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1  INTRODUCTION
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Abstract

Phylodynamics is an area of population genetics that uses genetic sequence data to
estimate past population dynamics. Modern state-of-the-art Bayesian nonparamet-
ric methods for recovering population size trajectories of unknown form use either
change-point models or Gaussian process priors. Change-point models suffer from
computational issues when the number of change-points is unknown and needs to
be estimated. Gaussian process-based methods lack local adaptivity and cannot accu-
rately recover trajectories that exhibit features such as abrupt changes in trend or vary-
ing levels of smoothness. We propose a novel, locally adaptive approach to Bayesian
nonparametric phylodynamic inference that has the flexibility to accommodate a
large class of functional behaviors. Local adaptivity results from modeling the log-
transformed effective population size a priori as a horseshoe Markov random field,
a recently proposed statistical model that blends together the best properties of the
change-point and Gaussian process modeling paradigms. We use simulated data to
assess model performance, and find that our proposed method results in reduced bias
and increased precision when compared to contemporary methods. We also use our
models to reconstruct past changes in genetic diversity of human hepatitis C virus in
Egypt and to estimate population size changes of ancient and modern steppe bison.
These analyses show that our new method captures features of the population size

trajectories that were missed by the state-of-the-art methods.
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models draw on coalescent theory (Kingman, 1982; Griffiths
and Tavaré, 1994), which provides a probabilistic framework

Estimation of population sizes and population dynamics over
time is an important task in ecology and epidemiology. Cen-
sus population sizes can be difficult to estimate due to infeasi-
ble sampling requirements or study costs. Genetic sequences
are a growing source of information that can be used to infer
past population sizes from the signatures of genetic diversity.
Phylodynamics is a discipline that uses genetic sequence data
to estimate past population dynamics. Many phylodynamic

that connects the branching times of a genealogical tree with
the effective population size and other demographic vari-
ables, such as migration rates, of the population from which
the genealogy was drawn. Effective population size can be
interpreted as a measure of genetic diversity in a population
and is proportional to census population size if coalescent
model assumptions are met. When genetic diversity is
high, the effective population size approaches the census
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population size, given random mating and no inbreeding
or genetic drift, but is otherwise smaller than the census
size. In our work, we concentrate on estimation of effective
population sizes over evolutionary time, which can be short
for rapidly evolving virus populations and longer (but still
estimable with preserved ancient molecular sequence sam-
ples) for more slowly evolving organisms. Some examples of
successful application of phylodynamics include describing
seasonal trends of influenza virus spread around the world
(Rambaut et al., 2008), quantifying dynamics of outbreaks
like hepatitis C (Pybus et al, 2003) and Ebola viruses
(Alizon et al., 2014), and assessing the effects of climate
change on populations of large mammals during the ice ages
using ancient DNA (Shapiro et al., 2004; Lorenzen et al.,
2011).

Some approaches to phylodynamics use parametric func-
tional relationships to describe effective population size
trajectories (eg, Pybus et al., 2003; Rasmussen et al., 2014),
but nonparametric methods offer a flexible alternative when
an accurate estimate of a complex population size trajectory is
needed and knowledge of the mechanisms driving population
size changes is incomplete. Nonparametric models have a
long history of use in inferring effective population size
trajectories. Pybus et al. (2000) introduced a nonparametric
method, called the skyline plot, that produced point-wise
estimates of population size, where the number of estimates
was equal to the number of sampled genetic sequences minus
one. The estimates from this method were highly variable,
so a modification, referred to as the generalized skyline plot,
created a set of discrete time interval groups that shared
a single effective population size (Strimmer and Pybus,
2001). These likelihood-based approaches were adapted to a
Bayesian framework with the Bayesian skyline plot (Drum-
mond et al., 2005) and the variable-knot spline approach
of Opgen-Rhein ez al. (2005). Minin et al. (2008) provided
an alternative to these change-point methods by introduc-
ing a Gaussian Markov random field (GMRF) smoothing
prior that connected the piecewise-constant population
size estimates between coalescent events without needing
to specify or estimate knot locations. Palacios and Minin
(2012) and Gill et al. (2013) extended the GMRF approach
of Minin et al. (2008) by constructing a GMRF prior on
a discrete uniform grid. A grid-free approach, introduced
by Palacios and Minin (2013), allowed the population size
trajectories to vary continuously by using a Gaussian process
(GP) prior.

