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Abstract Birth-death processes track the size of a univariate population, butmanybio-
logical systems involve interaction between populations, necessitating models for two
or more populations simultaneously. A lack of efficient methods for evaluating finite-
time transition probabilities of bivariate processes, however, has restricted statistical
inference in these models. Researchers rely on computationally expensive methods
such as matrix exponentiation or Monte Carlo approximation, restricting likelihood-
based inference to small systems, or indirect methods such as approximate Bayesian
computation. In this paper, we introduce the birth/birth-death process, a tractable
bivariate extension of the birth-death process, where rates are allowed to be nonlinear.
We develop an efficient algorithm to calculate its transition probabilities using a con-
tinued fraction representation of their Laplace transforms. Next, we identify several
exemplary models arising in molecular epidemiology, macro-parasite evolution, and
infectious disease modeling that fall within this class, and demonstrate advantages of
our proposed method over existing approaches to inference in these models. Notably,
the ubiquitous stochastic susceptible-infectious-removed (SIR) model falls within this
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class, and we emphasize that computable transition probabilities newly enable direct
inference of parameters in the SIR model. We also propose a very fast method for
approximating the transition probabilities under the SIR model via a novel branching
process simplification, and compare it to the continued fraction representation method
with application to the 17th century plague in Eyam. Although the two methods pro-
duce similar maximum a posteriori estimates, the branching process approximation
fails to capture the correlation structure in the joint posterior distribution.

Keywords Stochastic models · Birth-death process · Infectious disease · SIR model ·
Transition probabilities

Mathematics Subject Classification 60J27 · 92D30 · 62F15

1 Introduction

Birth-death processes have been used extensively in many applications including evo-
lutionary biology, ecology, population genetics, epidemiology, and queuing theory
(see e.g. Novozhilov et al. 2006; Crawford and Suchard 2012; Doss et al. 2013; Rabier
et al. 2014; Crawford et al. 2015). However, establishing analytic and computation-
ally practical formulae for their transition probabilities is usually difficult (Novozhilov
et al. 2006). The state-of-the-art method for computing the transition probabilities of
birth-death processes proposed inCrawford andSuchard (2012) enables statistical esti-
mation for general birth-death processes using likelihood-based inference (Crawford
et al. 2014). Unfortunately, birth-death processes inherently only track one population,
and extending this technique beyond the univariate case is nontrivial. Many applied
models require the consideration of two or more interacting populations simultane-
ously to model behavior such as competition, predation, or infection. Examples of
such bivariate models include epidemic models (McKendrick 1926; Kermack and
McKendrick 1927; Griffiths 1972), predator-prey models (Hitchcock 1986; Owen
et al. 2015), genetic models (Rosenberg et al. 2003; Xu et al. 2015), and within-host
macro-parasite models (Drovandi and Pettitt 2011).

Themost general extensions of birth-death processes to bivariate processes are com-
petition processes (Reuter 1961). These processes allow not only “birth” and “death”
events in each population, but also “transition” events where an individual moves from
one population to the other. Unlike birth-death processes, few attempts have beenmade
to compute the transition probabilities of competition processes or their special cases.
Hence, researchers usually rely on classical continuous-time Markov chain meth-
ods such as matrix exponentiation and diffusion approximation. Unfortunately, these
methods fail to leverage the specific structure of competition processes, and have
several intrinsic limitations. Matrix exponentiation methods compute the transition
probability matrix P(t) by solving the matrix form of Kolmogorov’s forward equation
P′(t) = P(t)Q with initial condition P(0) = I, where Q is the instantaneous rate
matrix of the process. While this equation admits a unique solution P(t) = exp(Qt)
(EphraimandMark 2012), numerical evaluation of thematrix exponential is often trou-
blesome (Moler and Loan 2003). Its computational cost via eigenvalue decomposition,
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for instance, is cubic in the size of the state-space and thus becomes computation-
ally prohibitive even with moderately sized state-spaces (Drovandi and Pettitt 2011;
Crawford and Suchard 2012). For example, Keeling and Ross (2008) demonstrate
that computing transition probabilities via matrix exponentiation for the simplest epi-
demic models is practical only when modeling spread of an infectious disease through
a very small population (e.g., 100 people). Moreover, matrix exponentiation can intro-
duce serious rounding errors for certain rate matrices even for biologically reasonable
values (Schranz et al. 2008; Crawford and Suchard 2012; Crawford et al. 2014). Dif-
fusion approximations, on the other hand, require the state-space to be large in order
to justify approximating a discrete process by a continuous-valued diffusion process
(Karev et al. 2005; Golightly and Wilkinson 2005), and can often remain inaccurate
for simulation even in settings with large state-spaces (Golightly andWilkinson 2005).
Branching processes form another closely related class of processes, and have been
used in a likelihood-based framework to study bivariate populations (Xu et al. 2015).
Branching processes are at once more general than competition processes, permit-
ting events that increment populations by more than one, and also more restrictive in
that linearity is implied by an assumption that particles act independently. The latter
assumption is limiting in epidemiological applications, for instance, which commonly
feature non-linear interactions between populations.

The lack of a reliable method for computing transition probabilities in bivariate
processes forces researchers to apply alternative likelihood-free approaches such as
approximate Bayesian computation (ABC) (Blum and Tran 2010; Drovandi and Pettitt
2011; Owen et al. 2015). The ABC approach uses simulated and observed summary
statistics to bypass likelihood evaluation. Nonetheless, this is not a panacea approach
that can completely replace traditional likelihood-based methods. The ABC method
itself has several sources for loss of information such as non-zero tolerance, and
non-sufficient summary statistics (Sunnåker et al. 2013). The tolerance is an ad hoc
threshold to decide whether ABC accepts a new proposal. If the tolerance is zero and
the summary statistics are sufficient, ABC is guaranteed to return the correct posterior
distribution. In practice, however, tolerance is always positivewhich often leads to bias.
In the context of counting processes, sufficient summary statistics usually do not exist
because the data are observed partially. Thus, credible interval estimates under ABC
are potentially inflated due to the loss of information (Csilléry et al. 2010). Also, when
sufficient summary statistics are not available, the ABC method can not be trusted in
selecting between models (Robert et al. 2011). Because of all these limitations, direct
likelihood-based methods are often more favorable.

In this paper, we develop an efficient method to compute the transition probabilities
of a subclass of competition processes with two interacting populations of particles,
enabling likelihood-based inference.We call this subclass birth(death)/birth-death pro-
cesses, whose first population is increasing (decreasing). It is worthmentioning thatwe
do not impose linearity condition for the rates of these processes. A rigorous character-
ization of this class of processes and derivation of recursive formulae to compute their
transitionprobabilities are provided inSect. 2.Ourmain tools are theLaplace transform
and continued fractions that have been successfully applied for univariate birth-death
processes in Crawford and Suchard (2012). These formulae enable accurate and com-
putationally efficient numerical computation of transition probabilities.We implement
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this method in the new R package MultiBD https://github.com/msuchard/MultiBD.
In Sect. 3, we discussmultiple scientifically relevant applications of birth(death)/birth-
death processes including stochastic susceptible-infectious-removed (SIR) models in
epidemiology (McKendrick 1926; Kermack and McKendrick 1927; Raggett 1982),
monomolecular reaction systems (Jahnke and Huisinga 2007), a birth-death-shift
model for transposable elements (Rosenberg et al. 2003; Xu et al. 2015), and a within-
host macro-parasite model (Riley et al. 2003; Drovandi and Pettitt 2011). We examine
the accuracy of our method in simulation studies, including comparisons to branching
process, matrix exponentiation method, and Monte Carlo approximations. Finally, we
apply our method to estimate infection rates and death rates during the plague of Eyam
in 1666 within a likelihood-based Bayesian framework in Sect. 4.

Previous work on computing the transition probabilities: Analytic expressions of the
transition probabilities have only been found for some special cases such as linear
birth-death processes (see e.g. Novozhilov et al. 2006) and monomolecular reaction
systems (Jahnke and Huisinga 2007). Therefore, matrix exponentiation is still the
most common method for computing the transition probabilities of general Markov
processes. The state-of-the-art software package for exponentiating sparse matrices is
Expokit (Sidje 1998; Moler and Loan 2003), which uses Krylov subspace projection
method. Eshof and Hochbruck (2006) propose a modified version using a simple
preconditioned transformation to improve the convergence behavior of this method.
Althoughmatrix exponentiation has the advantage of generality in that it can be applied
to anyMarkov process, it is not the most efficient method in many scenarios. Recently,
Crawford and Suchard (2012) propose an efficient method for evaluating the transition
probabilities of general birth-death processes using Laplace transform and continued
fraction. However, efficient methods that extend this result to general bivariate birth-
death processes have yet to be found.

