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Devoid of all known canonical actin-binding proteins, the prevalent
parasite Giardia lamblia uses an alternative mechanism for cytokine-
sis. Unique aspects of this mechanism can potentially be leveraged
for therapeutic development. Here, live-cell imaging methods were
developed for Giardia to establish division kinetics and the core di-
vision machinery. Surprisingly, Giardia cytokinesis occurred with a
median time that is ∼60 times faster than mammalian cells. In con-
trast to cells that use a contractile ring, actin was not concentrated in
the furrow and was not directly required for furrow progression.
Live-cell imaging and morpholino depletion of axonemal Paralyzed
Flagella 16 indicated that flagella-based forces initiated daughter cell
separation and provided a source for membrane tension. Inhibition
of membrane partitioning blocked furrow progression, indicating a
requirement for membrane trafficking to support furrow advance-
ment. Rab11 was found to load onto the intracytoplasmic axonemes
late in mitosis and to accumulate near the ends of nascent axonemes.
These developing axonemes were positioned to coordinate traffick-
ing into the furrow and mark the center of the cell in lieu of a mid-
body/phragmoplast. We show that flagella motility, Rab11, and actin
coordination are necessary for proper abscission. Organisms repre-
senting three of the five eukaryotic supergroups lack myosin II of the
actomyosin contractile ring. These results support an emerging view
that flagella play a central role in cell division among protists that
lack myosin II and additionally implicate the broad use of membrane
tension as a mechanism to drive abscission.
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Cell division is a fundamental process whereby cellular content is
partitioned for proliferation. Drugs that target this process are

immensely valuable as cancer therapeutics (1) and have promise
for treating infectious disease (2–4). Giardia lamblia (synonymous
with Giardia intestinalis and Giardia duodenalis) is a common wa-
terborne pathogen that infects 280 million people each year (5). In
addition to being a major parasite, Giardia belongs to possibly the
earliest diverging eukaryotic lineage and could provide clues about
early mechanisms of cell division (6, 7). Despite the fundamental
requirement for division to proliferate, the mechanisms underlying
cytokinesis vary across the evolutionary tree (8). As Giardia has
actin but lacks myosin and all known actin cytoskeletal components
required for amoeboid motility and cytokinesis (9), it is not clear
how the division plane is specified, if division involves force gen-
eration for daughter cell separation, or if division occurs strictly
through a membrane remodeling mechanism (8).
Our most complete mechanistic understanding of cytokinesis

comes from studies of model organisms that are Unikonts, a
group that comprises the supergroups Opisthokonta (e.g., yeast
to man) and Amoebozoa (e.g., Dictyostelium discoideum) (10).
Animals use an actomyosin contractile ring to pinch the plasma
membrane down onto the midbody microtubules (11). Abscis-
sion at the midbody is subsequently completed by plus-end–
directed vesicle trafficking to the center of the midbody and
ESCRT-III–mediated scission (12). Plants lack myosin II and the
pinching down mechanism for scission; instead, extensive membrane

trafficking is used to build a new cell wall, known as the cell plate,
between daughter cells. After mitosis, interdigitated spindle mi-
crotubules maintain antiparallel organization and transition to a
cytokinetic apparatus known as the phragmoplast. Microtubules of
the phragmoplast guide Golgi-derived vesicles to the center of the
division plane by using plus-end–directed trafficking (13). Intrigu-
ingly, proteomic analysis has revealed that the phragmoplast shares
many molecular components with the mammalian midbody, sug-
gesting that, despite appearances, plant cytokinesis employs a mod-
ified midbody mechanism (14).
Discovery of the diverse strategies that cells use to accom-

plish cell division will provide information on the constraints of
eukaryotic cell division. Although the myosin II-based actomyosin
contractile ring has a central role in Unikont cytokinesis, cells can
divide without myosin II under specific conditions (15–17). Dic-
tyostelium and mammalian cells with impaired myosin II function
can complete cytokinesis by using traction to pull daughter cells
apart (15–17). Hence, the use of myosin II may be implemented
on top of a more ancient mechanism that is dependent on cortical
tension and a Laplace-like pressure property of cells that serves to
minimize the surface area-to-volume ratio (18, 19). Moreover,
phylogenetic distribution of myosin II is limited to Unikonts with
one known exception that may be an example of horizontal gene
transfer (20, 21); thus, three of the five eukaryotic supergroups use
an alternative to the canonical “purse-string” mechanism of cy-
tokinesis, as is the case in plants (22). The number and types of
alternative mechanisms remain understudied (23), especially in
cells that have been difficult to culture and for which molecular
and imaging methodologies are lacking.
The study of giardial mitosis and cytokinesis has been chal-