Modern nonparametric Bayesian methods offer the state-
of-the-art for recovering effective population size trajectories
of unknown form. However, current methods cannot accu-
rately recover trajectories that exhibit challenging features
such as abrupt changes or varying levels of smoothness. Such
features may arise in populations in the form of bottlenecks,
rapid population changes, or aperiodic fluctuations with vary-

ing amplitudes. Accurate estimation of features like these can
be important for understanding the demographic history of a
population. Outside of phylodynamics, various nonparamet-
ric statistical methods have been developed to deal with such
nonstationary or locally varying behavior under more stan-
dard likelihoods. These methods include, but are not limited
to, GPs with nonstationary covariance functions (Paciorek
and Schervish, 2006), nonstationary process convolutions
(Higdon, 1998; Fuentes, 2002), non-Gaussian Matérn fields
(Wallin and Bolin, 2015), and adaptive smoothing splines
(Yue et al.,2012,2014). Each of these methods has good qual-
ities and could potentially be adapted for inferring effective
population sizes, but methods based on continuous random
fields or process convolutions can be computationally chal-
lenging for large data sets, and some spline methods require
selection or modeling of the number and location of knots.

A recent method by Faulkner and Minin (2018) uses
shrinkage priors in combination with Markov random fields
to perform nonparametric smoothing with locally adaptive
properties. This is a fully Bayesian method that does not
require the use of knots and avoids the costly computations of
inverting dense covariance matrices. Computations instead
take advantage of the sparsity in the precision matrix of the
Markov random field to avoid matrix inversion. Faulkner
and Minin (2018) compared different specifications of their
shrinkage prior Markov random field (SPMRF) models
and found that putting a horseshoe prior on the kth order
differences between successive function values had superior
performance when applied to underlying functions with sharp
breaks or varying levels of smoothness. We refer to the model
with the horseshoe prior as a horseshoe Markov random field
(HSMRF).

In this paper, we propose an adaptation of the HSMRF
approach of Faulkner and Minin (2018) for use in phylo-
dynamic inference with coalescent priors. We devise a new
Markov chain Monte Carlo (MCMC) scheme for the model
that uses efficient, tuning-parameter-free, high-dimensional
block updates. We provide an implementation of this MCMC
in the program RevBayes, which allows us to target the joint
distribution of genealogy, evolutionary model parameters,
and effective population size parameters. We also develop a
method for setting the hyperparameter on the prior for the
global shrinkage parameter for coalescent data. We use simu-
lations to compare the performance of the HSMRF model to
that of a GMRF model and show that our model has lower bias
and higher precision across a set of population trajectories that
are difficult to estimate. We then apply our model to two real
data examples that are well known in the phylodynamics liter-
ature and compare its performance to other popular nonpara-
metric methods. The first example reanalyzes epidemiological
dynamics of hepatitis C virus in Egypt and the second looks
at estimation of ancient bison population size changes from
DNA data.
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2 | METHODS
2.1 | Sequence data and substitution model

Suppose we have a set of n aligned RNA or DNA sequences
for a set of L sites within a gene. We assume the sequences
come from a random sample of n individuals from a well-
mixed population, where samples were collected potentially
at different times. Let Y be the n X L sequence alignment
matrix. We assume the sites are fully linked with no recom-
bination possible between the sequences. This allows us to
assume the existence of a genealogy g, which is a rooted bifur-
cating tree that describes the ancestral relationships among the
sampled individuals.

We assume that Y is generated by a continuous time
Markov chain (CTMC) substitution model that models the
evolution of the discrete states (eg, A,C,T,G for DNA) along
the genealogy g for each alignment site. A variety of substi-
tution models are available and are typically differentiated by
the form of the transition matrix M (), which controls the
substitution rates in the CTMC for the nucleotide bases with
a set of parameters Q (see Yang (2014) for examples). Let the
likelihood of the sequence data given the genealogy and sub-
stitution parameters be denoted by p(Y | g, Q).

2.2 | Coalescent

Suppose that we now have a genealogy g, where branch
lengths of the genealogical tree are measured in units of clock
time (eg, years). To build a Bayesian hierarchical model, we
need a prior density for g. The times at which two lineages
merge into a common ancestor on the tree are called coa-
lescent times. The coalescent model provides a probabilistic
framework for relating the coalescent times in the sample to
the effective size of the population. Kingman (1982) devel-
oped the coalescent model for a constant effective population
size and Griffiths and Tavaré (1994) extended it for varying
effective population sizes.

Let the n — 1 coalescent times arising from genealogy g
be denoted by 0 < ¢,_; < -+ < t;, where 0 is the present and
time is measured backward from there. We will assume the
general case where sampling of the genetic sequences occurs
at different times (heterochronous sampling), which will
include the special case where all sampling occurs at time 0
(isochronous sampling). We denote the set of unique sampling

=0<s,_; <--<s; <t for samples of size
n,,, ..., Ny, respectively, where n = Z s and we assume
no sample times are equal to coalescent times (Figure 1).
We let s denote the vector of sampling times. Further, we
let the intervals that end with a coalescent event be denoted
Iy, = (max{tk+1,sj},tk], for 5; <1ty andk=1,...,n—1,
and let the intervals that end with a sampling event be denoted

times as s,
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I o = (max{ty, 1,854} 841l for s > 1y and s, <
t.k=1,...,n—1. For k =n—1, we substitute 7, ,; = 0.
We let n;;, be the number of lineages present in interval
1; ;. and let the vector of number of lineages be denoted n.
Further, we denote the number of unique sampling times
in interval (t;,,%;] as my, where m=1+ Y lmk The
joint density of the coalescent times given s and the effec-
tive population size trajectory N,(f) can then be written
as

-1
Pty sty 18,0, N, @) =TI, pty | 141, 5.1, N, (1)

H C()k 21 Uf’,k N(t)
k= l N(tk)

¢))

where C; , = ("’*) is the coalescent factor (Felsenstein and
Rodrigo, 1999). This model can be seen as an inhomoge-
neous Markov point process where the conditional intensity
is Ci [Ne(t)]‘1 (Palacios and Minin, 2013).