2 Birth(death)/birth-death processes

2.1 Birth/birth-death processes

A birth/birth-death process is a bivariate continuous-time Markov process X(t) =
(X1(t), X2(t)), t ≥ 0, whose state-space is inN×N, the Cartesian product of the non-
negative integers. We can describe a birth/birth-death process as governing dynamics
of a system consisting two types of particles, where one out of four possible events
can happen in infinitesimal time: (1) a new type 1 particle enters the system; (2) a
new type 2 particle enters the system; (3) a type 2 particle leaves the system; or (4)
a type 2 particle becomes a type 1 particle. In this system, X1(t) and X2(t) track the
number of type 1 and type 2 particles at time t respectively. Mathematically, there are
five possibilities for X(t) during a small time interval (t, t + dt):

Pr

{
X1(t + dt) = a + 1 X1(t) = a
X2(t + dt) = b X2(t) = b

}
= λ

(1)
ab dt + o(dt)

Pr

{
X1(t + dt) = a X1(t) = a
X2(t + dt) = b + 1 X2(t) = b

}
= λ

(2)
ab dt + o(dt)
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Pr

{
X1(t + dt) = a X1(t) = a
X2(t + dt) = b − 1 X2(t) = b

}
= μ

(2)
ab dt + o(dt)

Pr

{
X1(t + dt) = a + 1 X1(t) = a
X2(t + dt) = b − 1 X2(t) = b

}
= γabdt + o(dt)

Pr

{
X1(t + dt) = a X1(t) = a
X2(t + dt) = b X2(t) = b

}
= 1 − (λ

(1)
ab + λ

(2)
ab + μ

(2)
ab + γab)dt + o(dt),

(1)

where a, b ∈ N, λ(1)
ab ≥ 0 is the birth rate of type 1 particles given a type 1 particles

and b type 2 particles, λ(2)
ab ≥ 0 is the equivalent birth rate of type 2 particles,μ(2)

ab ≥ 0
is the death rate of type 2 particles, and γab is the transition rate from type 2 particles
to type 1 particles. We fix λ

(1)
−1,b = λ

(2)
a,−1 = μ

(2)
a0 = γ−1,b = γa0 = 0.

Letting Pa0b0
ab (t) = Pr{X(t) = (a, b) |X(0) = (a0, b0)}, the forwardKolmogorov’s

equations for the birth/birth-death process are

dPa0b0
ab (t)

dt
= λ

(1)
a−1,b P

a0b0
a−1,b(t) + λ

(2)
a,b−1P

a0b0
a,b−1(t) + μ

(2)
a,b+1P

a0b0
a,b+1(t)

+ γa−1,b+1P
a0b0
a−1,b+1(t) − (λ

(1)
ab + λ

(2)
ab + μ

(2)
ab + γab)P

a0b0
ab (t), (2)

for all (a, b). In practice, we can usually only observe the process discretely. In this
scenario, the likelihood function is the product of transition probabilities between
consecutive observations. Therefore, computing Pa0b0

ab (t) is an important step for any
direct likelihood-based analysis.

In general, a birth/birth-death process is a special case of a competition process
(Reuter 1961) with rate matrix Q = {qi j } where i, j ∈ N × N and

j Competition process Birth/birth-death

(a + 1, b) q(a,b)(a+1,b) λ
(1)
ab

(a − 1, b) q(a,b)(a−1,b) 0

(a, b + 1) q(a,b)(a,b+1) λ
(2)
ab

(a, b − 1) q(a,b)(a,b−1) μ
(2)
ab

(a + 1, b − 1) q(a,b)(a+1,b−1) γab
(a − 1, b + 1) q(a,b)(a−1,b+1) 0

(a, b) −
k �=l∑

k,l∈{−1,0,1}
q(a,b)(a+k,b+l) −(λ

(1)
ab + λ

(2)
ab + μ

(2)
ab + γab)

other 0 0

for i = (a, b). Competition processes are the most general bivariateMarkov processes
that only allow transitions between neighboring states. Many practical models in biol-
ogy are special cases of these processes such as epidemic models (McKendrick 1926;
Kermack andMcKendrick 1927; Griffiths 1972) and predator-preymodels (Hitchcock
1986; Owen et al. 2015).
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2.1.1 Sufficient condition for regularity

Definition 1 A birth/birth-death process is regular if there is a unique set of transition
probabilities Pa0b0

ab (t) satisfying the system of Eq. (2).

Here, we establish the sufficient condition for regularity of a birth/birth-death process.
For k ∈ N, we denote:

Dk = {(a, b) : a + b = k} ∈ N × N, and

λk = max
(a,b)∈Dk

{λ(1)
ab + λ

(2)
ab }. (3)

Theorem 1 The sufficient condition for regularity of a general birth/birth-death pro-
cess is

∑∞
k=1 1/λk = ∞.

Proof We will apply the following Reuter’s condition (Reuter 1957):

Lemma 1 LetQ = {qi j } be a conservative matrix, such that −qii = ∑
j �=i qi j < ∞.

A continuous-time Markov chain associated with Q is regular if and only if for some
ζ > 0, the equation Qy = ζy subject to 0 ≤ yi ≤ 1 has only trivial solution y = 0.

For a general birth/birth-death process, states i and j are in N×N. Let {yab}a,b∈N
be a solution of Qy = ζy such that yab ∈ [0, 1] for any a and b. Then, we have

(ζ +λ
(1)
ab +λ

(2)
ab +μ

(2)
ab +γab)yab = λ

(1)
ab ya+1,b+λ

(2)
ab ya,b+1+μ

(2)
ab ya,b−1+γab ya+1,b−1.

(4)
Defining yk = max(a,b)∈Dk {yab} and (ak, bk) = argmax(a,b)∈Dk

{yab}, we deduce that

(ζ + λ
(1)
akbk

+ λ
(2)
akbk

+ μ
(2)
akbk

)yk ≤ (λ
(1)
akbk

+ λ
(2)
akbk

)yk+1 + μ
(2)
akbk

yk−1, and

ζ yk + μ
(2)
akbk

(yk − yk−1) ≤ (λ
(1)
akbk

+ λ
(2)
akbk

)(yk+1 − yk). (5)

Since μ
(2)
a−1b−1

= 0, yk is an increasing sequence. Thus,

ζ

λk
yk ≤ yk+1 − yk . (6)

Assuming that there exists k0 such that yk0 > 0, we obtain

yk ≥ yk0 + ζ

k−1∑
i=k0

yi
λi

≥ yk0

⎛
⎝1 + ζ

k−1∑
i=k0

1

λi

⎞
⎠ , (7)

that is larger than 1 if k is big enough. Hence yk = 0 for every k. Then, the theorem
is proved by applying Lemma 1.

Note that the condition inTheorem1generalizes the classical regularity condition of
a pure birth process (Feller 1968). From now on, we assume that our birth/birth-death
processes are regular.

123



Birth/birth-death processes and their computable…

2.1.2 Recursive formula for transition probabilities

In this section,we establish a recursion to calculate the transition probabilities Pa0b0
ab (t)

of a birth/birth-death process. Since we assume that our birth/birth-death process is
regular, these transition probabilities are unique.

We first note that Pa0b0
ab (t) = 0 for all a < a0. Let fab(s), s ∈ C, be the Laplace

transform of Pa0b0
ab (t), that is

fab(s) = L[Pa0b0
ab (t)](s) =

∫ ∞

0
e−st Pa0b0

ab (t)dt . (8)

From (2), we have

s fab(s) − Pa0b0
ab (0) = λ

(1)
a−1,b fa−1,b(s) + λ

(2)
a,b−1 fa,b−1(s) + μ

(2)
a,b+1 fa,b+1(s)

+ γa−1,b+1 fa−1,b+1(s) − (λ
(1)
ab + λ

(2)
ab + μ

(2)
ab + γab)

fab(s), (a, b) ∈ N
2. (9)

Note that fab(s) is the unique solution of (9) by the uniqueness of Pa0b0
ab (t). We

construct the recursive approximation formulae for fab(s) using continued fractions.
“Appendix A” provides necessary background on continued fractions and their con-
vergents. Denote

xa1 = − 1

μ
(2)
a1

; xab = −λ
(2)
a,b−2

μ
(2)
ab

, b ≥ 2

yab = − s + λ
(1)
a,b−1 + λ

(2)
a,b−1 + μ

(2)
a,b−1 + γa,b−1

μ
(2)
ab

, b ≥ 1, (10)

and consider the following continued fraction

φ
(0)
a0 (s) = xa1

ya1 + xa2

ya2 + xa3
ya3 + · · · .

(11)

Wecan construct the sequence {φ(0)
ab (s)}∞b=0 (DefinitionA.3, “AppendixA”) as follows:

(s + λ
(1)
a0 + λ

(2)
a0 )φ

(0)
a0 (s) − μ

(2)
a1 φ

(0)
a1 (s) = 1, and

(s + λ
(1)
a,b−1 + λ

(2)
a,b−1 + μ

(2)
a,b−1 + γa,b−1)φ

(0)
a,b−1(s)

− λ
(2)
a,b−2φ

(0)
a,b−2(s) − μ

(2)
ab φab(s) = 0, b ≥ 2. (12)

Comparing the sequences in (12) with (9), we deduce that L−1
[
φ

(0)
ab (s)

]
= Pa00

ab (t).