lenging because of a lack of effective cell synchronization and live-
cell imaging, which is complicated by Giardia’s lethal sensitivity to
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oxygen concentrations greater than 5% (24). Initial studies com-
pletely missed the presence of a mitotic spindle, leading to the
proposal of several incompatible mechanisms for cell division (25–
29). Ultimately, Giardia’s mitotic stages were found to begin sim-
ilarly to those of plants and animals (30). The spindle, however, is
completely disassembled before cytokinesis, and division occurs
across the long rather than the short axis of the cell (30–32). The
mechanism for coordinating membrane remodeling during cyto-
kinesis and the timing of major events remain unexplored. Here we
combine the use of a hypoxic stage-top incubator, a newly de-
veloped low-fluorescence media formulation, and a bright fast-
folding fluorescent protein tag (33) that allow robust imaging of
Giardia throughout the cell cycle. We use these technical advances
to uncover the core division machinery and establish a working
model for Giardia’smechanism of myosin-independent cytokinesis.

Results
Giardia Uses a Tubulin Reservoir to Support Rapid Mitosis and Ventral
Disk Assembly. The ability to follow fluorescent proteins in live cells
has been one of the most powerful tools for uncovering the
mechanism of cytokinesis in model systems (34). To study the dy-
namics of individual proteins during the cell cycle, we developed a
low-fluorescence culture medium that supports cell growth. Our
newly formulated medium, SB5050, has a 92% reduction in back-
ground fluorescence yet still maintains 35% as many mitotic events
as standard media (Fig. S1 and Dataset S1). To follow tubulin dy-
namics, we tagged the N terminus of β-tubulin with an 18-aa flexible
linker and the fast-folding bright fluorescent protein mNeonGreen
(33), generating mNeonGreen–C18–β-tubulin (mNG-Tub). Giardia
has a highly organized microtubule cytoskeleton (Fig. 1A), including
eight flagella, a ventral adhesive disk (formed from an overlapping
sheet of parallel microtubules that facilitates attachment to the
host), and a median body (a bundled microtubule structure thought
to be a reservoir of tubulin and disk components) (35). Expression
of mNG-Tub under its endogenous promoter permitted visualiza-
tion of microtubules in the ventral disk, median body, flagella, and
mitotic spindles (Fig. 1 and Movie S1).
On initiation of mitosis, the flagella and basal bodies rearranged

and two independent mitotic spindles nucleated in proximity to
the basal bodies (T14; Fig. 1B). As the spindles grew in size, the
tubulin signal from the median body shrank proportionally (T13–
T19). During telophase, the cage-shaped spindles collapsed into
tight bundles of microtubules (compare dorsal row T19 and T23 in
Fig. 1B). Daughter disk assembly was initiated at one end of each
spindle in opposing orientations (T23). As the ventral discs con-
tinued to grow in size, the spindle was disassembled and nascent
flagella grew in the region previously occupied by the spindle (T26).
The observed flux of tubulin from the median body to assembling
microtubule structures represents experimental support for the pre-
viously proposed idea that the median body is used as a reservoir of
tubulin (36, 37); however, our results indicate that, in addition to
being a reservoir for building the ventral discs (process requiring
∼3 min), the median body supports assembly of the spindle and
nascent flagella. Meanwhile, during daughter ventral disk neogenesis,
the parental disk disassembled from the interior causing the central
microtubule bare area to grow as the disk thinned (T23–T26). When
the overlap zone of the disk has disassembled, the disk microtubules
straightened, leading to the adoption of an open C-shaped confor-
mation (T27). Furrow ingression coincided with transition to this
open conformation. The timing of these events suggests that the
parental disk physically impedes furrow progression and its disas-
sembly is tightly coordinated with cytokinesis.
Giardia lacks the machinery for amoeboid motility and depends

solely on flagella for locomotion (9, 38). Notably, high-speed im-
aging has revealed that Giardia’s four flagella pairs have different
modes of movement. The caudal flagella, which originate near the
nuclei and have approximately two thirds of their length running
through the cell, are used to undulate the anterior of the cell so
that this region acts like a flipper while the anterior and pos-
terolateral flagella generate canonical power strokes (39). Corre-
sponding with the parental disk opening, daughter cells moved in