Here we assume N .(t) is an unknown continuous func-
tion, so the integrals in Equation (1) must be computed with
numerical approximation techniques. We follow Palacios and
Minin (2012), Gill et al. (2013), and Lan et al. (2015) and
use discrete approximations of the integrals over a finite grid.
We construct a regular grid, x = {x,,} }17:11, and set the end
points of the grid x such that x; =0 and xp,; =t (Fig-
ure 1). This results in H grid cells and H + 1 cell boundaries.
Now for t € (x},, x;,,11, we have N,(¢) = exp[6,], where ), is
an unknown model parameter. This implies that @ = {6, }thl
is a piecewise-constant approximation to f(t) = In[N,(¢)] for
t € [s,,.1;]. The piecewise constant population size can be
integrated analytically, leading to a discrete approximation to
the likelihood in Equation (1). The details of this approxima-
tion are provided in Web Appendix A.

2.3 | Prior for effective population size
trajectory

Next we develop a prior for the unknown function N, (7)
that describes the effective population size trajectory over
time. Let @ = (0, ..., 0 ) be a vector of parameters that gov-
ern the effective population size trajectory N,(f). We pro-
pose using a SPMRF model (Faulkner and Minin, 2018) for
0, which is a type of Markov model where the pth-order
differences in the forward-time evolution of the sequence
(o, }fz , are independent and follow a shrinkage prior distri-
bution. We define the pth-order forward difference as A”9, =
(=1 z” NG 1)1( )14 j—pi1-forl =p,....H — 1, whichisa
discrete approx1mat10n to the pth derivative of f(¢) evaluated
at t. If we assume a horseshoe distribution (Carvalho et al.,
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FIGURE 1 Effective population size trajectory and associated genealogical tree under heterochronous sampling. The top panel shows a

continuous effective population size trajectory (gray) and an associated piecewise constant approximation to it. Also shown are the relationships

between the genealogy and sampling times s;, coalescent times ¢;, intervals

approximating coalescent densities

2010) as our shrinkage prior on the order-p differences in 0,
then

APG, |y ~ HS(y), (@)

where the location parameter of the horseshoe distribution is
zero and y is the scale parameter and controls how much f ()
is allowed to vary a priori. Following Carvalho et al. (2010),
we put a half-Cauchy prior on y with scale hyperparameter ¢,
so that y ~ C*(0, ). We chose the half-Cauchy here because
it has desirable properties as a prior on a scale parameter (Gel-
man et al., 2006; Polson and Scott, 2012) and its single hyper-
parameter simplifies implementation. Depending on the order
p of the model, we also place proper priors on 8y, ...,8,. To
do this, we start by setting 6, ~ N (u, 62), where u and o are
hyperparameters typically set to create a diffuse prior. Then
forp>2and g=1,...,p—1, we let A9, |y ~ HS(a,y),
where a, = 2-(=9)/2 which follows from the recursive prop-
erty and independence of the order-p differences. For exam-
ple,forp=2,a, = 2-1/2_ and forp=3,a, = 2-1/2 and a, =
4-1/2 We will refer to this specific model formulation as a
state-space formulation of a HSMRF.

I, ;, number of lineages n, ;, and the uniform grid points, x,,, used for

The horseshoe distribution is leptokurtic with an infinite
spike in density at zero and Cauchy-like tails. In our set-
ting, this combination results in small 6 differences being
shrunk toward zero and larger differences being maintained,
which corresponds to smoothing over smaller noisy signals
while retaining the ability to adapt to rapid functional
changes. This is in contrast to the normal distribution,
which has higher density around medium-sized values and
normal tails. These attributes result in noisier estimates
and reduced ability to capture abrupt functional changes.
Different shrinkage priors will result in different levels
of shrinkage and therefore different smoothing behavior.
Faulkner and Minin (2018) found that the horseshoe prior
performed better than the Laplace prior in terms of bias
and precision for nonparametric smoothing with SPMRFs,
but we do not investigate the effect of different shrinkage
priors here.