Since Pa00
ab (t) is a probability distribution, we have

∑
(a,b)∈N×N

Pa00
ab (t) = 1. Taking
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the Laplace transform of the previous equation, we get
∑

(a,b)∈N×N
φ

(0)
ab (s) = 1/s.

Hence, limb→∞ φ
(0)
a0b

(s) = 0 for every s > 0. By LemmaA.4 (“Appendix A”), φ(0)
a0 (s)

converges for every s > 0, and

φ
(0)
ab (s) =

b∏
i=1

xai
xa,b+1

Ya,b+1 + xa,b+2Yab

ya,b+2 + xa,b+3

ya,b+3 + xa,b+4

ya,b+4 + · · · ,

(13)

where Yab is the denominator of the bth convergent of φ
(0)
a0 (s).

From (9), we note that

(s + λ
(1)
a0b

+ λ
(2)
a0b

+ μ
(2)
a0b

+ γa0b) fa0b − λ
(2)
a0,b−1 fa0,b−1(s)

−μ
(2)
a0,b+1 fa0,b+1(s) = 1{b=b0}, b ∈ N. (14)

By Lemma A2 (“Appendix A”), fa0b(s) = φ
(b0)
a0b

(s) where

φ
(m)
ab (s) =

⎧⎪⎨
⎪⎩

(−1)m−b+1Yab
μ

(2)
a,m+1

∏m+1
i=1 xai

φ
(0)
am(s), if b ≤ m

−Yam
μ

(2)
a,m+1

∏m+1
i=1 xai

φ
(0)
ab (s), if b ≥ m.

(15)

Next, we obtain formulae for approximating fab(s) recursively assuming that we
already have evaluated fa−1,b(s). Again, from (2), we have

(s + λ
(1)
ab + λ

(2)
ab + μ

(2)
ab + γab) fab(s) − λ

(2)
a,b−1 fa,b−1(s) − μ

(2)
a,b+1 fa,b+1(s)

= λ
(1)
a−1,b fa−1,b(s) + γa−1,b+1 fa−1,b+1(s), (16)

for b ∈ N. We approximate fab(s) by solving a truncated version of (16) for 0 ≤
b ≤ B, where B is sufficiently large. The intuition of how to choose B follows from
the observation that we want

∑∞
a=a0

∑∞
b=B+1 P

a0b0
ab (t) to be small. By Lemma A2

(“Appendix A”), we have the following approximation:

fab(s) ≈
B∑

m=0

[
λ

(1)
a−1,m fa−1,m(s) + γa−1,m+1 fa−1,m+1(s)

]
φ

(m)
ab (s). (17)

Therefore, the transition probabilities of a birth/birth-death process can be computed
recursively using the following Theorem:
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Theorem 2 Let φ(m)
ab (s) be defined as in (11), (13), and (15). We have

Pa0b0
ab (t) =

{
0, if a < a0
L−1 [ fab(s)] (t), if a ≥ a0,

(18)

where fa0b(s) = φ
(b0)
a0b

(s) and

fab(s) ≈
B∑

m=0

[
λ

(1)
a−1,m fa−1,m(s) + γa−1,m+1 fa−1,m+1(s)

]
φ

(m)
ab (s), a > a0. (19)

Here, L−1(.) denotes the inverse Laplace transform and B is the truncation level.

If the number of type 2 particles is bounded by B∗, we choose B = B∗. In this case,
the approximation in Theorem 2 is exact. We prove that the output of our approxima-
tion scheme (19) converges to fab(s) as B goes to infinity in “Appendix C”. Further,
the transition probability returned by Theorem 2 converges to the true transition prob-
ability. This truncation error can be bounded explicitly by extending the coupling
argument in Crawford et al. (2016) to multivariate processes. However, we leave it
as a subject of future work because a complete treatment is beyond the scope of this
paper.

2.1.3 Numerical approximation of the transitions probabilities

To approximate Pa0b0
ab (t) using Theorem 2, we need to compute two quantities: the

continued fractions φ
(m)
ab (s), and the inverse Laplace transform L−1 [ fab(s)] (t). We

efficiently evaluate the continued fractionsφ
(m)
ab (s) through themodified Lentzmethod

(Lentz 1976; Thompson and Barnett 1986); see “Appendix B” for more details. This
algorithm enables us to control for and limit truncation error. To approximate the
inverse Laplace transform L−1 [ fab(s)] (t), we apply the method proposed in Abate
and Whitt (1992) using a Riemann sum:

L−1 [ fab(s)] (t) ≈ eH/2

2t
R

[
fab

(
H

2t

)]
+ eH/2

t

∞∑
k=1

(−1)kR
[
fab

(
H + 2kπ i

2t

)]
.

(20)
HereR[z] is the real part of z and H is a positive real number. Abate andWhitt (1992)
show that the error that arises in (20) is bounded by 1/(eH − 1). Moreover, we can
use the Levin transform (Levin 1973) to improve the rate of convergence because
the series in (20) is an alternating series when R{ fab[(H + 2kπ i)/(2t)]} have the
same sign. These numerical methods have been successfully applied by Crawford and
Suchard (2012) to compute the transition probabilities of birth-death processes.

In practice, to handle situations where μ
(2)
ab can possibly equal to 0 for some (a, b),

we re-parametrize xab and yab as follows:

xa1 = 1; xab = −λ
(2)
a,b−2μ

(2)
a,b−1, b ≥ 2, and
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yab = s + λ
(1)
a,b−1 + λ

(2)
a,b−1 + μ

(2)
a,b−1 + γa,b−1, b ≥ 1. (21)

With this new parametrization, we obtain

φ
(m)
ab (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∏m

i=b+1 μ
(2)
ai )Yab

Ya,m+1 + xa,m+2Yam

ya,m+2 + xa,m+3

ya,m+3 + xa,m+4

ya,m+4 + · · ·

, if b ≤ m

(
∏b

i=m+1 λ
(2)
ai )Yam

Ya,b+1 + xa,b+2Yab

ya,b+2 + xa,b+3

ya,b+3 + xa,b+4

ya,b+4 + · · ·

, if b ≥ m.

(22)

Our complete algorithm to compute the transition probabilities of birth/birth-death
processes is implemented in the function bbd_prob in a new R package called
MultiBD. The function takes t , a0, b0, λ

(1)
ab , λ

(2)
ab , μ

(2)
ab , γab, A, B as inputs and

returns the transition probability matrix {Pa0b0
ab (t)}a0≤a≤A,0≤b≤B . Here, there is no

requirement for Awhile B needs to be large enough such that
∑A

a=a0

∑∞
b=B+1 P

a0b0
ab (t)

is small. We can check to see if B is large enough by checking if
∑A

a=a0 P
a0b0
aB (t) is

sufficiently small.
In practice, the computational complexity of evaluating each term

( fab(s))a0≤a≤A,0≤b≤B is O((A − a0)B2) because the Lentz algorithm terminates
quickly. Let K be the number of iterations required by the Levin acceleration method
(Levin 1973) to achieve a certain error bound for the Riemann sum in (20). Then,
the total complexity of our algorithm is O((A − a0)B2K ). However, evaluation of
{ fab[(H + 2kπ i)/(2t)]}Kk=1 can be efficiently parallelized across different values of
k, and we exploit this parallelism via multicore processing, delegating most of the
computational work to compiled C++ code.

2.2 Death/birth-death processes

Similar to the birth/birth-death process, a death/birth-death process is also a special
case of competition processes. The only difference is that the number of type 1 par-
ticles is decreasing instead of increasing. Mathematically, possible transitions of a
death/birth-death process X(t) = (X1(t), X2(t)) during (t, t + dt) are:

Pr

{
X1(t + dt) = a − 1 X1(t) = a
X2(t + dt) = b X2(t) = b

}
= μ

(1)
ab dt + o(dt)

Pr

{
X1(t + dt) = a X1(t) = a
X2(t + dt) = b + 1 X2(t) = b

}
= λ

(2)
ab dt + o(dt)
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Pr

{
X1(t + dt) = a X1(t) = a
X2(t + dt) = b − 1 X2(t) = b

}
= μ

(2)
ab dt + o(dt)

Pr

{
X1(t + dt) = a − 1 X1(t) = a
X2(t + dt) = b + 1 X2(t) = b

}
= γabdt + o(dt)

Pr

{
X1(t + dt) = a X1(t) = a
X2(t + dt) = b X2(t) = b

}
= 1 − (μ

(1)
ab + λ

(2)
ab + μ

(2)
ab + γab)dt + o(dt),

(23)

where μ
(1)
ab ≥ 0 is the death rate of type 1 particles given a type 1 particles and b type

2 particles, λ(2)
ab ≥ 0 is the birth rate of type 2 particles, μ(2)

ab ≥ 0 is the death rate of
type 2 particles, and γab is the transition rate from type 1 particles to type 2 particles.
Again, we fix μ

(1)
0,b = λ

(2)
a,−1 = μ

(2)
0,b = γ0,b = γa,−1 = 0.