opposition to each other. We propose that caudal flagella flexion
(i.e., sustained bending) is important for initiating daughter cell
separation. As the intracytoplasmic axonemes of the caudal fla-
gella are nucleated by basal bodies that are intimately associated
with the nascent ventral discs (40), this arrangement could facili-
tate positioning the daughter ventral discs. Indeed, these intra-
cytoplasmic axonemes were observed to flex in opposite directions
during cytokinesis, and, as the daughter cells moved in opposite
directions, the plasma membrane appeared to stretch around the
two new discs and the furrow advanced between them (Fig. 1B and
Movies S1 and S2). Abscission occurred after daughter cells
transitioned into a tail-to-tail orientation and swam in opposite
directions, presumably driven by anterior flagella power strokes.
After scission, daughter cells quickly attached to the cover glass,
indicating that the nascent ventral discs are functional upon cy-
tokinesis despite the immaturity of the ventral flagella, which have
been proposed to support attachment (41). Notably, the ventral
and posterolateral flagella were observed to grow at different rates
(Fig. 1B and Movie S1), suggesting that the mechanism of flagella-
length control is more complex in Giardia than the constitutive
regulatory mechanism of Chlamydomonas reinhardtii (42). Also,
there was no observed rebuilding of the median body during the
time we observed the regrowth of the flagella, supporting the idea
that the median body is a microtubule reservoir.
Previous studies of fixed cells found that the start of mitosis is

indicated by coordinated chromosome condensation, transloca-
tion of the two nuclei to the cell center, and repositioning of
basal bodies and their attached flagella to set up the mitotic
spindles (30, 32, 43, 44). A prior study that used drugs to partially
synchronize cells was able to follow a handful of cells through
division by using 40× phase optics and found that mitosis and
cytokinesis took ∼50 min (32). By using long-term 4D differen-
tial interference contrast (DIC) imaging in the absence of any
drugs, we find that mitosis and cytokinesis occurred in ∼7.5 min
(Fig. S2A and Movie S3), much faster than the original estimate
made without temperature or atmospheric control (32). The
median time between mitosis to the initiation of cytokinesis was
6 min 28 s (n = 93; Fig. S2B). Remarkably, the median time for
cytokinesis was 50 s (n = 130; Fig. S2C), with 89% of cells
completing cytokinesis within 2 min. This time is 30–90 times
faster than the rates reported for plants, fungi, and mammalian
cells (23, 45–47). Intriguingly, Dictyostelium myosin II mutants
divide in approximately half the time of their WT counterparts
(6–8 min), suggesting that the myosin II-based cytokinesis may
have arisen for increased fidelity rather than speed (48). The
previously observed doubling time for the strain WBC6, used in
this study, was ∼8 h; thus, our timing is precisely in agreement
with the mitotic index of 1.3% observed in nonsynchronized cul-
tures (6.5 min/480 min = 0.013) (30, 49). Cleavage furrow ingression
measurements were averaged by randomly sampled locally esti-
mated scatterplot smoothing (LOESS) curves; ingression is fastest
after initiation and then progresses at a steady rate and is followed
by a slower final scission event (Fig. 1C and Fig. S2 D and E). This
nonuniform rate may indicate a requirement for the sequential
action of multiple cell-division components that cooperate together
to achieve furrow ingression and abscission.

Flagella Are Required for Cleavage Furrow Formation and Abscission.
Myosin II mutants of Dictyostelium were shown to use ameboid
motility to crawl apart for cytokinesis (17). Organisms that lack
myosin II and depend on their flagella for motility, such as Trypa-
nosoma brucei and Tetrahymena, also require motility for abscission
(50–52). To address whether the flagella have a direct role in cy-
tokinesis, we treated Giardia with small molecule inhibitors that
have been shown to disrupt flagellar function in other systems
[Ciliobrevin A, Ciliobrevin D, drug E, drug F, and drug P (53–55)].
However, these drugs did not visibly perturb Giardia flagella beat-
ing or length. We therefore tested the role of the flagella by
knocking down Paralyzed Flagella 16 (PF16), a highly conserved
key component of the axoneme central pair apparatus (56) required
for stabilizing the orientation of the central pair microtubules in
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plot of bootstrapped LOESS curves derived from cleavage furrow measurements (dimension bars in DIC row T26 and T27; also see Fig. S2). Distance to scission
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C. reinhardtii (57), mice (58), and T. brucei (52). Misorientation of
the central pair in T. brucei impairs cytokinesis (52). Likewise, a
previous study of PF16 in Giardia, aimed at testing the role of the
flagella in parasite attachment, noted that PF16 knockdown (KD)
reduced flagella motility and impaired cytokinesis (41). The nature
of this cytokinesis defect, however, was not reported.
To monitor the efficacy of the morpholino KD, we endoge-