The horseshoe density does not have a closed form
(although see Faulkner and Minin (2018) for an approxima-
tion in closed form). However, a horseshoe distribution can be
represented hierarchically as a scale mixture of normal distri-
butions by introducing a latent scale parameter that follows
a half-Cauchy distribution (Carvalho et al., 2010). That is, if
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7; ~ C*(0,y) and A%, | 7, ~ N0, 112), then integrating over
7; results in the marginal relationship in Equation (2).

The hierarchical HSMRF models are a type of pth-order
normal random walk with separate variance parame-
ters for each increment. The inherent Markov proper-
ties and properties of the normal distribution allow the
joint distribution of @ conditional on the vector of scale
parameters T to be expressed p(@ |, p,0%) = p(0, |
1. o)p(A'6,, ... AP0, AP0, ... AP0 | T), which
results in a multivariate normal distribution with mean g and
precision matrix Q(r). Specifically, 8 follows a Gaussian
Markov random field (Rue and Held, 2005) conditional on
7, where the order p of the differencing in 6 determines the
structure of the sparse Q(r). For the models presented here,
u = ul, where u is a constant and 1 is a vector of ones.
We specify p(r) by assuming that the z’s are independent
C*(0, y)-distributed random variables, where 7; ~ C*(0,y)
forl=p,...., H—1and 7, ~C*(0,q;y) forI=1,...,p—1
and p > 2. The marginal joint distribution of @ that results
from integrating over = is an HSMRF. Note that a GMRF
model results when a single scale parameter = is used for
all order-p differences in 6. For our GMRF models, we use
T~ C*(0,¢), where ¢ is a fixed hyperparameter. The order
of the HSMRF will determine the amount of smoothing, with
higher orders resulting in more smoothing. We only consider
first-order and second-order models here. In practice, we use
the state-space formulation described previously but with the
independent hierarchical representations of the horseshoe
distributions for the individual order-p differences, which
improves computational efficiency over the conditional
multivariate normal representation.

2.4 | Posterior inference

For the case where we have a fixed genealogical tree, g, which
consists of sampling times s and coalescent times ¢, the pos-
terior distribution of the parameters {6, 7,y } can be written
as

p0,7,7 | g «x p(g|0)pO | t)p(z | y)p(y). 3)

Here g is considered data and we assume the coalescent times
are known. Then p(g | 0) is the coalescent likelihood and p(6 |
T)p(t | y)p(y) is the HSMREF prior described in Section 2.3.
For our GMRF models, the right-hand side of Equation (3)
becomes p(g | )p(O | 7)p().

For our analyses with fixed genealogical trees, we follow
Faulkner and Minin (2018) and Lan er al. (2015) and use
Hamiltonian Monte Carlo (HMC; Neal, 2011) for posterior
inference. HMC performs joint proposals for the parameters
that are typically far from the current parameter state and have
high acceptance rates, resulting in efficient posterior sam-
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pling. We used the Stan computing environment (Carpenter
et al.,2016) for implementing HMC. Specifically, we used the
open source package rstan (Stan Development Team, 2017),
which provides a platform for fitting models using HMC in
the R computing environment (R Core Team, 2017). Our R
package titled spmrf allows for easy implementation of our
models for use on fixed genealogical trees via a wrapper to the
rstan tools. A link to the package code is provided in the Sup-
porting Information section. We present a method for objec-
tively setting the scale hyperparameter { of the prior distribu-
tion of the global smoothing parameter y in Web Appendix B.

When there are genetic sequence data available and we
want to jointly estimate evolutionary parameters, coalescent
times, and population size trajectories, our posterior can be
written as

p(8.Q.0.7.7 | Y) x p(Y | g Q)p(g | 0)p(Q)

p0@ | t)p(t | ¥)p(y), (€]

where Y are the sequence data and Q are the parameters
related to the DNA substitution model. The likelihood of the
sequence data given the parameters is p(Y | g, Q), and now
p(g | 0) is a prior for the genealogy given the population sizes
and is proportional to p(g | 0) in Equation (3). The remaining
components are the prior for the evolution parameters p(Q)
and the HSMREF prior as in Equation (3).

HMC requires the calculation of gradients over continuous
parameter space and therefore cannot be used for inference
on discrete parameters. Therefore, we developed a custom
MCMC algorithm that uses a combination of Gibbs sampling,
elliptical slice sampling, and the Metropolis-Hastings (MH)
algorithm to sample from the joint posterior of the evolution
parameters and the effective population size parameters. In
particular, elliptical slice sampling (Murray et al., 2010) was
used to sample from the joint field of log effective population
sizes conditional on the latent scale parameters, a Gibbs
sampler based on an approach developed by Makalic and
Schmidt (2016) for horseshoe random variables was used to
sample the latent scale parameters conditional on the field
parameters, and standard phylogenetic MH steps were used to
update the genealogy and substitution model parameters. We
implemented our custom MCMC in RevBayes—a statistical
computing environment geared primarily for phylogenetic
inference (Hohna et al., 2016). The standard phylogenetic
MH updates mentioned above were already implemented in
RevBayes, so we contributed a heterochronous coalescent
likelihood calculator, elliptical slice sampling, and Gibbs
updates of our model parameters to the RevBayes source
code. The details of the sampling scheme are provided in
Web Appendix C and a link to the code for implementing
our methods for analyzing sequence data is provided in the
Supporting Information section.
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FIGURE 2 Effective population size trajectories used in simulations and simulation results by model and scenario. Models are GMRF of order