Following a similar argument as in Sect. 2.1.1, we obtain a sufficient condition for
regularity of a death/birth-death process. Denote

Dk = {(a, b) : a + b = k, a ≤ a0} ∈ N × N

λk = max
(a,b)∈Dk

{λ(2)
ab }

μk = min
(a,b)∈Dk

{μ(1)
ab + μ

(2)
ab }

σ0 = 1, σk = λ0 . . . λk−1

μ1 . . . μk
,

(24)

where a0 is the number of type 1 particles at time t = 0. The following Theorem is a
direct application of Theorem 1 in Iglehart (1964)

Theorem 3 A sufficient condition for regularity of a death/birth-death process is

∞∑
k=0

(
1

λkσk

k∑
i=0

σi

)
= ∞. (25)

We note that if we do a transformation for a death/birth-death process X(t) =
(X1(t), X2(t)) as follows:

Y1(t) = a0 − X1(t)

Y2(t) = B − X2(t).
(26)

Then, Y(t) = (Y1(t),Y2(t)) can be considered as a birth/birth-death process. There-
fore, the transition probabilities of a death/birth-death process can also be computed
using the R function bbd_prob and the transformation (26). Again, we want to
choose B such that

∑a0
a=0

∑∞
b=B+1 P

a0b0
ab (t) is small. We implement this procedure

in the function dbd_prob in our R package MultiBD. The function takes t , a0,
b0, μ

(1)
ab , λ

(2)
ab , μ

(2)
ab , γab, A, B as inputs and returns the transition probability matrix

{Pa0b0
ab (t)}A≤a≤a0,0≤b≤B . As for birth/birth-death processes, there is no requirement

for A.
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3 Applications

Birth(death)/birth-death processes are appropriate for modeling two-type populations
where the size of the first population is monotonically increasing (decreasing). Here
we examine our methods in four applications: a within-host macro-parasite model,
a birth-death-shift model for transposable elements, monomolecular reaction sys-
tems, and the stochastic SIR epidemiological model. We demonstrate that a birth
(death)/birth-death process well captures the dynamics of these common biological
problems, and inference using its transition probabilities often outperforms existing
approximations. In particular, we emphasize that the birth (death)/birth-death process
approach allows us to compute finite-time transition probabilities in the stochastic
SIR model that were previously considered unknown or intractable without model
simplification (Cauchemez and Ferguson 2008).

3.1 Monomolecular reaction systems

We illustrate the performance of our computational method by considering the fol-
lowing monomolecular reactions:

Reaction Rab : A
rab−→ B

Reaction Rba : B
rba−→ A

Outflow Ob : B
ob−→ ∗

(27)

where rab, rba is the reaction rates, and ob is the outflow rate. Denote

Q =
(−rab rba

rab −rba − ob

)
, p(a) = eQt

(
1
0

)
, p(b) = eQt

(
0
1

)
.

By Theorem 1 in Jahnke and Huisinga (2007), the transition probabilities of the reac-
tion system (27) at time t > 0 is

Pa0b0
ab (t) = M( . , a0, p

(a)) � M( . , b0, p
(b)) (28)

whereM(x, N , p) is the multinomial distribution and � denotes the convolution oper-
ator. As analytic expressions for transition probabilities exist for this class of reactions,
this example serves as a baseline for comparison to assess the accuracy of our method.

To study these processes in our framework, let A(t) denote the total number of
particle A at time t and L(t) be the total number of particle B leaving the system
up to t . Then, {L(t), A(t)} is a birth/birth-death process with the following possible
transitions during (t, t + dt):

Pr

{
L(t + dt) = i + 1 L(t) = i
A(t + dt) = j A(t) = j

}
= ob(a0 + b0 − i − j)+dt + o(dt),
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Pr

{
L(t + dt) = i L(t) = i
A(t + dt) = j + 1 A(t) = j

}
= rba(a0 + b0 − i − j)+dt + o(dt),

Pr

{
L(t + dt) = i L(t) = i
A(t + dt) = j − 1 A(t) = j

}
= rab jdt + o(dt), and

Pr

{
L(t + dt) = i L(t) = i
A(t + dt) = j A(t) = j

}

= 1 − [rab j + (ob + rba)(a0 + b0 − i − j)+]dt + o(dt).

Here x+ = max(0, x). Therefore, Pa0b0
ab (t) can be computed using our method imple-

mented in the R function bbd_prob.
We use bbd_prob to calculate {P20,0

ab (1)}0≤a≤20,0≤b≤20 of the reaction system
(27) with rab = 2, rba = 0.5 and ob = 1. The L1 distance between our result and
the analytic result (28) is less than 4.7 × 10−9, thus confirming the accuracy of our
method compared to explicit analytic solutions.

3.2 Birth-death-shift model for transposable elements

Transposable elements or transposons are genomic sequences that can either duplicate,
with a new copy moving to a new genomic location, move to a different genomic
location, or be deleted from the genome. Rosenberg et al. (2003) model the number
of copies of a particular transposon using a linear birth-death-shift process; a birth is
a duplication event, a death is a deletion event, and shift is a switching position event.
Xu et al. (2015) propose representing this birth-death-shift process by a linear multi-
type branching processX(t) = (Xold(t), Xnew(t)) tracking the number of occupied sites
where Xold(t) is the number of initially occupied sites and Xnew(t) is the number of
newly occupied sites. Let λ, μ, and ν be the birth, death, and shift rates respectively.
The transitions of X(t) during a small time interval occur with probabilities

Pr

{
Xold(t + dt) = xold − 1 Xold(t) = xold

Xnew(t + dt) = xnew Xnew(t) = xnew

}
= (μxold)dt + o(dt),

Pr

{
Xold(t + dt) = xold Xold(t) = xold

Xnew(t + dt) = xnew − 1 Xnew(t) = xnew

}
= (μxnew)dt + o(dt),

Pr

{
Xold(t + dt) = xold Xold(t) = xold

Xnew(t + dt) = xnew + 1 Xnew(t) = xnew

}
= λ(xold + xnew)dt + o(dt),

Pr

{
Xold(t + dt) = xold − 1 Xold(t) = xold

Xnew(t + dt) = xnew + 1 Xnew(t) = xnew

}
= (νxold)dt + o(dt), and

Pr

{
Xold(t + dt) = xold Xold(t) = xold

Xnew(t + dt) = xnew Xnew(t) = xnew

}

= 1 − (μ + λ + ν)xold − (μ + λ)xnewdt + o(dt). (29)

Equivalent to the branching process representation, notice that in this case X(t) is
also a death/birth-death process. Hence, we can effectively compute its transition
probabilities. In contrast, Xu et al. (2015) consider the probability generating function
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a0b0(t, s1, s2) = E

(
sXold(t)
1 sXnew(t)

2 |Xold(0) = a0, Xnew(0) = b0
)

=
∞∑
a=0

∞∑
b=0

Pa0b0
ab (t)sa1 s

b
2 , (30)

where

Pa0b0
ab (t) = Pr

{
Xold(t) = a Xold(0) = a0
Xnew(t) = b Xnew(0) = b0

}
. (31)

Because of the model-specific linearity in terms of a and b of the birth and death rates,
one can evaluate 
 jk(t, s1, s2) by solving an ordinary differential equation. Further
transforming s1 = e2π iw1 , s2 = e2π iw2 , the generating function becomes a Fourier
series


a0b0(t, e
2π iw1 , e2π iw2) =

∞∑
a=0

∞∑
b=0

Pa0b0
ab (t)e2π iaw1e2π ibw2 . (32)

Therefore, Xu et al. (2015) retrieve the transition probabilities through approximating
the integral as a Riemann sum

Pa0b0
ab (t) =

∫ 1

0

∫ 1

0

a0b0(t, e

2π iw1 , e2π iw2)e−2π iaw1e−2π ibw2dw1dw2

≈ 1

H2

H−1∑
u=0

H−1∑
v=0


 jk(t, e
2π iu/H , e2π iv/H )e−2π iau/He−2π ibv/H , (33)

and show that choosing H as the smallest power of 2 greater than max(a, b) pro-
duces accurate estimates of the true transition probabilities of the model. The authors
implement this method in the R package bdsem. Using their method, evaluating
{Pa0b0

ab (t)}0≤a,b≤H requires numerically solving H2 linear ordinary differential equa-
tions (ODEs). We perform a simulation to compare the performance between bdsem
and our function dbd_prob. Because Xu et al. (2015) already provide a thorough
empirical validation that bdsem produces accurate transition probabilities compared
to Monte Carlo estimates from the true model, we consider a comparison to their
method and omit a complete reproduction of their simulation study. Using both rou-
tines to compute the transition probabilities of a birth-death-shift process with rates
λ = 0.0188, μ = 0.0147, ν = 0.00268 (estimated from the IS6110 data by Rosen-
berg et al. (2003)) repeatedly over one hundred trials leads to a negligible difference in
estimated probabilities. Specifically, we computed {P10,0

ab (t)}0≤a≤10,0≤b≤50 at three
different observation period lengths t = 1, 5, 10, and found that the L1 distance
between probabilities estimated by each method is less than 4×10−8 across all cases.
Here, the L1 distance between two matrices U = (ui j ) and V = (vi j ) are defined as
‖U − V‖ = ∑

i, j |ui j − vi j |.
Having validated the accuracy of our approach, we turn to a runtime comparison.