nously tagged PF16 with a C-terminal triple-HA epitope tag (59).
As expected, PF16-HA localized to the flagella, and quantitative
Western blotting revealed 69% depletion at the population level
24 h after morpholino treatment (Fig. 2A and Fig. S3A). With the
exception of a single cell (1 of 885), fixed-cell analysis revealed that
the interphase PF16-depleted cells had typical polarity and cyto-
skeletal organization. However, 11.5% of the KD cells had four or
more nuclei compared with only 1.2% in the control, suggesting
impaired cytokinesis. These cells were categorized based on furrow
progression; compared with the control, we observed an increase
in cells that did not initiate a furrow or were in the process of
cytokinesis or abscission. These data indicate a requirement of
flagella function for Giardia cytokinesis (Fig. 2 A and B).
To explore the roles that PF16 and flagellar movement play in

cytokinesis, we used DIC optics to film PF16-depleted cells be-
tween 16 and 28 h after morpholino treatment. Significant dif-
ferences were observed between control and PF16-HA–KD cells
in time taken to and ability to divide; statistical significance was
verified by Kaplan–Meier survival analysis (Fig. 2 C and D and
Fig. S4). To determine how PF16 impacts cleavage furrow in-
gression dynamics, we measured furrow progression from time-

lapse movies of PF16-depleted cells. Because of varying levels of
morpholino penetrance within the cell population, we examined
the 11 slowest-dividing cells to identify the point at which these
cells slowed or stalled their furrow progression. Consistent with an
increase in the number of cells that did not initiate a furrow in the
fixed-cell analysis, we found during live-cell analysis that, upon the
onset of cytokinesis, furrow progression halted and did not reach
the abscission stage (Fig. 2E, Fig. S3B, and Movie S4). In contrast,
analysis of the 11 slowest control cells (lagging tail with division
times >2 min) showed that the cleavage furrow rapidly proceeded
to ∼8 μm, experienced a short delay, and then completed division
(Fig. 2E). These results indicate that the flagella are required to
initiate cytokinesis. Given that the flagella areGiardia’s only means
for motility, it follows that the observed flexion of the intra-
cytoplasmic axonemes of the caudal flagella initiate cell separation
(Fig. 1 and Movies S1 and S2). As the daughter cells move apart,
they become oriented such that beating of the extracellular flagella
can propel the cells in opposite directions for scission. A me-
chanical role for the flagella, however, does not exclude the pos-
sibility that the flagella could have additional roles, such as serving
as a scaffold for transport or polarity signaling (51, 60, 61).

Actin Has Two Major Roles for the Progression of Cytokinesis. We
previously reported that actin depletion by morpholino KD results
in the accumulation of aberrantly nucleated cells, indicating a role
for actin in cytokinesis (31). However, our initial actin localization
study reported actin localization in a cell that failed to complete
cytokinesis and was not actively in the process of division (31).
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We therefore reexamined actin localization throughout the cell
cycle (31). These studies were necessarily limited to fixed cells be-
cause attempts to fluorescently tag Giardia actin or to use common
actin reporters have been unsuccessful in our hands. In agreement
with our previous studies, actin was enriched around nuclei and
forming spindles at the onset of mitosis, and remained enriched
around the spindles and the developing axonemes throughout mi-
tosis (Fig. 3A) (31, 62). The enrichment of actin around microtubule
structures is consistent with actin’s role in positioning them (31). We
did not observe any actin structure that marked the position of the
furrow, which is in contrast to cells with a contractile ring in which
actin is enriched along the furrow. Actin levels were reduced in the
first few microns of the cleavage furrow trajectory, and an actin
clearing was regularly observed just ahead of the furrow cortex (Fig.
3A; see line scans across and through the furrow in Fig. S5). The
actin cytoskeleton accounts for most of the mechanical properties of
the cell cortex (63); thus, differential cortical reinforcement may
indicate that selectively altering cortical mechanics is important for
cleavage furrow ingression (18, 19).
To assess the role of actin during cytokinesis, we used time-lapse

microscopy to image actin-depleted cells 16–26 h after morpholino
treatment (Fig. 3B). Actin depletion significantly impacted division
timing (Fig. S4). Actin-depleted cells fell into two distinct phenotypic
classes: stalled cells, which took longer than 2 min to complete cyto-

kinesis, and blocked cells, which never completed cytokinesis (Fig. 3 B
and C and Movies S5 and S6). Some cells that never completed cy-
tokinesis appeared to have mispositioned flagella that physically im-
peded cleavage furrow ingression (Fig. 3B and Movie S5). We
previously reported that 40% of actin-depleted cells had mis-
positioned flagella 24 h after KD (31); we now understand that this
could block cytokinesis through misdirected force generation or
physically impeding the furrow. To further examine effects of actin
KD on cleavage furrow ingression, wemeasured furrow progression in
cells that were stalled in cytokinesis; we focused on those that took 6–
15 min to complete cytokinesis, as this group was unique to the actin-
depleted population. Furrow progression began at rates similar to
control cells, but, after ∼20 s, the rate of progression slowed (Fig. 3D
and Fig. S3D). The cells were further delayed at the tail-to-tail stage,
revealing that actin has a specific role in supporting the abscission step
of cytokinesis. Slower progression could result from defects in cortical
mechanics that may normally work to direct furrowing between the
daughter cells. Considering that Giardia actin has an established role
in trafficking (31), the stalled phenotype could also indicate a role for
actin in coordinating membrane trafficking during cytokinesis.