1 (G1) and order 2 (G2) and HSMREF of order 1 (H1) and order 2 (H2). Top row shows true effective population size trajectories used to simulate

coalescent data. Remaining rows show mean absolute deviation (MAD), mean credible interval width (MCIW), mean absolute sequential variation

(MASYV), and credible interval Envelope. Horizontal dashed lines in the third row plots indicate the true mean absolute sequential variation

(TMASV) values. Shown for each model are standard boxplots of the performance metrics (left) and mean values with 95% frequentist confidence

intervals (right). Also shown for Envelope are the number of simulations with Envelope equal to 1.0

3 | RESULTS
3.1 | Simulated data

We used simulated data to assess the performance of the
HSMRF model relative to the GMRF model. We investigated
four scenarios with different trajectories for N,(¢): (a) Bot-
tleneck (BN), (b) Boom-Bust (BB), (c) Broken Exponential
(BE), and (d) Nonstationary Gaussian Process (NGP) realiza-
tion. The trajectory shapes are shown at the top of Figure 2.
For each scenario, we generated 100 data sets of coalescent

times and fit GMRF and HSMRF models of first and second
order using the fixed-tree approach. The scenario descriptions
and further methodological details of the simulations are pro-
vided in Web Appendix D.

We assessed the relative performance of the models
using a set of summary statistics. As a measure of bias,
we used the mean absolute deviation (MAD) to com-
pare the posterior medians of the trend parameters (é,-) to
the true trend values (6;,): MAD = % Zfil 16, — 6,]. We
assessed the width of the 95% Bayesian credible intervals
(BCls) using the mean credible interval width (MCIW):
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MCIW = - 37 (0975, — 0, 5,), where fg; 5, and 0, 5, are
the 97.5% and 2.5% quantiles of the posterior distribution
for 6,. We assessed the coverage of BCIs using Envelope =
% Zgl 10; € [0475,,0,5,1), where I(-) is the indicator
function. To measure local variability in the estimated pop-
ulation trend, we used the mean absolute sequential vari-
ation (MASV) of é, which was computed as MASV =
ﬁ 1111_1 16, — 6;]. We compared the observed MASV to
the true MASV (TMASV) in the underlying trend function,
which is calculated by substituting true €’s into the equation
for MASV. For a measure of model complexity, we estimated
the effective number of parameters p, s using an approach sug-
gested by Raftery er al. (2006): p.s = % Zil([ﬁ, — L),
where L, is the log-likelihood evaluated at the parameter
values for the rth of R samples from the posterior, and £
is the mean value of L across the R samples. We used the
Watanabe-Akaike information criterion (WAIC; Watanabe,
2010) to calculate model weights and rank model perfor-
mance. The weight for model m was calculated as w,, =
exp(—0.5AW,)/ Zj‘il exp(—0.5AW;) for a set of M mod-
els, where AW, = WAIC,, — min;c,, WAIC;. We utilized
the loo package (Vehtari et al., 2017) to calculate WAIC.
For a measure of computational efficiency, we calculated the
mean effective sample size (ESS) of the posterior samples
across parameters for each model and simulated data set and
used those with the total sampling times to calculate the mean
ESS per second of sampling time.

For the BN scenario, the HSMRF model clearly had better
performance than the GMRF model for the main performance
metrics for both model orders (Figure 2, Table 1, and Table 1
in Web Appendix D). Example model fits from each scenario
provide some intuition for the simulation results (Figure 3).
First-order models did better than second-order models within
model types for the BN scenario. Differences between model
types were not as strong for the other scenarios. The second-
order HSMREF performed the best in terms of MAD, MCIW,
and WAIC for the remaining scenarios. Among second-order
models, the HSMRF was clearly favored over the GMRF in
terms of WAIC across all scenarios. However, the HSMRF
models were not noticeably different from the second-order
GMREF in terms of MASYV for the BB and BE scenarios. The
second-order GMRF had mean MASYV closer to TMASYV than
did the second-order HSMRF for the NGP scenario. Although
the GMRF tended to estimate excess variation in the middle
section of the trend for the NGP scenario, it did capture the
peaks and troughs a little better than the HSMRF in other
parts of the trend (see Figure 3 for an example). In all sce-
narios, the HSMRF had lower p.; compared to the GMRF
of the same order. The GMRF was consistently more compu-
tationally efficient than the HSMRF, with mean ESS/second
approximately 1.5 to 6 times higher for models of the same
order. These differences are due to the additional parameters
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TABLE 1 Summary of model selection criteria across 100
simulations by scenario and model set
Metric Model Set Model BN BB BE NGP