The ratios of CPU time required using bdsem compared to dbd_prob are summa-
rized in Fig. 1, and note that this result is obtained using a single-thread option for
dbd_prob. We see that dbd_prob is about 15 to 30 times faster than the bdsem
implementation, while producing very similar results.
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Fig. 1 CPU compute time
ratios of bdsem to dbd_prob
over 100 replications
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While there is a large performance difference in wall clock time, we cannot imme-
diately conclude that our method is faster then the method in Xu et al. (2015) because
computation time may depend heavily on implementation. Nonetheless, we can make
some remarks about the performance of both methods that are platform-independent.
Notably, the bdsem implementation grows slower as t increases while dbd_prob
does not. This is expected because solving ODEs is slower when the domain increases.
However, it is worth mentioning that we can use the solution paths to get the solutions
of these ODEs at other time points in the domain. For example, when we solve the
ODEs at t = 10, we also get the solutions at t = 1 and 5 for free. This point becomes
important in applications where we need to compute the transition probabilities at sev-
eral time points. Another downside of bdsem is that it computes {P10,0

ab (t)}0≤a,b≤50

instead of evaluating {P10,0
ab (t)}0≤a≤10,0≤b≤50 directly as is done by dbd_prob.

3.3 Within-host macro-parasite model

Riley et al. (2003) posit a stochastic model to describe a within-host macro-parasite
population where Brugia pahangi is the parasite and Felis catus is the host. Brugia
pahangi is closely related to Brugia malayi which infects millions of people in South
and Southeast Asia. The model tracks the number of B. pahangi larvae L(t), the
number of mature parasites M(t), and hosts experience of infection I (t) at time t . The
dynamics of {L(t), M(t), I (t)} follow a system of differential equations:
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Fig. 2 The dynamic of {L(t), M(t)} under the deterministic model (35) with μL = 0.0682, μM =
0.0015, η = 0.0009, γ = 0.04 and {L(0), M(0)} = {100, 0}

dL

dt
(t) = −μL L(t) − β I (t)L(t) − γ L(t),

dM

dt
(t) = γ L(t) − μMM(t), and

d I

dt
(t) = νL(t) − μI I (t) (34)

where μL is the natural death rate and γ is the maturation rate of larvae; β is the death
rate of larvae due to the immune response from the host;μM is the death rate of mature
parasites; ν is the acquisition rate and μI is the loss rate of immunity.

Drovandi and Pettitt (2011) propose a simplification of this model by applying
a pseudoequilibrium assumption for immunity, such that the immunity is constant
over time. Under this pseudoequilibrium assumption, the dynamics of {L(t), M(t)}
becomes

dL

dt
(t) = −μL L(t) − η[L(t)]2 − γ L(t), and

dM

dt
(t) = γ L(t) − μMM(t) (35)

where η = βν/μI . We illustrate the dynamic of (35) in Fig. 2. The corresponding
stochastic formulation of this model is:

Pr

{
L(t + dt) = i − 1 L(t) = i
M(t + dt) = j + 1 M(t) = j

}
= (γ i)dt + o(dt),

Pr

{
L(t + dt) = i − 1 L(t) = i
M(t + dt) = j M(t) = j

}
= (μLi + ηi2)dt + o(dt),
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Pr

{
L(t + dt) = i L(t) = i
M(t + dt) = j − 1 M(t) = j

}
= (μM j)dt + o(dt), and

Pr

{
L(t + dt) = i L(t) = i
M(t + dt) = j M(t) = j

}
= 1 − (γ i + μLi + ηi2 + μM j)dt + o(dt).

(36)

Notably, {L(t), M(t)} follow a death/birth-death process.
For this model, γ and μM has been estimated at 0.04 and 0.0015 previously (see

Drovandi and Pettitt 2011 for more details). To estimate the remaining parameters,
Drovandi and Pettitt (2011) examine the number of mature parasites at host autopsy
time (at most 400 days) of those injected with approximately 100 juveniles, assume
a priori μL and η are uniform[0,1) and apply ABC to draw inference because the
traditional matrix exponentiation method is computationally prohibitive here. The
basic idea of ABC involves sampling from an approximate posterior distribution

f (θ ,Y |ρ(Y,Ys) ≤ ε) ∝ f (Ys |θ)π(θ)1ρ(Y,Ys )≤ε, (37)

where θ is the vector of unknown parameters, ε > 0 is an ad hoc tolerance, and
ρ(Y,Ys) is a discrepancy measure between summary statistics of the observed data
Y and the simulated data Ys . Because the sufficient statistics are not available for this
problem, the authors use a goodness-of-fit statistic. However, the ABCmethod suffers
from loss of information because of non-zero tolerance and non-sufficient summary
statistics (Sunnåker et al. 2013). Therefore, credible intervals obtained by the ABC
approach are potentially inflated (Csilléry et al. 2010).

In contrast, our method makes direct likelihood computation and in turn evaluation
of the posterior density feasible. Figure 3 displays a visualization of the posterior
density surface of (logμL , log η) computed using our method, given the collection
of numbers of mature parasites M(t) at autopsy under this model (see Drovandi and
Pettitt 2011 for more details about the data). Importantly in this example, we are
able to efficiently integrate out the unobserved larvae counts L(t) at autopsy. The
approximate estimate obtained by Drovandi and Pettitt (2011) using ABC is overlaid
on this density surface for comparison, and does not align with the highest density
region of our computed posterior. Note that the posterior is flat when η is close to 0, and
has an unusual tail toward the region where the ABC estimate lies. This suggests that
the previous ABC approach fails to explore the region with high posterior probability
well, likely due to loss of information incurred by the method, resulting in a poor
estimate from the data.

Finally, we consider this example toward a second runtime comparison between
our method and Expokit, a state-of-the-art matrix exponentiation package with
efficient implementation. In particular, we compute the transition probability matrix
{P100,0

i j (t)}0≤i≤100,0≤ j≤100 of {L(t), M(t)} with μL = 0.0682, μM = 0.0015, η =
0.0009, γ = 0.04 at t = 100, 200, 400 using our function dbd_prob and the func-
tion expv in expoRkit, an R-interface to the Fortran package Expokit. Both
methods produce similar results: the L1 distance between the two estimated transition
probability matrices is less than 3 × 10−9 across all cases. In terms of speed, we see
that dbd_prob is roughly twice as fast as expvwhen t = 100, 200, but about 9-fold
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Fig. 3 Posterior density surface of (logμL , log η) under within-host macro-parasite model. The “×”
symbol represents the estimate from Drovandi and Pettitt (2011) using the ABC method

faster when t = 400 (Fig. 4). It is worth mentioning that dbd_prob can be further
accelerated via parallelization.

3.4 Stochastic SIR model in epidemiology

McKendrick (1926) models the spread of an infectious disease in a closed population
by dividing the population into three categories: susceptible persons (S), infectious
persons (I ) and removed persons (R). Since the population is closed, the total popu-
lation size N obeys the conservation equation N = S(t) + I (t) + R(t) for all time t .
The deterministic dynamics of these three subpopulations follow a system of nonlinear
ordinary differential equations (Kermack and McKendrick 1927):

dS

dt
(t) = −βS(t)I (t),

d I

dt
(t) = βS(t)I (t) − α I (t), and

dR

dt
(t) = α I (t), (38)

where α > 0 is the removal rate and β > 0 is the infection rate of the disease.
This system of equations cannot be solved analytically, but we can obtain its solution
numerically. An important quantity for the SIRmodel is the basic reproduction number
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Fig. 4 CPU compute time
ratios of expv to dbd_prob
over 100 replications

3

6

9

12

100 200 400

time (t)

C
PU

 ti
m

e 
ra

tio

R0 = βN/α (Earn 2008). This quantity determines whether a spread of an infectious
disease becomes an epidemic. In particular, an epidemic can only occur when R0 > 1.

Unfortunately, the deterministic model is not suitable when the community is small
(Britton 2010). In these situations, the original stochastic SIR model (McKendrick
1926) becomes more appropriate. Moreover, Andersson and Britton (2000) argue that
stochastic epidemic models are preferable when their analysis is possible because
(1) stochastics are the most natural way to describe a spread of diseases, (2) some
phenomena do not satisfy the law of large numbers and can only be analyzed in
the stochastic setting (for example, the extinction of endemic diseases only occurs
when the epidemic process deviates from its expected value), and (3) quantifying
the uncertainty in estimates requires stochastic models. Nonetheless, one can bypass
Andersson and Britton’s third argument by imposing random sampling errors around
the deterministic compartments. Therefore, it is important to distinguish between the
deterministic SIR model with sampling errors and the stochastic SIR model.