Membrane Trafficking Is Essential for Cleavage Furrow Progression.
In animals, plants, and fungi, tethering complexes target Golgi-
derived vesicles to the plasma membrane to support the increase
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in surface area required for cytokinesis (64–66). In Fig. 1, we
pointed out the ventrolateral flange, a lamellipodia-like mem-
brane protrusion that is consumed during cytokinesis; this struc-
ture may serve as a source of plasma membrane (also see Movie
S2). The rapid speed at which Giardia divides, the presence of a
potential plasma membrane reservoir, and the lack of the exocyst
and TRAPP-II tethering complexes (67), led us to question
whether there is a requirement for new membrane delivery during
cytokinesis. To address this, and generally disrupt endomembrane
trafficking, we treated cells with Brefeldin A (BFA). BFA has
been shown to disrupt endoplasmic reticulum (ER)-to-Golgi
transport and change the distribution of membrane pools in
model eukaryotes (68–70). Although Giardia lacks a conventional
Golgi, BFA has been shown to potently disrupt trafficking out of
the ER as well as disrupt COP1 localization (70–73), similar to
plants and animals. As expected, BFA treatment induced swelling
of the perinuclear ER, as visualized by the ER marker PDI2 (Fig.
S3E) (74). BFA treatment similarly altered organization of the
trafficking regulator Rab11, which has partially overlapping lo-
calization with PDI2 (Fig. S3E) and is required for cytokinesis in
other eukaryotes (discussed later). Time-lapse microscopy and
quantitative analyses revealed that BFA-treated cells completed
cytokinesis at statistically slower rates or arrested with partially
ingressed cleavage furrows (Fig. 4 A and B and Movie S7). To
determine the point at which the treatment impacted furrow
progression, we measured the distance to scission in cells that

never completed cytokinesis. At the onset of cytokinesis, furrows
are ∼14 μm long; BFA treatment stopped furrow progression
shortly after cytokinesis began, with ∼8 μm of the furrow path
remaining (Fig. 4C and Fig. S3F). This result demonstrates that
impaired membrane trafficking blocks cytokinesis and may in-
dicate a requirement for additional membrane and associated
regulator factors in supporting cytokinesis.

Rab11-GTPase Localizes to the Prefurrow and Is Necessary for Cytokinesis.
Rab11 is essential for delivering membrane and cytoskeletal ef-
fector proteins to the cleavage furrow in plants, animals, and the
protist T. brucei (75–78). In animal cells, Rab11 is further used to
support abscission via plus-end trafficking on microtubules of the
midbody (65, 76). We used live-cell imaging to localize Rab11
throughout the cell cycle. In interphase cells, mNG-C18-Rab11
(mNG-Rab11) localized to the perinuclear ER and cell cortex
(Fig. 5A). In late telophase, bright puncta and linear arrays of
mNG-Rab11 were observed that corresponded to the position of
intracytoplasmic axonemes (n = 20 cells; Fig. 5A and Movie S8).
Fixed-cell analysis confirmed that the linear arrays are aligned with
intracellular axonemes, implicating the flagella as highways for
vesicle transport (Fig. 5B). Ahead of anterior-to-posterior furrow
ingression, Rab11 transiently delineated the cleavage furrow, in-
dicating a role in prefurrowing. Prefurrowing (i.e., formation of a
dorsal-ventral invagination) could be observed in 4D DIC movies
to occur 13.4± 5 s (n = 50 cells) ahead of anterior-posterior furrow
progression. As the anterior-posterior furrow advanced, mNG-
Rab11 remained at the leading edge of the cleavage furrow, as well
as along the length of the furrow (Fig. 5A and Movie S8). Re-
markably, fixed-cell analysis revealed that, in addition to loading
onto the intracytoplasmic axonemes of mature flagella, Rab11 was
concentrated at the ends of the developing axonemes positioned to
traffic Rab11 directly into the furrow (Fig. 5B and Movie S9).
Similarly oriented to midbody microtubules, the plus ends of these
axonemes terminate at the future site of the furrow; we propose
that these developing axonemes have analogous function to the
midbody/phragmoplast and are used to guide trafficking into the
furrow. Consistent with a role for actin in supporting vesicular
trafficking, actin was observed to colocalize with Rab11 near the
ends of the growing flagella tips (Fig. 5B, Fig. S6A, and Movie S9).
To verify a functional role for Rab11 in Giardia cytokinesis, we

