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Appendix A: Complete data score and Hessian

Note: All vectors are assumed to be column vectors unless otherwise noted.

CTMC parameters

The CTMC log-likelihood component is in the curved exponential family, with natural parameters
log(λij) and

∑
i 6=j λij corresponding to sufficient statistics nT (i, j) and dT (i). Individual level

baseline covariates wh are added via log(λhij) = β
T
ijw

h, where h denotes the individual and wh and
βij are p-dimensional vectors corresponding to p covariates. For convenience, we list the intensity
parameters {log(λij) : i, j ∈ S; i 6= j} as a q-dimensional vector ψ, indexing each i, j pair in ψ by
u. This allows us to derive the score and information for all intensity parameters simultaneously,
which is particularly useful if one assumes the same covariate effect for more than one transition
intensity. Using the notation i[u] and j[u] to yield the i and j corresponding to u, the uth entry of
the vector score function for ψ is

l̇(ψ)[u] = nT (i[u], j[u])− dT (i[u]) exp (ψ[u]) .

The Hessian matrix for ψ is diagonal with non-zero entries

l̈(ψ)[u, u] = −dT (i[u]) exp (ψ[u]) .

The score function when the rate matrix is parameterized with covariates w is given by

l̇(β|wh) = ∇ψ(β)T l̇{ψ(β)},

where ∇ψ(β)T is the p × q matrix whose m,u entry corresponds to ∂ψ[u]
∂β[m] . The Hessian matrix in

the presence of covariates is

l̈(β|wh)[j,m] = −
q∑

u=1

∂ψ[u]

∂β[j]

∂ψ[u]

∂β[m]
dT (i[u]) exp (ψ[u]) .

In matrix form, this can be written as

l̈(β|wh) = ∇ψ(β)T (∇ψ(β)) ◦D,

where D is a q × p matrix with each column consisting of column vector v, such that entries
v[u] = −exp(ψ[u])dT (i[u]) , and ◦ refers to the Hadamard (element-wise) product. Both the score
and Hessian are additive across subjects, so the total score and Hessian are obtained by summing
over corresponding subject-specific quantities.
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Initial and Emission distributions parameters

We limit our attention to the score and Hessian for the emission distribution, as the initial distri-
bution is analogous. For a single subject,
OT (i) = {OT (i, 1), . . . , OT (i, r)} ∼ Multinomial{ei, N(i)}, where N(i) =

∑r
j=1OT (i, j) and

ei = {e(i, 1), . . . , e(i, r)}. Sufficient statistics include the r − 1 length vector
oi[−1] = {oT (i, 2), ..., oT (i, r)}. The natural parameters are

{
ηij = log

(
e(i,j)
e(i,1)

)
: j = 2, ..., r

}
. In the

absence of covariates, the score function for the parameters ηi = (ηi2, ..., ηir) is

l̇(ηi) = oi[−1] −N(i)ei[−1],

where ei[−1] = {e(i, 2), ...e(i, r)} is a r − 1 length vector of emission probabilities written in terms
of ηi.

Subject-level covariates wh
i are added to the model via ηhij = γTijw

h
i , where h indexes the

individual. Let γi = (γi2, . . . ,γir) be the vector of all p covariate parameters. The score is

l̇(γi|wh) = ∇ηi(γi)T {oi[−1] −Niei[−1])},

where ∇ηi(γi)T is the p × (r − 1) matrix of partial derivatives of ηi with respect to γi and ei[−1])
is written in terms of γi. The Hessian matrix in the absence of covariates is given by

l̈(ηi) = −Cov(oi[−1]).

With covariates, the Hessian matrix is given by

l̈(γi|wh) = −
{
∇ηi(γi)T Cov(oi[−1])∇(ηi(γi)

}
.

As before, the total score and Hessian are obtained by summing over the corresponding subject-
specific quantitites.

Appendix B: Recursions for hidden Markov models

Throughout, we abbreviate x1, . . . , xk by x1:k and o1, . . . ok by o1:k.