Best model (%) All models G1 1 9 13 1
H1 93 14 34 9
G2 0 3 1 24
H2 6 74 52 66
Order 1 Gl 1 51 29 50
H1 9 49 71 50
Order 2 G2 9 9 5 27
H2 91 91 95 73
All models Gl 0.03 0.1 0.14 0.04
H1 0.89 0.15 035 0.09
G2 0.01 0.10 0.07 0.26
H2 0.08 0.63 044 0.61
Order 1 Gl 0.03 048 0.24 046
H1 097 0.52 0.76 0.54
Order 2 G2 0.12 0.11 0.11 043
H2 0.88 0.89 0.89 0.57

Mean weight

Note. WAIC weights were calculated and the best model (greatest WAIC weight)
was determined for each simulated data set within each scenario and model set.
Metrics shown are the percentage of simulations each model was determined best
and the mean model weight across simulations. Values for each metric are com-
pared among models within each scenario and model set. Highest percentage of
best models is in bold within each scenario and model set. Scenarios are Bottleneck
(BN), Boom-Bust (BB), Broken Exponential (BE), and Nonstationary Gaussian
Process (NGP). Models are GMRF of order 1 (G1) and order 2 (G2) and HSMRF
of order 1 (H1) and order 2 (H2).

in the HSMRF models. The second-order models were rela-
tively slow for both model types, but the HSMRF was always
slower. As we show in the following data examples, however,
the differences in computational speed between the HSMRF
and GMRF models is negligible when genealogies and effec-
tive population size trajectories are jointly estimated.

3.2 | Egyptian hepatitis C virus

The hepatitis C virus (HCV) is a blood-borne RNA virus that
exclusively infects humans. HCV infection is often asymp-
tomatic, but can lead to liver disease and liver failure. HCV
infections have historically had high prevalence in Egypt
(Miller and Abu-Raddad, 2010). This is thought to be due
to past widespread use of unsanitary medical practices in the
region. Of particular interest is a treatment for the parasite
disease schistosomiasis known as parenteral antischistosomal
therapy (PAT), which uses intravenous injections. PAT was
practiced from the 1920s to 1980s in Egypt and is thought to
have contributed to the spread of HCV during that period due
to unsterilized injection equipment (Frank ez al., 2000).
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models within a particular scenario are for the same set of simulated data. Given are the true effective population size trajectories that generated the

data (dashed line), posterior medians of estimated trajectories (solid line), and associated 95% Bayesian credible intervals (shaded band)

We analyze 63 RNA sequences of type 4 with 411 base
pairs from the E1 region of the HCV genome that were col-
lected in 1993 in Egypt (Ray ez al., 2000). Pybus et al. (2003)
used a piecewise demographic model for effective population
size with a period of exponential growth between two peri-
ods of constant population size and concluded that the HCV
population grew exponentially during the period of PAT treat-
ment. Other authors have applied nonparametric methods to
estimate the effective population size trajectory for these data
(eg, Drummond e al., 2005; Minin et al., 2008; Palacios and
Minin, 2013). Different nonparametric methods lead to differ-
ent estimated trajectories and different levels of uncertainty.
We are interested in estimating the rapid change of HCV effec-
tive population size during the epidemic.

We fit six different nonparametric models to these data:
(a) Bayesian Skyline—a piecewise constant/linear model
with estimable locations of change-points (SkyLine; Drum-
mond et al., 2005), (b) Bayesian Skyride (SkyRide; Minin
et al., 2008) (c) GMRF-1 (similar to Bayesian Skygrid,

Gill et al. (2013)), (d) GMRE-2, (¢) HSMRF-1, and (f)
HSMREF-2. We note that the SkyRide model is also a type
of GMRF model where the nonuniform grid cell boundaries
are determined by coalescent events. For all six models
we jointly estimated the evolutionary model parameters,
genealogies, and effective population size parameters. We
used the program BEAST implementation of the SkyLine and
SkyRide models (Drummond et al., 2012), and used our own
RevBayes implementation of the GMRF and HSMRF mod-
els. Although the Skygrid implementation of the GMREF-1
model is available in BEAST, the GMRF-2 and the HSMRF
models are not, so we decided to use common software for
the GMRF and HSMRF models. For the GMRF and HSMRF
models, we used 100 equally spaced grid cells where the
first 99 ended at a fixed boundary of 227 years before 1993,
and the final cell captured any coalescent events beyond the
boundary (see Web Appendix E for discussion on setting
grids). The SkyLine model requires specification of the
number of discrete population intervals, where each interval
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describes a piecewise constant population size between two
coalescent events. We used 20 population intervals to allow
fair flexibility to capture sharp features in the population
trajectory. Further details about the MCMC implementation
and computation times are provided in Web Appendix F. For
model comparison, we calculated posterior model proba-
bilities using marginal likelihood estimates calculated with
steppingstone sampling (Xie et al., 2011). See Web Appendix
G for details on calculation of posterior model probabilities.