depleted Rab11 with morpholinos and validated the KD by gen-
erating an endogenously tagged morpholino-sensitive (79) HA-
Rab11 cell line. At 24 h after electroporation, Rab11 was depleted
by ∼70% vs. the control (Fig. S6E). Rab11-depleted cells took
longer to divide or failed to divide, in agreement with a critical
contribution of membrane remodeling toward cleavage furrow
progression, consistent with the phenotype produced by dominant-
negative and constitutively active Rab11 mutants (Fig. 5 C andD and
Figs. S4 and S6). TheGiardia genome contains six Rab proteins. The
more severe impairment of cytokinesis by BFA treatment may in-
dicate that Rab11 accounts for only a subset of the membrane
remodeling associated with cytokinesis. However, the overall impor-
tance of Rab11 for cytokinesis is likely underreported by our timing
data, as many cells that completed division with normal kinetics had
abnormal cleavage furrow placement or generated daughter cells with
irregular morphology, reminiscent of the actin KD phenotype. Im-
portantly, conservation of Rab11 function in Giardia implicates
Rab11 as an ancient component of the cell division machinery.
Colocalization between Rab11 and actin, as well as the abscis-

sion defect associated with depletion of either protein, suggests
that these two systems act cooperatively. Thus, we examined
whether Rab11 localization was impacted by actin KD. In addition
to cells with abnormally positioned flagella, which could alter
Rab11 trafficking, we observed that 55% of cells had abnormal
morphology at the abscission site compared with 14% in the
controls (Fig. 5 E and F). This defect included missing regions of
the cell body and/or Rab11-positive membrane accumulation at the
abscission site. During DIC imaging of control cells, similar mem-
brane accumulations were sometimes observed to form after ab-
scission, particularly for cells initially connected by a cytoplasmic
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bridge. The excess membrane was eventually retracted and in-
corporated into the cell body, but actin-depleted cells often had
thicker than usual cytoplasmic bridges, which could account for
the excessive membrane found at the abscission site. The ab-
normal abscission site morphology and increased number of cells
with Rab11-labeled membrane accumulations is consistent with
actin coordinating the final membrane-remodeling steps required
for abscission.

Discussion
Here, we set out to study how Giardia, a highly divergent eu-
karyote, lacking the conserved contractile ring and amoeboid
motility proteins, carries out cell division. By using newly de-
veloped live-cell imaging methodologies, genetic disruption, and
drug studies, we have established a role for membrane trafficking
and the cytoskeleton in Giardia cytokinesis, as well as revealing

several twists on extant mechanistic themes. Within Giardia’s 8-h
cell cycle, a relatively brief period is spent in mitosis and cyto-
kinesis. For fixed-cell studies of nonsynchronized cells, our re-
sults indicate that only approximately 1.3% of the cells will be in
mitosis (6.5 min of 8 h) and 0.17% of the cells will be in cyto-
kinesis (50 s of 8 h). These percentages are in agreement with the
previously reported mitotic index (30). However, in the past,
challenges associated with finding and staging rarely observed
dividing Giardia led to a misunderstanding of the normal pro-
gression of mitosis and cytokinesis. Cells in the process of cy-
tokinesis should have daughter cells smaller than interphase
trophozoites, lacking a median body, and possessing only four
full-length flagella. The often-shown heart-shaped cells with
daughter cells equivalent in size to interphase trophozoites are
abnormal cells that failed to complete cytokinesis. These are the
∼1% of cells that never completed cytokinesis in our controls
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(Fig. S1C). Remarkably, we observed heart-shaped cells re-
covering in the next round of division. We and others have
mistakenly interpreted these configurations to be in the process
of cytokinesis when they were not actively dividing (25, 30, 31,
80–82). Therefore, the methodical advances and observations
described here are of immense value for understanding the
process of cytokinesis and enabling additional studies of living
and dividing Giardia. Importantly, unique and divergent molec-
ular machinery in Giardia has the potential to be leveraged for
the treatment of this major parasite. In particular, Giardia-specific
proteins that regulate cell polarity and coordinate the cytoskeletal
dynamics and membrane remodeling described here could be
important therapeutic targets for clearing infection (4).