Forward and backward probabilities

Forward probabilities are defined as αk(u) = P(o1:k, Xk = u) and backward probabilities as βk(u) =
P(ok+1:n|Xk = u). When the last time coincides with the time of absorption, Y, the forward and
backward probabilities are defined as before, with the exception that βk(u) = ∂

∂y P(ok+1:n, Y <

y|Xk = u) and αn(u) = ∂
∂y P(ok+1:n, Y < y), Forward and backward probabilities are calculated

through Baum’s recursive formulae [1].
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Filtering and conditional likelihood calculations

Filtering probabilities, P(Xk = j|o1:k) and the conditional observed data likelihood P(Ok = ok|o1:k−1)
are related to modified forward probabilities, ak(j) = P(Xk = j,Ok = ok|o1:k−1). That is, P(Ok =

ok|o1:k−1) =
∑

j∈S ak(j), and P(Xk = j|o1:k) =
ak(j)∑
l∈S ak(l)

. The modified forward probabilities can
be calculated recursively. Initialize

a1(j) = P(O1 = o1, X1 = x1) = e(x1, o1)π(x1),

and the recursion is

ak+1(j) =
∑
i∈S

ak(i)∑
l ak(l)

e(xk+1, ok+1)Pij(tk+1 − tk).

Recursive smoothing for first moments of complete data sufficient statistics

First moment calculations define entries of sk(xk, xk+1) as values of complete data sufficient statistics
(section 2.4.1) on the interval Tk = [tk, tk+1], conditional on xk and xk+1. Thus, sk(xk, xk+1) is
defined as E[dTk |Xk = xk, Xk+1 = xk+1] for entries corresponding to dT (i); as E[nTk(i, j)|Xk =
xk, Xk+1 = xk+1] for nT (i, j); 0 for zi; and as I(Xk+1 = i, Ok+1 = j) for oT (i, j). Initial values for
the function tk(x1:k) are set at t1(x1) = 0 for entries corresponding to dT (i) and nT (i, j); I(X1 = i)
for zi; and I(X1 = i, O1 = j) for oT (i, j).

Recursive smoothing for second moments of complete data sufficient statistics

The recursive smoothing method to obtain second and cross moments of complete data sufficient
statistics conditional on the entirety of a subject’s observed data, o, proceeds with a similar frame-
work and terminology as for first moments (Section 3.2.3.) First, we recursively define a functional
that corresponds to E[S[t1, tk]S[t1, tk]T |x1:k], the second moments of complete sufficient statistics
on the interval [t1, tk], conditional on x1:k. Next, we define the recursive updates of the auxiliary
function, τk(xk). Finally, we compute the auxiliary function updates for t1, . . . , tn, enabling us to
calculate the target quantity E[S[t1, tn]S[t1, tn]T |o1:n].

The recursive definition of E[S[t1, tk+1]S[t1, tk+1]
T |x1:k+1] involves not only

E[S[t1, tk]S[t1, tk]T |x1:k] but also the first moment, E[S[t1, tk]|x1:k]. Thus it makes sense to consider
jointly the first and second moments of complete data sufficient statistics conditional on x1:k. We
define the joint recursive function of latent states as

t(x1:k+1) =
{
t(1)(x1:k+1), t

(2)(x1:k+1)
}
,

where
t(1)(x1:k+1) = E[S[t1, tk+1]|x1:k+1]

= t(1)(x1:k) + E[S[tk, tk+1]|xk, xk+1]
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and

t(2)(x1:k+1) = E[S[t1, tk+1]S[t1, tk+1]
T |x1:k+1]

= t(2)(x1:k) + E[S[tk, tk+1]|xk, xk+1]t
(1)(x1:k)

T + t(1)(x1:k)E[S[tk, tk+1]|xk, xk+1]
T

+ E[S[tk, tk+1]S[tk, tk+1]
T |xk, xk+1].

The first component is identical to first moment recursive function (eq. (3) in the main text); the
second corresponds to second and cross moments of complete data sufficient statistics conditional
on latent states x1:k. The calculation of t(2)(x1:k+1) follows from the conditional independence of
S[tl, tl+1] and S[tj , tj+1] given the endpoints xl, xl+1, xj , xj+1 and the fact that E(XY ) = E(X)E(Y )
if X and Y are independent. We assign the function

sk(xk, xk+1) =
{
s
(1)
k (xk, xk+1), s

(2)
k (xk, xk+1)

}
=
{
E [S[tk, tk+1]|xk, xk+1] ,E

[
S[tk, tk+1]S[tk, tk+1]

T |xk, xk+1

]}
.

The specific values of t(1)1 (x1) and s
(1)
k (xk, xk+1) for latent CTMC sufficient statistics were provided

previously. Appendix Table 1 summarizes specific details of s(2)k (xk, xk+1) and t
(2)
1 (x1) for all pairs

of latent CTMC complete data sufficient statistics.