Although the broad pattern of the demographic trajectory
was similar among the six models, they differed in the esti-
mated rate of change in effective population size and in the
uncertainty around the effective population size estimates
(Figure 4). The SkyLine and HSMRF-1 models had the high-
est posterior model probabilities, with the SkyLine favored a
little over the HSMREF-1 (Figure 4). The shape of the median
trajectory from the HSMRF-1 model was similar to that of the
SkyLine model, yet the HSMRF-1 model showed a very rapid
increase in population between 1925 and 1945, while the Sky-
Line and other models showed more gradual increases that
started earlier and ended later. The increase estimated by the
SkyRide model lasted the longest, starting near 1900 and end-
ing near 1970. The HSMRF and the SkyLine also showed rel-
atively constant population size following the increase in the
mid 20th century, whereas the SkyRide and GMRF-1 models
showed a decrease after 1970.

In addition to differing in the rate of population growth
after the epidemic began, the models differed in their esti-
mates of when the epidemic began. The posterior mean densi-
ties of frequencies of coalescent times provide an indication of
when the HCV epidemic started (Figure 4). The results of the
HSMRF-1 support the idea that HCV epidemic started after
PAT was introduced and suggest that early PAT campaigns
may have used less sanitary practices and contributed more to
the spread of HCV than the major PAT campaigns started in
the 1950s. Plots of the effective population trajectories cover-
ing the entire span of the coalescent times are provided with
further discussion in Web Appendix H.

3.3 | Beringian steppe bison

Modern molecular methods have allowed the recovery
of DNA samples from specimens that lived hundreds to
hundreds of thousands of years ago (Pédibo er al., 2004;
Shapiro and Hofreiter, 2014). Large mammals that lived
in the Northern Hemisphere during the Pleistocene and
Holocene epochs have been a valuable source of this ancient
DNA due to conditions favorable for specimen preservation
in the northern latitudes (eg, Shapiro et al., 2004; Lorenzen
et al., 2011). We focus on bison (Bison spp.) that lived on
the steppe-tundra of Northern Asia and Europe and crossed
into North America over the Bering land bridge during the
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middle to late Pleistocene (Froese et al., 2017). Interest
has been in determining whether human impact or climate
and related habitat change instigated the decline of bison
across their range during the late Pleistocene. Shapiro et al.
(2004) used a parametric piecewise-exponential model for
the bison effective population size and estimated that the time
of transition from population growth to decline was 37 000
years ago (kya). Drummond et al. (2005) used the more
flexible SkyLine model, which indicated a more rounded and
prolonged peak in population size followed by a rapid decline
and bottleneck around 10 kya. Here we use a modified
version of the bison data described by Shapiro et al. (2004)
and fit coalescent models directly to the sequence data as
with the HCV data. We make qualitative comparisons among
the resulting estimated population trajectories and in relation
to some benchmark times describing the arrival of humans
and the period of the Last Glacial Maximum (LGM).

We analyze 152 sequences (135 ancient and 17 modern)
of mitrochondrial DNA with 602 base pairs from the mito-
chondrial control region. DNA was extracted from bison fos-
sils from Alaska (68), Canada (46), Siberia (13), the lower 48
United States (6), and China (2). Sample dates were estimated
for the ancient samples using radiocarbon dating, with dates
ranging up to 59k years. We treat the calibrated radiocarbon
dates as known in the following analyses. These data are the
same as those used by Gill et al. (2013), and are slightly mod-
ified from the data first described by Shapiro et al. (2004) to
remove sequences identified as potentially contaminated with
young radiocarbon (Shapiro et al., 2010) and include addi-
tional sequences generated since generation of the initial data
set. In this data set, radiocarbon dates are calibrated to calen-
dar time using the IntCal09 calibration curve (Reimer et al.,
2009).

The LGM in the Northern Hemisphere is estimated to
have occurred between 26.5 and 19 kya (Clark et al., 2009).
A small, isolated population of humans existed in central
Beringia, including, potentially, the land bridge that con-
nected the continents during the LGM (Llamas et al., 2016).
Humans may have ventured into eastern Beringia (Alaska and
Yukon) as early as 26 kya (Bourgeon et al., 2017), but there
is as yet no evidence of continuous occupation until 14 kya
(Easton et al., 2011; Holmes, 2011). Humans probably first
entered continental North America via a western coastal route
that became available close to 16 kya (Heintzman et al., 2016;
Llamas et al., 2016), where they would have encountered the
population of steppe bison that were isolated in the south with
the coalescence of the Laurentide and Cordilleran glaciers
(Shapiro et al., 2004; Heintzman et al., 2016). Because
the majority of our bison samples were collected in North
America, we used 16-14 kya as the time of first human
occupation.

