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Fitting and interpreting continuous-time
latent Markov models for panel data‡

Jane M. Langea and Vladimir N. Mininb*†

Multistate models characterize disease processes within an individual. Clinical studies often observe the disease
status of individuals at discrete time points, making exact times of transitions between disease states unknown.
Such panel data pose considerable modeling challenges. Assuming the disease process progresses accordingly, a
standard continuous-time Markov chain (CTMC) yields tractable likelihoods, but the assumption of exponential
sojourn time distributions is typically unrealistic. More flexible semi-Markov models permit generic sojourn dis-
tributions yet yield intractable likelihoods for panel data in the presence of reversible transitions. One attractive
alternative is to assume that the disease process is characterized by an underlying latent CTMC, with multiple
latent states mapping to each disease state. These models retain analytic tractability due to the CTMC frame-
work but allow for flexible, duration-dependent disease state sojourn distributions. We have developed a robust
and efficient expectation–maximization algorithm in this context. Our complete data state space consists of the
observed data and the underlying latent trajectory, yielding computationally efficient expectation and maxi-
mization steps. Our algorithm outperforms alternative methods measured in terms of time to convergence and
robustness. We also examine the frequentist performance of latent CTMC point and interval estimates of disease
process functionals based on simulated data. The performance of estimates depends on time, functional, and
data-generating scenario. Finally, we illustrate the interpretive power of latent CTMC models for describing
disease processes on a dataset of lung transplant patients. We hope our work will encourage wider use of these
models in the biomedical setting. Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

Disease processes refer to the natural history of a disease within an individual. These histories can be
conceptualized as consisting of sojourns in discrete states that individuals pass through according to
progressive or reversible transitions; the final transition is to the absorbing state, death. Discrete-space
continuous-time multistate models are useful in describing these processes. Examples include models
of HIV [1], HSV-2 [2], and multiple sclerosis [3]. Our interest is estimating disease state functionals –
functions of model parameters that characterize individual and population-level disease process dynam-
ics. These functionals include disease state prevalence and hazard and cumulative distribution functions
(CDFs) of disease state sojourn times.

Fully observed disease process trajectories present many options for model fitting [4]. Panel data,
consisting of snapshots of the process at discrete times on multiple individuals, present challenges for
inference. We assume that the sampling frame is independent of the underlying process, except for pos-
sibly known times of death, and that observation times are not necessarily evenly spaced and may vary
across subjects.

In the panel observation setting, one typically assumes that the observed data are generated by a
discretely observed continuous-time Markov chain (CTMC). This family of models enjoys tractable
likelihoods and has established methods of obtaining maximum likelihood estimates (MLEs) for tran-
sition intensities [5, 6]. CTMCs entail two strong assumptions: (i) the Markov property indicates that
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transition probabilities depend on an individual’s history only through the current state, and (ii) sojourn
distributions are exponential, so that the rate of leaving a state does not depend on occupancy duration.

Ideally, we would like to fit panel data by using more flexible models. Semi-Markov models present
one class of alternatives, in which the sequence of states is Markov, but sojourn distributions may
have any form and need not be exponential. In general, however, data from discretely observed semi-
Markov processes result in likelihoods that are very difficult to compute, particularly if there are
reversible transitions. Methods for fitting semi-Markov models to panel data are limited to special
cases, such as progressive processes [7] or processes in which some states have exponential sojourn
distributions [8].

Titman and Sharples [9] proposed modeling discretely observed multistate disease processes with a
latent state CTMC. Each disease state maps to multiple latent states, which are traversed according to
an underlying CTMC. This framework yields hazard rates of transitioning between disease states that
depend on the duration spent in that state, yet likelihoods are analytically tractable, even for disease
processes with reversible transitions.

A latent CTMC structure implies phase-type (PH) distributions of sojourn times in disease states.
PH distributions are attractive because they can approximate generic distributions with positive support
[10], and PH functionals, such as hazard rates and CDFs, are easily expressible with matrix exponentials.
Aalen [11] reviews properties of PH distributions with applications to survival outcomes. The disadvan-
tage of PH distributions is that model parameters may not be identifiable, compromising estimation in
a frequentist setting. Fortunately, scientifically meaningful functionals describing sojourn time distribu-
tions typically are identifiable [12]. Latent CTMC models of disease processes inherit these advantages
and disadvantages.