The auxiliary functions likewise have two components corresponding to first and second mo-
ments: τ (xk) =

{
τ (1)(xk), τ

(2)(xk)
}
. The updates for τ (xk) follow from a multivariate version of

eq. (4) in the main text. The τ (1)(xk) component is defined as in eq. (4). The τ (2)(xk) component
is defined recursively as

τ
(2)
k+1(xk+1) = P(ok+1|o1:k)

−1

{∑
xk

[τ (2)(xk) + τ
(1)
k (xk)s

(1)
k (xk, xk+1)

T

+ s
(1)
k (xk, xk+1)τ

(1)
k (xk)

T + P(Xk = xk|o1:k)E[S[tk, tk+1]S[tk, tk+1]
T |xk, xk+1]]

× e(xk+1, ok+1)Pxkxk+1
(tk+1 − tk)

}
.

The final recursion allows us to calculate E[t(2)n (x1:n)|o1:k] =
∑

xn∈X τ
(2)
n (xn), giving us the expected

value of second moments of complete data sufficient statistics conditional on the observed data.

Table 1: Definition of s(2)k (xk, xk+1) and t
(2)
1 (x1) for second moment calculations.

Statistics s(2)(xk, xk+1) t
(2)
1 (x1)

dT (i), dT (j) E[dTk
(i)dTk

(j)|xk, xk+1] 0
dT (i), nT (j,m) E[dTk

(i)nTk
(j,m)|xk, xk+1] 0

dT (i), oT (j,m) E[dTk
(i)I(Xk+1 = j,Ok+1 = m)|xk, xk+1] 0

nT (i, l), nT (j,m) E[nTk
(i, l)nTk

(j,m)|xk, xk+1] 0
oT (j,m), oT (l, r) I(Xk+1 = j,Ok+1 = m,Xk+1 = l, Ok+1 = r) I(X1 = j,O1 = m,X1 = l, O1 = r)
nT (i, l), oT (l, r) E[nTk

(i, l)I(Xk+1 = l, Ok+1 = r)|xk, xk+1]
zi, zm 0 I(X1 = i)I(X1 = m)
zi, oT (j,m) 0 I(X1 = i)I(X1 = j,O1 = m)
nT (j,m), zi 0 0
dT (j), zi 0 0
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Appendix C: Differentiated joint moments of transitions and state
occupancy durations with known absorption times

We assume that the CTMC has one absorbing state g. Differentiated joint moments in the presence
of known absorption times rely on the fact that if an individual is absorbed at time t, transitions to
g occur only once and no time is spent in g. These joint moments formulae use the joint moments
defined in Section 3.2.1, which we refer to as Mij(t)[a, b] = E[nt(i, j)I(X0 = a)|Xt = b];
Hi(t)[a, b] = E[dt(i)I(Xt = b)|X0 = a]; Uijlm(t)[a, c] = E[nt(i, j)nt(l,m)I(Xt = c)|X0 = a];
Wij(t)[a, c] = E[dt(i)dt(j)I(Xt = c)|X0 = a]; and Vilm(t)[a, c] = E[dt(i)nt(l,m))I(Xt = c)|X0 = a].

When the complete-data statistic of interest is S = dt(i), the differentiated joint moment is
given by

∂

∂y
E[dt(i)I(Y < t)|X0 = a] = I(i 6= g)

∑
c6=g

Hi(t)[a, c]λcg.

When S = dt(i)dt(j), the differentiated joint expectation is identical, except I(i 6= g) is replaced by
I(i, j 6= g), and Hi(t)[a, c] is replaced by the duration cross moment Wij(t)[a, c].

For S = nt(i, j), the differentiated joint expectation is

∂

∂y
E[nt(i, j)I(Y < y)|X0 = a] = I(i, j 6= k)

∑
c 6=k

Mij(t)[a, c]λck + I(i 6= k, j = k)Pai(t)λik.

For S = nt(i, j)nt(l,m) the differentiated joint expectation is given by

∂

∂y
E[nt(i, j)nt(l,m)I(Y < y)|X0 = a] = I(i, j, l,m 6= g)

∑
c 6=g

Uijlm(t)[a, c]λcg

+ I(i, l,m 6= g, j = g)Mlm(t)[a, i]λig + I(i, j, l 6= g,m = g)Mij(t)[a, l]λlg

+ I(i, l 6= g, i = l, j = m = g)Pai(t)λig.

For S = nt(l,m)dt(i), the differentiated joint expectation is given by

∂

∂y
E[dt(i)nt(l,m)I(Y < y)|X0 = a] = I(i, j, l, 6= g)

∑
c 6=g

Vilm(t)[a, c]λcg+I(i, l 6= g,m = g)Hi(t)[a, l]λlm.

