolution. (a,c) Plots depicting observed (white bars) and predicted (grey bars) distributions of the
discrepancy measure for the (a,b) primate and (c,d ) simulated data. (b,d ) The scatter plots of these distributions.

3992 V. N. Minin & M. A. Suchard Simulation-free stochastic mapping
given N MCMC iterations, one estimates posterior
predictive p values via

pppz
1

N

XN
gZ1

1
D Q

ðgÞ
EA

;Q
ðgÞ

MS
;Drep;g

� �
OD Q

ðgÞ
EA

;Q
ðgÞ

MS
;D

� �� 	; ð4:7Þ

where Q
ðgÞ
EA;Q

ðgÞ
MS are the parameter values realized at

iteration g, and Drep.g is a dataset simulated using these
parameter values. Following this recipe, we estimate
ppp for the primate data and the artificial data. The
disagreement between the ‘observed’ and ‘predicted’
discrepancies is reflected in a low pppZ0.0128. By
contrast, the pppZ0.3139, for the simulated data,
supports agreement between the observed and pre-
dicted distributions of D.

(b) Mapping synonymous and non-synonymous

mutations

In this section, we consider the important task of
mapping synonymous and non-synonymous mutations
onto branches of a phylogenetic tree. Our point of
departure is a recent ambitious analysis of HIV intrahost
evolution by Lemey et al. (2007), who use sequence data
originally reported by Shankarappa et al. (1999). The
authors attempt to estimate branch-specific syn-
onymous and non-synonymous mutation rates and
then project these measurements onto a time axis.
This projection enables one to relate the time evolution
of selection processes with clinical covariates. Lemey
et al. (2007) find fitting codon models computationally
prohibitive in this case. Instead, they first fit a DNA
Phil. Trans. R. Soc. B (2008)
model to the intrahost HIV sequences, obtain a
posterior sample of phylogenies with branch lengths,
and then use these phylogenies to fit a codon model to
the same DNA sequence alignment. Instead of fitting
two different models to the data, we propose to use just a
DNA model and exploit mapping summaries to predict
synonymous and non-synonymous mutation rates.

Suppose we observe a multiple DNA sequence
alignment DZ ðD1;.;DLÞ of a protein-coding region
with L sites and that all CZL/3 codons are aligned to
each other such that the coding region starts at site 1 of
D (in other words, there is no frameshift). Following
the codon partitioning model of Yang (1996), we
assume that sites corresponding to all first codon
positions, D1;D4;.;DLK2, evolve according to a
standard HKY model with generator QHKYðk1;p1Þ,
where k1 is the transition–transversion ratio and p1 is
the stationary distribution, both just for the first codon
position appropriately constrained. Similarly, we define
CTMC generators QHKYðk2;p2Þ and QHKYðk3;p3Þ for
the other two codon positions with independent
parameters. Assuming that all L nucleotide sites in D

evolve independently together with the three codon
position HKY models induces a product Markov chain
model on the space of codons ðAAA;AAG;.;TTT Þ,
where codons are arranged in lexicographic order with
respect to our nucleotide order A!G!C!T , the
generator of this product CTMC is

Qcodon ZQHKYðk1;p1Þ4QHKYðk2;p2Þ4QHKYðk3;p3Þ:

ð4:8Þ
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With this Markov chain on the codon space, we
define a labelling L(s) that contains all possible pairs
of codons that translate into the same amino acid.
All other codon pairs are collected into a labelling set
L(n). Clearly, transitions between elements of L(s)
constitute synonymous mutations, and non-synonymous
mutations are represented by transitions between
elements of L(n). In this manner, counting processes
map synonymous and non-synonymous mutations
onto specific branches of t. We consider HIV sequences
from patient 1 of Shankarappa et al. (1999) and
approximate the posterior distribution of our DNA
model parameters PrðQcodon; t;T jDÞ using MCMC
sampling implemented in the software package BEAST
(Drummond & Rambaut 2007). The serially sampled
HIV sequences permit us to estimate the branch lengths
T in units of clock time, months in this case. For each
saved MCMC sample, we compute branch-specific rates
of synonymous and non-synonymous mutations,

rbðsÞZ
1
C

PC
cZ1 E

�
NLðsÞðtbÞ jDc:cC2

�
tb

and

rbðnÞZ
1
C

PC
cZ1 E NLðnÞðtbÞ jDc:cC2

� �
tb

;
ð4:9Þ

where we denote data at codon site c by Dc:cC2. We
also record the fraction rbðnÞ=ðrbðsÞC rbðnÞÞ of non-
synonymous mutations. Similar to Lemey et al.
(2007), we summarize these measurements by project-
ing them on the time axis. To this end, we form a finite
time grid and produce a density profile of the
synonymous and non-synonymous rates, and of the
Phil. Trans. R. Soc. B (2008)
non-synonymous mutation fractions for each time
interval between grid points (figure 4). Both synon-
ymous and non-synonymous rate density profiles
are consistently bimodal across time. Interestingly,
the modes also stay appreciably constant. The density
profile of the non-synonymous mutation fractions
is multimodal and fairly complex. There are a
considerable number of branches that exhibit strong
negative ððrbðnÞÞ=ðrbðsÞC rbðnÞÞw0Þ and positive ððrbðnÞÞ=
ðrbðsÞC rbðnÞÞw1Þ selection. In general, when comparing
branches that occur earlier in the tree to those that
occur later, the non-synonymous mutation fraction
has first a modest upward trend through time and then
descends to lower values, consistent with other patterns
of evolutionary diversity reported by Shankarappa
et al. (1999).