We used methods similar to those used in the HCV exam-
ple. We also calculated posterior distributions for the time of
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FIGURE 4 Posterior medians (solid black lines) of effective population sizes and associated 95% credible intervals (gray shaded areas) for the
HCV data for the Bayesian Skyline (SkyLine), Bayesian Skyride (SkyRide), Gaussian Markov random field of order 1 (GMRF-1) and order 2
(GMREF-2), and horseshoe Markov random field of order 1 (HSMRF-1) and order 2 (HSMRF-2). Also shown for each model are posterior model
probabilities (Pr(M | D)) and heat maps of mean posterior frequencies of coalescent times. A vertical reference line is shown at year 1918, which is

the year PAT was introduced

the peak in population size. Method details can be found in
Web Appendices F and G.

Although the broad pattern of an increase followed by a
decrease in effective population size was recovered by all six
models, the timing and nature of the population size change

differed considerably between them (Figure 5). The HSMRF-
1 model had the highest posterior model probability among
the six models. The posterior median trajectory from the
HSMRF-1 model was most similar to the SkyLine model,
but the credible intervals for the HSMRF-1 model were most
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The period of the Last Glacial Maximum and timing of first human settlement in North America are shown for reference

similar to the GMRF-1 model. The second-order models both
produced strongly piecewise-linear trajectories with relatively
narrow credible intervals, but had low posterior probability
and smoothed over some of the local features displayed by
other models. The HSMRF-1 model displayed a more com-
plex descent from the peak size to the present in comparison
to the other models, and the areas of rapid descent are coin-

cident with the arrival of humans in eastern Beringia and ice-
free North America and the initial retreat of the glaciers, both
of which are coincident with changes in habitat. All models
suggested that the overall decline in population size started
before the LGM, and all had median time of population peak
between 41.6 and 47.3 kya, but uncertainty in the time of peak
population size varied widely across the models.
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We introduced a novel and fully Bayesian method for nonpara-
metric inference of changes in effective population size that
we call the HSMRF. This method utilizes a shrinkage prior
known as the horseshoe distribution, which allows more flex-
ibility to respond to rapid changes in effective population size
trajectories, yet also generates smoother trajectories in com-
parison to standard GMRF methods. Our simulations demon-
strated that the HSMRF had lower bias and higher precision
than the GMRF and was able to recover the underlying true
trajectories better in most cases.

There are many situations where the local adaptivity of the
HSMRF models would provide advantages over the GMRF
and other models. In infectious disease dynamics, examples
that could lead to rapid changes in effective population sizes
include sudden changes in contact rates due to behavioral
changes or quarantine, or sudden changes in the infection
rate due to introduction of treatment or vaccine. At a macro-
evolutionary scale, sudden changes in effective population
size could be brought on by sudden population collapse (eg,
extinction) or rapid expansions due to dispersals or ecologi-
cal release. As we have demonstrated, in situations like these
the GMRF and other models tend to smooth over the sharp
changes that the HSMRF can capture.

Our results from both data examples indicated that the
properties of the population size trajectories estimated by the
HSMRF-1 model were somewhere between those from the
GMRF-1 model and the SkyLine model. The SkyLine model
is a type of change-point model, which suggests the HSMRF-1
can produce behavior of change-point models without explic-
itly needing to specify number or location of change points.

We demonstrated in our simulations that second-order
models for either the HSMRF or GMRF formulations can per-
form better than first-order models in many cases. Although
the second-order models did not perform as well as the first-
order models in our particular data examples, they would
likely do well in other examples with smoother trajecto-
ries. Among the second-order models, the HSMRF did as
well or better than the GMRF for the simulated examples
and had higher posterior model probabilities for both of the
data examples.

Second-order models have not been used much for esti-
mating effective population sizes previously. Palacios and
Minin (2013), whose method assumes a fixed and known
genealogy, tested an integrated Brownian motion (IBM) prior
for their GP model for the purpose of testing prior sensitiv-
ity but did not use the prior beyond that. The IBM prior is
equivalent to the second-order GMRF in continuous time.
Our use of second-order GMRF model for jointly estimating
genealogy and effective population size trajectory is the first
we are aware of in the literature. The second-order GMRF

and HSMREF can have similar performance in many cases,
but HSMRF has the advantage of added flexibility when
needed, so it is a reasonable default choice over the GMRF.
We suggest that researchers fit both orders and use a metric
such as Bayes factors to select the best order of model for
the data.
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SUPPORTING INFORMATION

Web Appendices, Tables, and Figures referenced in Sec-
tions 2.2, 2.4, 3.1, 3.2, and 3.3 are available with this
paper at the Biometrics website on Wiley Online Library.
Our R package titled spmrf can be used to fit our
models to fixed genealogical trees and is available at
https://github.com/jrfaulkner/spmrf. The data and
RevBayes code for fitting our models to the molecular
sequence data described in Sections 3.2 and 3.3 are available
at https://github.com/jrfaulkner/phylocode.
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