Without loss of generality, the stochastic SIR model needs only track S(t) and I (t)
because S(t) + I (t) + R(t) remains constant. All possible transitions of {S(t), I (t)}
during a small time interval (t, t + dt) occur with probabilities

Pr

{
S(t + dt) = s S(t) = s
I (t + dt) = i − 1 I (t) = i

}
= (αi)dt + o(dt),

Pr

{
S(t + dt) = s − 1 S(t) = s
I (t + dt) = i + 1 I (t) = i

}
= (βsi)dt + o(dt), and

Pr

{
S(t + dt) = s S(t) = s
I (t + dt) = i I (t) = i

}
= 1 − (αi + βsi)dt + o(dt). (39)
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We see that {S(t), I (t)} is a death/birth-death processwithμ
(1)
si = λ

(2)
s,i = 0,μ(2)

s, = αi ,
γsi = βsi .

Due to the interaction between populations and nonlinear nature of the model,
mechanistic analysis of the stochastic SIR model is difficult, and the lack of an
expression for transition probabilities has been a bottleneck for statistical inference.
Renshaw (2011) remarks that while one can write out the Kolmogorov forward
equation for the system, the “associated mathematical manipulations required to gen-
erate solutions can only be described as heroic.” Instead, the majority of efforts
involve either simulation based methods or simplifications and tractable approxi-
mations to the SIR model. For instance, the stochastic SIR model can be analyzed
using ABC (McKinley et al. 2009), but we have already mentioned limitations of this
approach. Particle filter methods can be used to analyze SIR models within maxi-
mum likelihood (Ionides et al 2006; Ionides et al. 2015) and Bayesian frameworks
(Andrieu et al. 2010; Dukic et al. 2012), but these methods are computationally
very demanding and often suffer from convergence problems. When examining
large epidemics, to make the likelihood tractable it is reasonable to apply a con-
tinuous approximation to the large populations, modeled as a diffusion process
with exact solutions (Cauchemez and Ferguson 2008). However, such an approach
is a poor proxy for the SIR model when observed counts are low. When data
are collected at regular intervals and coincide with disease generation timescales,
it is also possible to study discrete-time epidemic models—the time-series SIR
(TSIR) model is one well-known example (Finkenstädt and Grenfell 2000). How-
ever, these simplifications also have their shortcomings, relying on the relatively
strong assumption that populations are constant over each interval between obser-
vation times.

In the death/birth-death framework, our method enables practical computation
of these quantities without any simplifying model assumptions. In Sect. 4, we will
apply our method to analyze the population of Eyam during the plague of 1666
(Raggett 1982) to estimate the infection and the death rates of this disease, using
the death/birth-death transition probabilities within a Metropolis-Hastings algorithm.
Here, we first examine the accuracy of these transition probabilities themselves.
We compare the continued fraction method to empirical transition probabilities
obtained via simulation from the true model as ground-truth, and to a new two-
type branching approximation to the SIR model introduced below. The branching
process approximation is appropriate when transition probabilities need to be com-
puted for short time intervals, and its simple expressions for transition probabilities
enable much more efficient computation. However, we show that as transition time
intervals increase, the branching approximation becomes less accurate, while the
transition probabilities computed under the death/birth-death model remain very
accurate.

While branching processes fundamentally rely on independence of each member
of the population, we can nonetheless make a fair approximation by mimicking the
interaction effect of infection over short time intervals. In the branching model, let
X1(t) denote the susceptible population and X2(t) denote the infected population at
time t , with details and derivation included in “Appendix D”. Over any time interval
[t0, t1), we use the initial population X2(0) as a constant scalar for the instantaneous
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rates. This branching process model has instantaneous infection rate βX2(0)X1(t)
and recovery rate αX2(t) for all t ∈ [t0, t1), closely resembling the true SIR model
rates, with the exception of fixing X2(0) in place of X2(t) in the rate of infection.
This constant initial population fixes a piecewise homogeneous per-particle birth
rate to satisfy particle independence while mimicking interactions, but notice that
both populations can change over the interval, offering much more flexibility than
models such as TSIR that assume constant populations and rates between discrete
observations.

This branching model admits closed-form solutions to the transition probabilities
that can be evaluated quickly and accurately. The transition probabilities of the two-
type branching approximation to the SIR model over any time interval of length t are
given by

Pr {X(t + τ) = (k, l)|X(τ ) = (m, n)} := Pmn
kl (t) =

l∑
i=0

(
l

i

)
A(l − i)B(i), (40)

where

B(i) = 0 for all i ≥ n, otherwise,

B(i) = n!
(n − i)! (1 − e−αt )n−i e−iαt (41)

and

A(l − i) = 0 for all (l − i) ≥ (m − k), otherwise,

A(l − i) = m!
(m − k − (l − i))!e

−kβnt

×
[
1 − βn

βn − α
e−αt −

(
1 − βn

βn − α

)
e−βnt

]m−k−(l−i)

×
[

βn

βn − α
(e−αt − e−βnt )

]l−i

. (42)

The sum over products of expressions (41) and (42) in Eq. (40) may look unwieldy,
but this sum is computed extremely quickly with a vectorized implementation,
and with high degrees of numerical stability. In settings when such a model is
appropriate and (X1(t), X2(t)) ≈ (S(t), I (t)), the branching approximation can
offer a much more computationally efficient alternative to the continued fraction
method.

3.5 Transition probabilities of the SIR model

Figure 5 provides a comparison between methods of computing transition probabil-
ities. Included are transition probabilities corresponding to the nine pairs of system
states {(m, n), (k, l)} j , j = 1, . . . , 9, such that Pmn

kl (0.5) is largest. Fixing these
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Fig. 5 The plot above displays the values of the nine largest transition probabilities when t = 0.5 as
we vary t from 0.1, . . . , 1.0. Parameters used to generate data are initialized at I0 = 15, S0 = 110, α =
3.2, β = 0.025. Empirical Monte Carlo 95% confidence intervals over 150, 000 simulations from the true
model are depicted in orange. Probabilities computed using the continued fraction expansion are depicted
by purple triangles, while probabilities computed under the branching approximation are denoted by green
squares

indices, we plot the set of probabilities
{
Pmn
kl (t)

}
while varying t between 0.1

and 1.0. We see that transition probabilities computed using the continued frac-
tion method under the death/birth-death model very closely match those computed
empirically via simulation from the model, taken to be the ground truth. Almost
all such probabilities in Fig. 5 fall within the 95% confidence interval, while the
branching process transitions follow a similar shape over time, but fall outside of the
confidence intervals for many observation intervals. An additional heatmap visual-
ization comparing the support of transition probabilities is included in the Appendix,
and shows that the branching approximation is accurate with similar support to the
empirical transition probabilities for a shorter time interval of length t = 0.5, but
becomes visibly further from the truth when we increase the observation length
to t = 1.0.
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Table 1 Susceptible and infectious population size in Eyam from June 18th to October 20th, 1666

Time (months)

0 0.5 1 1.5 2 2.5 3 4

Susceptible population 254 235 201 153 121 110 97 83

Infective population 7 14 22 29 20 8 8 0

4 The Plague in Eyam revisited

We revisit the outbreak of plague in Eyam, a village in the Derbyshire Dales district,
England, over the period from June 18th to October 20th, 1666. This plague outbreak
is widely accepted to originate from the Great Plague of London, that killed about
15% of London’s population at that time. To prevent further spread of the plague after
infestation, the Eyam villagers did not escape the village, instead isolating themselves
from the outside world. At the end of this horrific event, only 83 people had survived
out of an initial population of 350. We summarize data recording the spread of the
disease (Raggett 1982) in Table 1. As mentioned in Raggett (1982), this data are
obtained by counting the number of deaths from the dead list and estimating the
infective population from the list of future deaths assuming a fixed length of illness
prior to death. Then, the susceptible population can be computed easily because the
the town is isolated.
Raggett (1982) analyzes these data using the stochastic SIRmodel (39). In thismodel,α
is the unknown death rate of infective people and β is the unknown infection rate of the
plague. The author uses a simple approximation method for the forward differential
equation and comes up with a point estimate (α̂, β̂) = (3.39, 0.0212). We take a
Bayesian approach to re-analyze these data.