Our focus is on parameter estimation of the latent CTMC model in the panel data setting. Titman
and Sharples [9] describe how these data fit into a hidden Markov model (HMM) framework based on
an underlying discretely observed CTMC, with or without misclassification error. The observed data
likelihood is obtainable from the recursive Baum–Welch forward–backward algorithm for HMMs [13].
Because the transition probability matrices of the latent trajectory relate to the intensity matrix via matrix
exponentials, obtaining MLEs of latent CTMC parameters is less straightforward than simply running
the Baum–Welch algorithm.

Titman and Sharples [9] suggest standard numerical optimization methods for obtaining latent model
MLEs. In our experience, these methods are slow, sensitive to starting values, and exhibit poor conver-
gence properties. Here, we propose a novel expectation–maximization (EM) algorithm. EM algorithms
assume a complete data space underlying the observed data whose likelihood is easy to maximize. MLEs
are obtained through iterative maximizations of the expected complete data log-likelihood (LL) condi-
tional on observed data and current parameter estimates [14]. Our complete data space consists of the
underlying latent trajectory and the observed data at discrete time points. These yield exponential family
score equations that can be solved easily either with an analytic maximization step (M-step) or with a
few iterations of the Newton–Raphson algorithm.

Bureau et al. [15] developed an alternative EM method for this setting that considers the complete data
as the observed data plus latent CTMC states at each observation time. Their M-step is less stable and
computationally more costly than our approach. We show that our EM method has better performance
than both the direct maximization of the observed data likelihood and the EM algorithm of Bureau et al.
[15], particularly when we apply the EM acceleration of Varadhan and Roland [16].

Our EM algorithm uniquely combines computational developments derived for PH models [17] and
discretely observed CTMCs [18] and uses efficient methods developed for HMMs to sum over the latent
states [19]. Our EM method shares a similar complete data space and E-step as the EM algorithm that
Roberts and Ephraim [20] developed for HMMs based on discretely observed CTMCs. However, our
approach is considerably more general, as it accommodates known times of absorption and allows for
covariates in the latent CTMC model. We also construct an exact method of calculating the Hessian
matrix for model parameters using the recursive smoothing framework described by Cappe et al. [19].

In addition to our algorithmic developments, we focus on the practical application and interpretation
of latent CTMC models. Their value hinges on their ability to describe disease processes with generic
sojourn distributions. Models with few latent states are more likely to result in identifiable parameters,
but point estimates for disease process functionals, such as sojourn time hazard and CDFs, may be biased,
and interval estimates may have poor coverage. We investigate these aspects by fitting latent CTMCs to
discretely and fully observed processes simulated from known distributions. Others have investigated
the use of phase-type models to approximate generic distributions [17, 21, 22], but to our knowledge, no
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one has examined their performance with discretely observed data or investigated confidence interval
coverage.

Finally, we re-analyze the bronchiolitis obliterans syndrome (BOS) dataset from Titman and Sharples
[9], both to compare performance of different fitting methods and to illustrate model interpretation,
emphasizing clinically relevant functionals of the disease process [23]. This application highlights the
benefit of latent CTMC models for describing sojourn distributions and demonstrates the superior speed
and robustness of our EM algorithm on real data against other methods for obtaining MLEs.

2. Model description

2.1. Latent continuous-time Markov chain parameterization

LetW.t/ be the disease process trajectory with disease state spaceRD f1; 2; : : : ; rg. UnderlyingW.t/ is
a time-homogeneous CTMC,X.t/, with latent state space S D f11; 12; : : : ; 1s1g[f21; 22; : : : ; 2s2g[� � �[
fr1; r2; : : : ; rsr g; intensity matrixƒ, and initial distribution�. We assume that S has s D

Pr
kD1 sk states.