Appendix D: Delta method standard errors of disease process func-
tionals

Suppose ψ is a p×1 vector of latent model parameters with MLE ψ̂, and F (ψ, t) is a one-dimensional
functional. Let ∇F (ψ̂, t) be the p × 1 gradient of F (ψ, t) with respect to ψ evaluated at ψ̂. The
asymptotic distribution of the functional estimates F (ψ̂, t) is normal with mean F (ψ, t) and an
approximate covariance matrix given by

Cov(F (ψ̂, t)) = ∇F (ψ̂, t)T Cov(ψ̂, t)∇F (ψ̂, t).
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Functionals such as CDFs, hazard functions, and transition probabilities involve the matrix expo-
nential; thus we require the derivative of exp(Λ(ψ)t) with respect to entries of ψ. These derivative
involve similar integrals as first moments of occupancy durations and transition counts (Section
3.2.1) and are computed with similar methods [2]. For example, consider the functional Pij(t,ψ) =
exp (Λ(ψ)t). Then ∂ Pij(t,ψ)

∂ψ[k] is the i, j entry of the matrix given by
∫ t
0 e

Λ(ψ)τBψ[k]e
Λ(ψ)(t−τ)dτ ,

where Bψ[k] = {Bψ[k](i, j)} and Bψ[k](i, j) =
∂λij(ψ)
∂ψ[k]

.

Appendix E: Detailed discussion of simulation results

Figure 3A in the main text shows the mean of point estimates of the Weibull (1.5,1) and
Weibull (.75,10) hazard and CDF functions from the different latent CTMC models.
Figure 3B in the main text shows the bias of the same point estimates. The x-axis
is sojourn time, and x-limits were chosen to zoom in on the early portion of the
sojourn time period. The bias in approximations reflects the closeness of the data-
generating distribution to that of the latent CTMC model as well as the functional to
be estimated. CDFs were generally less biased than hazard functions. Latent CTMC
hazard estimates may be quite biased at the times corresponding to the distribution’s
tail, when latent CTMC hazards are asymptotically constant. Accordingly, the bias of
the latent CTMC approximation of the Weibull (1.5,1) hazard is small until t = 1, but
increases considerably at times thereafter. In contrast, the Weibull (.75,10) hazard
function decreases and flattens out over time, as does the bias of the latent CTMC
estimates.

Interestingly, discrete sampling schemes may also lead to increased bias in estimates
of both hazard functions and CDFs. Both model II and IV characterize sojourn dis-
tributions by 2 transient latent states. We expected that the mean of model II and
IV estimates of hazard and CDFs would be similar given that they assume the same
latent CTMC model for each disease state sojourn time, although estimates would
be more variable due to missing information. This was in fact true for estimates of
Weibull(1.5,1) hazard functions and CDFs. However, bias of estimates of Weibull(.75,
10) hazards and CDFs depended on whether the data were survival data or discretely
observed. In particular, Model IV was poor at estimating the early portion of the
hazard function. We suspect this bias is related to the frequency of the sampling
scheme relative to the rate of change of the hazard function and that the bias would
be mitigated by more closely spaced observations.

We expected there would be a bias-variance tradeoff to adding more latent states
to the latent CTMC model. In fact, model III (with 3 latent states), did have less
biased estimates of hazard and CDF relative to model II. Model III estimates did have
somewhat higher variance (not shown); and overall, the RMSE of the estimates (Figure
3C in the main text) from model II and III were quite similar. The one exception was
for the tail end of the Weibull(1.5, 1) hazard function, when model III’s estimates were
considerably less biased. Overall, on the basis of the RMSE of point estimates, there
is little to recommend model III over model II. We expect that adding more states
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to the model (e.g., 4 versus 3) would yield more variable estimates, and RMSE would
favor models with III states. This was borne out by limited investigations with such
models (results not shown).

Our investigations of delta-method standard errors on average represented 92% of
the true variability of the estimates, but performance varied by model, functional, time,
and data generating distribution (Appendix Figure A-1). Generally, delta method
standard errors from model III better reflected estimate variability than model II.
Coverage of 95% confidence intervals based on delta-method standard errors is shown
in Figure 3D of the main text. Again, performance was quite mixed. Nominal coverage
was attained when the bias was small and the delta-method standard errors provided
good approximations of the true variability of the estimates. Poor coverage resulted
when point estimates were quite biased (Weibull(1.5,1) hazards for t > 1.5), or when
the delta-method standard errors underestimated the true variability of the estimates
(Appendix Figure A-1), as in Weibull(75,10) CDF and hazard functions. Coverage of
model IV estimates for small t was also poor for Weibull(1.5,1) functionals at t near 0,
which appeared to be due to skewness in the estimates’ distributions at this boundary.