The Inside-Out Model for Giardia Cytokinesis. Based on our analyses,
we present a working model that can explain myosin-independent
cytokinesis inGiardia (Fig. 6). Upon initiation of mitosis, the basal
bodies and anterior flagellar exit sites are repositioned in a process
that is, in part, actin-dependent (Figs. 1 and 3) (31). The micro-
tubules used to form the two spindles are derived from the median
body (Fig. 1). At the end of mitosis, the two spindles transition
from cage-like to bundled organization. The two daughter discs
and four nascent flagella are assembled in opposing orientations
near the spindle poles. As the daughter discs are further de-
veloped, the parental disk thins out; disassembly of the overlap
zone of the disk coincides with the start of cytokinesis. The tips of
the depolymerizing parental disk were sometimes observed to be
coated with Rab11; thus, the disk may act as the initial guide for
Rab11 enrichment between daughter cells. Force generated by the
internal axonemes of the caudal flagella drive the daughter cells in
opposite directions. This movement causes the plasma membrane
to stretch around the two daughter discs, leading to membrane
tension (Fig. 1 and Movies S1–S3). Actin is cleared just ahead of
the furrow cortex and may act to direct the progression of the
cleavage furrow (Fig. S5). Additional membrane delivery is me-
diated by Rab11 vesicles that are trafficked along the intra-
cytoplasmic axonemes and ultimately delivered by the growing
posterolateral and ventral flagella, whose plus ends point toward
the furrow and act as the functional equivalent of a midbody/
phragmoplast (Fig. 5). Just before scission, the force for daughter
cell separation transitions from flexion of the intracytoplasmic
caudal flagella axonemes to propulsion by the beating external
portions of the flagella, driving the cells in opposite directions
(Movies S1–S3). The final swimming stage is reminiscent of
traction-mediated cytokinesis observed in myosin II mutants of
other eukaryotes; here swimming, rather than crawling, provides
the force to pull the daughter cells apart.
An emerging view is that flagella may play a fundamental role

in protozoan cytokinesis. In addition to a role in force genera-
tion, flagella act as scaffolds for signaling and polarity (51, 60,
61). A requirement for motility in abscission has previously been
reported for T. brucei, a protist that also lacks an actomyosin-
based cytokinetic apparatus (51, 52, 83, 84), and Tetrahymena
thermophila, which uses ciliary-driven cell motility during cyto-
kinesis (50, 85, 86). In T. brucei, more than 30 different motility
mutants have been reported to have cell-separation defects that
correlate with the motility defect (2). Remarkably, abscission
defects can be rescued by mechanical agitation, illustrating the
importance of membrane tension for abscission (52, 84). Given
the large number of protists that lack myosin II (20, 21), a role
for flagella in cytokinesis could be more common in nature than
what is presumed from studies of model eukaryotes, which rep-
resent only a small proportion of the eukaryotic tree.

Instead of Taking the Lead, Actin Plays a Supporting Role in Furrowing.
Given actin’s central role in cell division of model eukaryotes, it is
not surprising that actin has a role in Giardia’s cytokinesis, yet the
implementation is different. Distinct from that observed in model
eukaryotes, Giardia actin is notably found at high levels along the
cell edges where the ventral disk presses against the plasma
membrane, but is cleared just ahead of the advancing furrow
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generates cortical tension between daughter cells and actin, and Rab11 co-
ordinates membrane remodeling for abscission.
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(Fig. S5). We propose that Giardia actin has a role in guiding
cleavage furrow ingression. Cortical tension and membrane flu-
idity are important factors in regulating cytokinesis in model sys-
tems (18, 87). Abnormal furrow placement and delayed abscission
resulting from actin depletion are consistent with this proposed
role (Fig. 5 E and F). However, we propose that actin’s most
critical role is in positioning the tubulin cytoskeleton so that the
flagella can direct trafficking and force generation along the fur-
row. The mechanism used to activate actin polymerization for
organelle positioning and differential cortical organization remain
to be determined, although it is likely that Giardia’s sole Rho
family GTPase, GlRac, has some role in coordinating actin poly-
merization and membrane remodeling during cytokinesis (31, 79).
In otherwise normal-looking cells, we observed many actin-

depleted and Rab11-depleted cells that were stuck at the tail-to-
tail stage of cytokinesis. This indicates a role for these proteins in
the final membrane-remodeling events required for abscission. A
subset of Rab11 vesicles colocalize with actin in interphase cells,
and, in dividing cells, actin and Rab11 were observed to coloc-
alize near the ends of the nascent flagella. This is consistent with
actin having some role in directing Rab11 traffic. In other sys-
tems, Rab11 has been found to use dynein, kinesins, and myosins
for transport when long-distance trafficking is supported by the
microtubule cytoskeleton and actin is used for short-range trans-
port. Giardia lacks all myosin homologs and the FIP proteins that
normally connect Rab11 to molecular motors (88). Given locali-
zation of Rab11 to the flagella and tips of depolymerizing discs, it
seems likely that dynein and kinesin motors are used to support
Rab11 trafficking. The specific molecules that link Rab11 to the
actin and tubulin cytoskeleton and whether GlRab11 delivers cy-
toskeletal effectors to the furrow as in animal cells (reviewed in
ref. 65) remain to be determined.