With n observations {(sk, ik)}nk=1 at time {tk}nk=1, the log of the likelihood function
is:

log l
(
α, β

∣∣{(sk, ik)}nk=1

) =
n−1∑
k=1

log Pr

{
S(tk+1) = sk+1 S(tk) = sk
I (tk+1) = ik+1 I (tk) = ik

}
. (43)

Because {S(t), I (t)} is a death/birth-death process, the individual transition proba-
bilities can be computed efficiently using our continued fraction method. Hence, the
log of the likelihood (43) can be computed easily. Since α and β are non-negative,
we opt to use logα and logβ as our model parameters and assume a priori that
logα ∼ N (μ = 0, σ = 100) and logβ ∼ N (μ = 0, σ = 100). We explore
the posterior distribution of (logα, logβ) using a random-walk Metropolis algorithm
implemented in the R function MCMCmetrop1R from package MCMCpack (Martin
et al. 2011).We start the chain fromRaggett’s estimated value (log(3.39), log(0.0212))
and run it for 100000 iterations. We discard the first 20000 iterations and summarize
the posterior distribution of (α, β) using the remaining iterations. We illustrate the
density of this posterior distribution in Fig. 6a. The posterior mean of α is 3.22 and the
95% Bayesian credible interval for α lies in (2.69, 3.82). Those corresponding quan-
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Fig. 6 Posterior distributions (log scale) of the death rate α and the infection rate β during the plague
of Eyam in 1666. The “+” symbol represents the estimate from Brauer (2008) using the deterministic
SIR model, and the “×” symbol represents the Raggett’s point estimate. a Continued fraction method b
branching approximation method

tities for β are 0.0197 and (0.0164, 0.0234). Notice that our credible intervals include
the point estimate (α̂, β̂) = (2.73, 0.0178) fromBrauer (2008) using the deterministic
SIR model and Raggett’s point estimate (α̂, β̂) = (3.39, 0.0212).

We also apply the two-type branching approximation to compute the log of the
likelihood (43). Using the same random-walk Metropolis algorithm as before, we
explore the posterior distribution of (α, β) and visualize it in Fig. 6b. The posterior
mean of α is 3.237 and the 95% Bayesian credible interval for α is (2.7, 3.84), while
those quantities for β are 0.02 and (0.0171, 0.023). Although the posterior means and
the 95% Bayesian credible intervals are similar to ones from the continued fraction
method, we see in Fig. 6b that thismethod fails to fully capture the posterior correlation
structure between α and β.

The posterior distribution of the basic reproduction number R0 from the continued
fraction method and from the branching approximation method are similar (Fig. 7).
The posterior mean of R0 from the continued fraction method is 1.61 and from the
branching approximation method is 1.62. The estimate for R0 from Brauer (2008) is
1.7, from Raggett (1982) is 1.63. These estimates are similar, and in particular the
branching approximation estimate is very close to that under the continued fraction
method, offering a very efficient way to provide reasonable estimates of quantities
such as R0 despite being less accurate than the continued fraction approach.

From the results, we can see that estimates of R0 from differentmethods are roughly
the same while estimates of α and β are different. Although the basic reproduction
number R0 is an important quantity in the SIR model, it is not the only parameter
driving the dynamic of the epidemic. Correia-Gomes et al. (2014) demonstrated the
important of accurately estimating the transmission parameters between compartments
of the SIR model for Salmonella Typhimurium in pigs.
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Fig. 7 Posterior distribution of
the basic reproduction number
R0 (solid line: continued fraction
method, dashed line branching
approximation method). The
“+”, and the “×” symbols
represent the estimate of R0
from Brauer (2008), and from
Raggett (1982) respectively
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5 Discussion

Likelihood-based inference for bivariate continuous-timeMarkov processes is usually
restricted to very small state spaces due to the computational bottleneck of transition
probability calculation. In this paper, we provide tools for likelihood-based inference
for birth(death)/birth-death processes by developing an efficient method to compute
their transition probabilities. We provide a complete implementation of the algorithms
to compute these transition probabilities in a new R package called MultiBD. Our
functions employ sophisticated tools including continued fractions, themodifiedLentz
method, the method of Abate and Whitt for approximate inverse Laplace transforms,
and the Levin acceleration method. Moreover, these methods are naturally amenable
to parallelization, and we exploit multicore processing to speed up the algorithm. We
remark that birth(death)/birth-death processes remain a limited subclass of general
multivariate birth-death processes. For example, many population biology problems
require a full bivariate birth-death process including predator-prey models (Hitchcock
1986; Owen et al. 2015) and the SIR model with vital dynamics (Earn 2008). Unfor-
tunately, efficiently computing the transition probabilities of multivariate birth-death
processes remains an open problem. Solving this problem will enable numerically
stable statistical inference under birth-death processes and will be worth the “heroic”
effort (Renshaw 2011).

A Continued fractions

In this section, we give some basic definitions and properties related to continued
fractions.
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Definition A1 A continued fraction φ0 is a scalar quantity expressed in

φ0 = x1

y1 + x2

y2 + x3
y3 + · · · ,

(A.1)

where {xi }∞i=1 and {yi }∞i=1 are infinite sequences of complex numbers.

Definition A2 The nth convergent of φ0 is

Xn

Yn
= x1

y1 + x2

y2 + x3

y3 + · · · + xn
yn

.

(A.2)

Definition A3 We define the corresponding sequence {φn}∞n=0 of a continued fraction
(A.1) by the following recurrence formulae

φ1 = x1 − y1φ0, and

φn = xnφn−2 − ynφn−1 for n ≥ 2.
(A.3)

Murphy and O’Donohoe (1975) provided the following sufficient condition for the
convergence of (A.1):

Lemma A1 Assume that there exists N such that infn>N |Yn| > 0 and limn→∞ φn =
0. Then, the continued fraction (A.1) is convergent. Moreover,

φn =
n∏

i=1

xi
xn+1

Yn+1 + xn+2Yn

yn+2 + xn+3

yn+3 + xn+4

yn+4 + · · · .

(A.4)

Now, if we consider a more general recurrence formulae

φ
(m)
1 = −y1φ

(m)
0 + k11{m=0}

φ(m)
n = xnφ

(m)
n−2 − ynφ

(m)
n−1 + km+11{m=n−1} for n ≥ 2,

(A.5)

then under the assumption of Lemma A.4, we have the following lemma:
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Lemma A2 The solution for (A.5) is

φ(m)
n =

⎧⎨
⎩

(−1)m−nkm+1∏m+1
i=1 xi

Ynφm, if n ≤ m
km+1∏m+1
i=1 xi

Ymφn, if n ≥ m.
(A.6)

B Modified Lentz method

Modified Lentz method (Lentz 1976; Thompson and Barnett 1986) is an efficient
algorithm to finitely approximate the infinite expression of the continued fraction φ0

in (A.1) to within a prescribed error tolerance. Let φ(n)
0 be the nth convergence of φ0,

that is φ
(n)
0 = Xn/Yn . The main idea of Lentz’s algorithm lies in using the ratios

An = Xn

Xn−1
and Bn = Yn−1

Yn
(B.1)

to stabilize the computation of φ
(n)
0 . We can calculate An , Bn , and φ

(n)
0 recursively as

follows:
An = yn + xn

An−1

Bn = 1

yn + xn Bn−1

φ
(n)
0 = φ

(n−1)
0 AnBn .

(B.2)

If φ
(n)
0 converges to φ0, then Craviotto et al. (1993) show that

∣∣∣φ(n)
0 − φ0

∣∣∣ ≤ |Yn/Yn−1|
I[Yn/Yn−1]

∣∣∣φ(n)
0 − φ

(n−1)
0

∣∣∣ = |1/Bn|
I[1/Bn]

∣∣∣φ(n)
0 − φ

(n−1)
0

∣∣∣ , (B.3)

where I[Yn/Yn−1] is the imaginary part of Yn/Yn−1 and is assumed to be non-zero.
Hence, the Lentz’s algorithm terminates when

|1/Bn|
I[1/Bn]

∣∣∣φ(n)
0 − φ

(n−1)
0

∣∣∣ (B.4)

is small enough. However, An and Bn can equal zero themselves and cause problem.
Hence, Thompson and Barnett (1986) propose a modification for Lentz’s algorithm by
setting An and Bn to a very small number, such as 10−16, whenever they equal zero.
In practice, the algorithm often terminates after small number of iterations. However,
in some rare cases where the numerical computation is unstable, it might take too
long before the algorithm terminates. So, we set a predefined maximum number of
iterations H as a fallback for these cases.
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C Convergence results of increasing the truncation level

Let f (B)
ab (s) be the output of the approximation scheme (19) in Theorem 2. In this

section, we prove that f (B)
ab (s) converges to fab(s) as B goes to infinity. To do so,

let us consider a truncated birth/birth-death process X(B)(t) = (X (B)
1 (t), X (B)

2 (t))
at truncation level B such that it executes the same process as X(t) on the state
{a0, a0 + 1, a0 + 2, . . .} × {0, 1, 2, . . . , B} except that λ

(2)
aB = 0. Define Pa0b0,(B)

ab (t)
be the transition probabilities of X(B)(t) and TB be the hitting time at which X2(t)
first reach state B + 1. For any set S ⊂ N

2, we have

Pr(X(t) ∈ S) = Pr(X(t) ∈ S|TB > t)Pr(T > t)+Pr(X(t) ∈ S|TB ≤ t)Pr(TB ≤ t)

= Pr(X(B)(t) ∈ S)Pr(TB > t) + Pr(X(t) ∈ S | TB ≤ t)Pr(TB ≤ t)

= Pr(X(B)(t) ∈ S) + [Pr(X(t) ∈ S | TB ≤ t)

− Pr(X(B)(t) ∈ S)]Pr(TB ≤ t)

Therefore |Pr(X(t) ∈ S) − Pr(X(B)(t) ∈ S)| ≤ Pr(TB ≤ t). Note that f (B)
ab (s) is the

Laplace transform of Pa0b0,(B)
ab (t). Hence

| f (B)
ab (s) − fab(s)| ≤

∫ ∞

0
|Pa0b0,(B)

ab (t) − Pa0b0
ab (t)|e−st dt

≤
∫ ∞

0
Pr(TB ≤ t)e−st dt (C.1)

By Dominated convergence theorem and the fact that limB→∞ Pr(TB ≤ t) = 0, we
deduce that limB→∞ f (B)

ab (s) = fab(s).