Appendix F: Additional models fit to BOS data

In addition to the model presented in the main text, we fit two additional models
to the BOS data. The first alternative model (model 1) had λ2111 and λ2211 set to
zero. Alternative model 2 had three latent healthy states, 11, 12, 13, and no reversible
transitions. Other aspects of the model 1 and 2 were identical to the original model.
After fitting these models, model 1 had a maximum log-likelihood of -1251.757 and
model 2, a maximum likelihood of -1251.389. Figure A-2 shows the estimated disease
rate and first passage distribution to BOS onset under the original and two alternative
models. While the point estimates for the hazard rates differ slightly between models,
the first passage distributions for BOS onset are virtually indistinguishable. There was
also evidence that the intensity parameters in model 2 were not uniquely identifiable:
the information matrix was not positive definite at the maximum log-likelihood, and
two separate runs of the algorithm from different starting values generated distinct
sets of intensity rate estimates at log-likelihoods that differed by < .3.

We compared model 1 to the original model via a likelihood ratio test, as they are
nested. The null hypothesis (the transition between BOS to healthy states has a rate of
zero) is on the boundary of the parameter space; thus the distribution of the likelihood
ratio test statistic is not a standard chi-square distribution, but rather a 50:50 mixture
of a chi-square with 1 df and a point mass at zero [3]. The p-value for the LR test
statistic was .006, which supports the hypothesis that the reversible transition improves
the fit. On the basis of the Bayesian information criterion (BIC), the original model
edges ahead of model 1 and 2, although the difference in BIC between the original
model and model 1’s is < .5 (table 3). This suggests that it is possible that the original
model with reversible transitions may be over-fitting the data.
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The evidence that a model with reversible Healthy to BOS transitions apparently
offered a modest but statistically significant improvement in fit may seem unappealing
given the biology of the disease. However, both misclassification and disease progres-
sion are reflected in the transitions observed in the data. It is possible that our model
has not correctly specified the misclassification process. BOS is diagnosed with FEV1,
a continuous measure with inherent variability. Our model assumes that misclassifi-
cation probabilities are constant over the course of the disease. Misclassified disease
outcomes are more likely to occur in individuals who have recently developed BOS,
since their FEV1 may be near the diagnostic cutoff. The model that allows for BOS →
Healthy transitions may reflect non-constant misclassification probabilities. Examining
this scenario via simulation would allow one to assess this hypothesis in more depth.
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Table 2: Maximum likelihood estimates of BOS model intensity rates, emission probabilities, and
initial probabilities.

.
Transition

Intensity rates i j Point estimate 95% CI
11 12 0.39 0.11 1.42
11 21 0.39 0.27 0.56
11 3 0.01 0 0.29
12 21 0.14 0.09 0.23
12 3 0.004 0.00017 0.11
21 11 0.06 0.01 0.31
21 22 3.12 0.97 9.99
21 3 0.73 0.27 1.94
22 11 0.02 0.004 0.06
22 3 0.19 0.15 0.23

Emission e(Healthy,BOS) Double lung 0.076 0.042 0.133
Heart lung 0.018 0.01 0.031

e(BOS,Healthy) 0.011 0.004 0.028
Initial Distribution π(BOS1) Heart-lung 0.061 0.035 0.103

Double lung 0.043 0.014 0.124

Table 3: Summary of models fit to BOS data with and without BOS → Healthy transi-
tions

BOS → Healthy No. Healthy No. Log BIC
transition latent states parameters likelihood

Original model Yes 2 13 -1248.602 2572.03
Model 1 No 2 12 -1251.757 2572.58
Model 2 No 3 11 -1251.389 2583.36
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Figure A-1: Ratio of average delta-method standard errors to the empirical standard errors of the
estimates from simulated data. Models II and III fit survival data with Coxian PH models with 2
and 3 transient states, respectively; Model IV fits discretely observed data from a 2-state reversible
model assuming sojourn distributions analogous to model II.

A.                                                                                       B.

Original Model Original Model

Figure A-2: Point estimates for the BOS onset hazard rate (A) and CDF (B) with
the original model and models without reverse BOS→ healthy transitions. The first
alternative model (model 1) had λ2111 and λ2211 set to zero. Alternative model 2 had
three latent healthy states, 11, 12, 13, and no reversible transitions.
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KM estimate (real data)

KM 95% CI (real data)

KM estimates (sim. data)

Figure A-3: Kaplan-Meier estimates of time to first diagnosis of BOS or death from both
the real data set and data simulated from the fitted model. Dashed lines are the 95%
confidence intervals of the real data estimates.
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