Materials and Methods
Parasite Strain and Growth Conditions.G. lamblia strainWB clone 6 (ATCC 50803;
American Type Culture Collection) was cultured as in a previous work (30).

Morpholino KD. KDexperimentswere performed as described previously (89)with
morpholinos sourced from Gene Tools. Sequences are provided in Dataset S2.

Vector Construction. All constructs used in this study were made by using
standard techniques. Dataset S2 provides sequences and workflow. Note
that N-terminal fusions result in morpholino-resistant constructs (62), and
therefore we included the first 27 bp of the coding sequence to restore
morpholino sensitivity (79) to the 3HA-Rab11MS construct.

Live Imaging. In an effort to increase the mitotic index, cells were treated with
0.25 μM albendazole ∼4 h before being imaged. Cells were chilled with ice for
20 min to detach from the culture tube and then placed into an Attofluor cell
chamber (Molecular Probes) and incubated in a GasPak EZ anaerobic pouch
(BD) for 1–2 h at 37 °C. Cells were then washed four times with SB5050 (0.1%
K2HPO4, 0.06%KH2PO4, 1% glucose, 0.2%NaCl, 0.2% cysteine-HCI monohydrate,
0.02% ascorbic acid, 0.0228% ferric ammonium citrate, 0.05% bovine bile, and
5% bovine serum, pH 7.1; see Dataset S1 for variants tested). Drug-free cells were

overlaid with a mixture of 0.7–1% ultra-low gelling agarose (Sigma A2576)
melted in Hepes-buffered saline (137 mM NaCl, 5 mM KCl, 0.91 mM
Na2HpO4-heptahydrate, 5.55 mM glucose, 20 mM Hepes, pH 7) and diluted
into SB5050 and left at room temperature for 10 min to solidify the agarose.
Imaging was performed under 2.5% O2, 5% CO2, and 37 °C (Boldline CO2/O2;
Oko Lab). Time-lapse imaging was performed on a DeltaVision Elite micro-
scope (GE) equipped with DIC optics, using a 100 × 1.4 NA or 60 × 1.42 NA
objective, and a sCMOS 5.4 PCle air-cooled camera (PCO-TECH).

Long-Term Imaging with DIC. Cells were imaged as described earlier; however,
cells were not exposed to albendazole, and the washes and overlay used
standard TYDK media (90) instead of SB5050.

Cleavage Furrow Measurements. Measurements were made along the length
of the cleavage furrow, anterior to posterior, starting on the onset of cy-
tokinesis through the completion of the process, by using SoftWorx (API).

Cell Division Rate Assay. Confluent cultures were diluted by 60%. The cells were
incubated in 50 ng/mL albendazole at 37 °C for 5.5 h. Cells were detached and
collected by centrifugation. The cell pellet was resuspended in 6 mL drug-free
media, and 1 mL of cell culture was mixed with paraformaldehyde and then
counted on a hemocytometer. The remaining 5mL cell culture was placed at 37 °C
for 1 h and then fixed with paraformaldehyde and counted on a hemocytometer.

Immunofluorescence Microscopy. Fixed imagingwas performed as in a previous
work (79) using starve and release (3.5 h) to increase the mitotic index (30).

Western Blotting. Blotting was performed as in a previous work (89).

BFA Treatment. The long-term imaging with DIC as detailed earlier, except cells
were exposed to 25 μM BFA in 0.035% DMSO 3 h before and during imaging.

Statistical Analysis. Highly statistically significant differences between times until
cytokinesis are obtained by Kaplan–Meier estimator, a nonparametric method
(i.e., does not require distributional assumptions) from survival analysis (91). We
set a conservative censoring rule for cells that do not complete cytokinesis at
900 s without completion, a lower bound on widely varying total imaging times.
To create curves and confidence bands, cleavage furrowmeasurements obtained
at each frame of imaging data were interpolated by using local polynomial (i.e.,
LOESS) regression, producing a smooth curve corresponding to each represen-
tative cell (91). Resampling this set of curves with replacement to generate
5,000 bootstrap replicate datasets, we obtained nonparametric estimates of the
median curve and 95% CIs (92). These results are displayed by using standard
pointwise confidence bands as well as using functional box plots for complete-
ness, which generalize notions such as outliers to entire curves rather than points
(detailed in ref. 93). In this case, the two visualization methods are not noticeably
different, and provide more detailed support for results of formal hypothesis
tests of significance based on Kaplan–Meier estimates of time until cytokinesis.
Plots were generated by using R (www.R-project.org).
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