D Branching SIR approximation

Herewe derive and solve the Kolmogorov backward equations of the two-type branch-
ingprocess necessary for evaluating the probability generating functions (PGFs)whose
coefficients yield transition probabilities.

D.1 Deriving the PGF

Our two-type branching process is represented by a vector (X1(t), X2(t)) that denotes
the numbers of particles of two types at time t . Let the quantities a1(k, l) denote the
rates of producing k type 1 particles and l type 2 particles, starting with one type 1
particle, and a2(k, l) be analogously defined but beginning with one type 2 particle.
Given a two-type branching process defined by instantaneous rates ai (k, l), denote the
following pseudo-generating functions for i = 1, 2 as
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ui (s1, s2) =
∑
k

∑
l

ai (k, l)s
k
1s

l
2. (D.1)

We may expand the probability generating functions in the following form:

φ10(t, s1, s2) = E(sX1(t)
1 sX2(t)

2 |X1(0) = 1, X2(0) = 0)

=
∞∑
k=0

∞∑
l=0

Pkl
1,0(t)s

k
1s

l
2

=
∞∑
k=0

∞∑
l=0

(1k=1,l=0 + a1(k, l)t + o(t))sk1s
l
2

= s1 + u1(s1, s2)t + o(t). (D.2)

We have an analogous expression for φ01(t, s1, s2) beginning with one particle of type
2 instead of type 1. For short, we will write φ10 := φ1, φ01 := φ2. Thus, we have the
following relation between the functions φ and u:

dφ1

dt
(t, s1, s2)|t=0 = u1(s1, s2) and

dφ2

dt
(t, s1, s2)|t=0 = u2(s1, s2). (D.3)

To derive the backwards and forward equations, Chapman–Kolmogorov arguments
yield the symmetric relations

φ1(t + h, s1, s2) = φ1(t, φ1(h, s1, s2), φ2(h, s1, s2))

= φ1(h, φ1(t, s1, s2), φ2(t, s1, s2)). (D.4)

First, we derive the backward equations by expanding around t and applying (D.3):

φ1(t + h, s1, s2) = φ1(t, s1, s2) + dφ1

dh
(t + h, s1, s2)|h=0h + o(h)

= φ1(t, s1, s2) + dφ1

dh
(h, φ1(t, s1, s2), φ2(t, s1, s2)|h=0h + o(h)

= φ1(t, s1, s2) + u1(φ1(t, s1, s2), φ2(t, s1, s2)h + o(h)). (D.5)

Since an analogous argument applies for φ2, we arrive at the system

d

dt
φ1(t, s1, s2) = u1(φ1(t, s1, s2), φ2(t, s1, s2)) and

d

dt
φ2(t, s1, s2) = u2(φ1(t, s1, s2), φ2(t, s1, s2)), (D.6)

with initial conditions φ1(0, s1, s2) = s1, φ2(0, s1, s2) = s2.
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Recall in our SIR approximation, we use the initial population X2(0) as a constant
that scales the instantaneous rates over any time interval [t0, t1). The only nonzero
rates specifying this proposed model, in the notation above, are

a1(0, 1) = βX2(0), a1(1, 0) = −βX2(0), a2(0, 1) = −α, a2(0, 0) = α.

(D.7)

For simplicity, call X2(0) := I0, the constant representing the infected popula-
tion at the beginning of the time interval. Thus, the corresponding pseudo-generating
functions have a simple form:

u1(s1, s2) = β I0s2 − β I0s1 and

u2(s1, s2) = α − αs2 = α(1 − s2). (D.8)

Plugging into the backward equations, we obtain

d

dt
φ1(t, s1, s2) = β I0

(
φ2(t, s1, s2) − φ1(t, s1, s2)

)
and

d

dt
φ2(t, s1, s2) = α − αφ2(t, s1, s2). (D.9)

The φ2 differential equation corresponds to a pure death process and is immediately
solvable; suppressing the arguments of φ2 for notational convenience, we obtain

d

dt
φ2 = α − αφ2

d

dt
φ2(

1

1 − φ2
) = α

ln(1 − φ2) = −αt + C

φ2 = 1 − exp(−αt + C). (D.10)

Plugging in φ2(0, s1, s2) = s2, we obtain C = ln(1 − s2), and we arrive at

φ2(t, s1, s2) = 1 + (s2 − 1) exp(−αt) (D.11)

Substituting this solution into the first differential equation and applying the inte-
grating factor method provides

φ1e
β I0t =

∫
β I0e

β I0t (1 + s2 − 1

eαt
) dt = eβ I0t + β I0(s2 − 1)

∫
e(β I0−α)t dt

= eβ I0t + β I0(s2 − 1)
e(β I0−α)t

β I0 − α
+ C. (D.12)

123



Birth/birth-death processes and their computable…

Plugging in the initial condition φ1(0, s1, s2) = s1 and rearranging yields

φ1 = 1 + β I0(s2 − 1)

β I0 − α
e−αt + e−β I0t (s1 − 1 − β I0(s2 − 1)

β I0 − α
). (D.13)

D.2 Transition probability expressions

Transition probabilities are related to the PGF via repeated partial differentiation; note
that

Pmn
kl (t) = 1

k!
1

l!
∂k

∂sk1

∂ l

∂sl2
φmn(t, s1, s2)

∣∣∣∣
s1=s2=0

= 1

k!
1

l!
∂k

∂sk1

∂ l

∂sl2
φm
1 (t, s1, s2)φ

n
2 (t, s1, s2)

∣∣∣∣
s1=s2=0

= ∂ l

∂sl2

k∑
i=0

(
k

i

)
∂k−i

∂sk−i
1

φm
1 (t, s1, s2)

∂ i

∂si1
φn
2 (t, s1, s2)

∣∣∣∣
s1=s2=0

. (D.14)

This expression is generally unwieldy, but notice ∂ i

∂si1
φn
2 (t, s1, s2)

∣∣∣∣
s1=0

= 0 for all i >

0 in our model. Remarkably, this allows us to further simplify and ultimately arrive at
closed-form expressions. Continuing, we see

Pmn
kl (t) = ∂ l

∂sl2

[(
k

0

)
φn
2 (t, s1, s2)

∂k

∂sk1
φm
1 (t, s1, s2)

] ∣∣∣∣
s1=s2=0

= ∂ l

∂sl2

{
φn
2 (t, s1, s2) · m!

(m − k)!e
−kβ I0t

[
1 + β I0(s2 − 1)

β I0 − α
e−αt

− e−β I0t
(
1 + β I0(s2 − 1)

β I0 − α

)]m−k}∣∣∣∣
s1=s2=0

:= ∂ l

∂sl2

[
φn
2 (t, s1, s2) · h(t, s1, s2)

] ∣∣∣∣
s1=s2=0

=
l∑

i=0

(
l

i

)
∂ l−i

∂sl−i
2

h(t, s1, s2)
∂ i

∂si2
φn
2 (t, s1, s2)

:=
l∑

i=0

(
l

i

)
A(l − i)B(i). (D.15)

From here, it is straightforward to take partial derivatives of h(t, s1, s2) and our closed-
form expression of φn

2 (t, s1, s2) to arrive at Conditions (41) and (42). A heatmap
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Transition probabilities, t = 0.5

Continued fraction expansion

Transition probabilities, t = 1

Continued fraction expansion

Monte Carlo estimates Monte Carlo estimates

Two−type branching approximation Two−type branching approximation

Fig. 8 Heatmap visualizations of transition probabilities near the region of support across methods for
t = 0.5, 1. We see that the branching approximation is noticeably different from the Monte Carlo ground
truth when we increase t to 1, while the continued fraction approach remains accurate

visualization of the difference between transition probabilities under the branching
approximation and those computed using the continued fraction method for the SIR
model is included below (Fig. 8).
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