Intrigued by the multimodality observed in figure 4,
we investigate this issue further. Lemey et al. (2007)
consider several branch categories in their analysis, e.g.
internal and terminal. We decide to test whether
differences exist between selection forces acting on
internal and terminal branches of t. We define the
fractions of non-synonymous mutations on internal and
terminal branches as

rEðQcodon;t;T ;DÞ

Z

P
b2E

PC
cZ1

E
�
NLðnÞðtbÞ jDc:cC2

�
P

b2E
PC
cZ1

�
E
�
NLðsÞðtbÞ jDc:cC2

�
CE

�
NLðnÞðtbÞ jDc:cC2

�	
ð4:10Þ
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and

rI ðQcodon;t;T ;DÞ

Z

P
b2I

PC
cZ1

E
�
NLðnÞðtbÞ jDc:cC2

�
P

b2I
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cZ1

�
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�
NLðsÞðtbÞ jDc:cC2

�
CE

�
NLðnÞðtbÞ jDc:cC2

�	 :
ð4:11Þ

We plot their posterior histograms in figure 5. These
histograms do not overlap, suggesting different fractions
of non-synonymous mutations for internal and external
branches. To test this hypothesis more formally, we form
a discrepancy measure

DðQcodon; t;T ;DÞ

Z rEðQcodon; t;T ;DÞK rI ðQcodon; t;T ;DÞ: ð4:12Þ

As in our previous example, we compare the observed
discrepancy DðQcodon; t;T ;DÞ with the expected dis-
crepancy DðQcodon; t;T ;DrepÞ, where Drep is a multiple
sequence alignment simulated under the codon parti-
tioning model with parameters Qcodon, t and T. Evoking
approximation (3.16) and recalling that our model
assumes the same substitution rates for each branch of
t, we deduce that

DðQcodon; t;T ;DrepÞz0; ð4:13Þ

for all parameter values Qcodon, T and t and replicated
data Drep. Plugging in our new discrepancy measures
into equation (4.7), we find that ppp!0.001. Therefore,
our posterior predictive test suggests that there is a
significant heterogeneity in selective pressure among the
branches of t.
5. DISCUSSION
In this paper, we develop a computationally efficient
framework for mapping evolutionary trajectories onto
phylogenies. Although we aim to keep this mathemat-
ical framework fairly general, our main interest with
evolutionary mappings lies in computing the mean
Phil. Trans. R. Soc. B (2008)
number of labelled trait transitions and the mean
evolutionary reward that depends linearly on the time a
trait occupies each of its states. These two mapping
summaries have been the most promising building
blocks for constructing statistical tests.

We build upon our earlier work involving single
branch calculations for Markov-induced counting
processes (Minin & Suchard 2008). In our extension,
we introduce single branch calculations for evolution-
ary reward processes and devise algorithms to extend
single branch calculations to mapping expectations of
counting and reward processes onto branches across an
entire phylogeny. Our main result generalizes Felsen-
stein’s pruning algorithm that forms the workhorse of
modern phylogenetic computation. The generalized
pruning algorithm warrants two comments about its
efficiency for performing simulation-free stochastic
mapping. First, when the infinitesimal rates are
unknown, a traditionally slow component of phylogen-
etic inference is the eigen decomposition of their
matrix. Fortunately, this decomposition finds immedi-
ate reuse in our algorithm to calculate posterior
expectations of mappings. Second, the algorithm
requires only two traversals of the phylogenetic
tree, and is therefore at most two times slower than the
standard likelihood evaluation algorithm. In practice, we
find our algorithm approximately 1.5 times slower than
the likelihood calculation. We achieve this advantage
because during the second traversal n terminal branches
are not visited. Finally, the Felsenstein’s algorithm
analogy yields a pulley principle for stochastic mapping
and reduction in computation for prior expectations.

Our examples demonstrate how our novel algorithm
facilitates phylogenetic exploratory analysis and
hypothesis testing. First, we use simulation-free stochas-
tic mapping of occupancy times to re-implement
Huelsenbeck et al.’s (2003) posterior predictive test of
independent evolution. In our second example, we
attempt to recover synonymous and non-synonymous
mutation rates without resorting to codon models and
instead use an independent codon partitioning model.
We overcome this gross model misspecification with
stochastic mapping, find intriguing multimodality of
synonymous and non-synonymous rates, and use a
posterior predictive model check to test differences in
selection pressures between terminal and internal
branches. We stress that our predictions are only as
good as the model we use. For example, the terminal/
internal branch differences may be due to a general bad
fit of our purposely misspecified model to the intrahost
HIV data. However, we find this scenario unlikely in
light of the recent demonstration of the excellent
performance of codon partitioning models during
analyses of protein coding regions (Shapiro et al. 2006).

Our examples illustrate importance of hypothesis
testing in statistical phylogenetics. In recent years, it has
become clear that an evolutionary analysis almost never
ends with tree estimation. Importantly, phylogen-
etic inference enables evolutionary biologists to tackle
scientific hypotheses, appropriately accounting for
ancestry-induced correlation in observed trait values
(Huelsenbeck et al. 2000; Pagel & Lutzoni 2002).
Several authors demonstrate that mapping evolution-
ary histories onto inferred phylogenies provides
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a convenient and probabilistically grounded basis for
designing statistically rigorous tests of evolutionary
hypotheses (Nielsen 2002; Huelsenbeck et al. 2003;
Dimmic et al. 2005). Unfortunately, this important
statistical technique has been hampered by the high
computational cost of stochastic mapping. Our general
mathematical framework and fast algorithms should
secure a central place for stochastic mapping in the
statistical toolbox of evolutionary biologists.
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