Each observable disease state maps to multiple states in the latent state space. Thus, W.t/ D j <D>
X.t/ 2 fj1; j2; : : : ; jsj g. For example, Figure 1A shows a latent trajectory X.t/ and the corresponding
disease trajectory W.t/ for a two-state reversible disease model.

The mapping of multiple latent states in S to a single disease state in R yields phase-type, not expo-
nential, sojourn distributions ofW.t/. Generally, PH distributions characterize time-to-event variables as
time to absorption in an underlying CTMC. To promote parsimony, Titman and Sharples [9] specify the
sojourn distributions of W.t/ to have Coxian PH structure. Coxian PH models assume that the process
starts in the first transient state and at each transition either proceeds forward or exits to an absorbing
state (Figure 1B). These restrictions induce sparseness in ƒ. Figure 1C shows the allowable transitions
of X.t/ when W.t/ consists of a two-state reversible disease model with Coxian PH sojourn time distri-
butions, corresponding to the trajectory plotted in Figure 1A. The framework can also be scaled for more
complex disease models, including those where an individual in disease state p 2 R can transition to
disease states u or v. The allowable transitions are similar; whenX.t/ is in latent state pk , it can proceed
forward to pkC1 or exit to either latent state u1 or v1.

2.2. Observed data likelihood

The panel data with state space R may be observed with or without misclassification error. Latent states
at each observation time will be denoted by x1; : : : ; xn, and observed data by o1; : : : ; on. Observed
data are conditionally independent given W.t/ at observation times t1; : : : ; tn. Thus, the relationship
between observed and latent states is described by an emission matrix E D fe.i; j /g with entries

(a) (b)

(c)

Figure 1. (a). Example of latent trajectory X.t/, disease trajectory W.t/, and observed data O.tl / at dis-
crete observation times for model in subfigure C, assuming possible misclassification error. (b). Two-state
survival model of W.t/ assuming R D f1; 2g and S D ff11; 12g; f2gg, where disease state 2 is absorb-
ing. Coxian PH structures implies X.t/ starts in 11. (c). Two-state reversible model of W.t/, with state space

RD f1D Healthy; 2D Diseasedg and S D ff11; 12g; f21; 22gg). X.t/ starts in 11 or 21.
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e.i; j / D P.Ot D j jX.t/ D i/ that satisfy the identity e.i; k/ D e.j; k/ for all latent states
i; j 2 fp1; : : : ; pspg and observed values k.

Given the HMM formulation, the observed data likelihood is

P.o/D
X
x1

X
x2

: : :
X
xn

�x1

nY
iD2

PxixiC1.tiC1 � ti /
nY
iD1

e.xi ; oi /; (1)

where PxixiC1.tiC1 � ti / D P .X.tiC1/D xiC1jX.ti /D x1/ and �x1 D P .X.t1/D xi /. For some indi-
viduals, the time to absorption (death), Y, is known. When the last observation time tn D y, the observed
data likelihood, @

@y
P.o; Y < y/, is similar to equation (1). The only difference is that Pxn�1xn.tn� tn�1/

is replaced by f .tn � tn�1jXn�1 D xn�1/, the density of Y given state xn�1 at time tn�1.

2.3. Adding covariates to the latent continuous-time Markov chain model

We can parameterize ƒ in the latent CTMC model by the log-rates flog.�ij / W i; j 2 S I i ¤ j g.

To incorporate baseline subject-level covariates wh, we set log
�
�hij

�
D ˇTijwh, where h denotes the

individual. More parsimonious models equate individual covariate effects across rate parameters. In par-
ticular, the assumption that a covariate has a multiplicative effect on the sojourn time in disease state
p is achieved by equating the covariate effect across all log rates

˚
log.�ij / W i 2 fp1; : : : ; pspg

�
. Initial

distributions and emission distributions are multinomial. The initial latent state is captured by an indi-
cator vector Z D .Z1; : : : ; Zs/, where Zi D I.X1 D i/. Thus, Z � Multinomial.�; 1/. The initial

distribution � has natural parameters
n
�i D log

�
�i
�1

�
W i D 2; : : : ; s

o
, and the emission distribution ei

has natural parameters
n
�ij D log

�
e.i;j /
e.i;1/

�
W j D 2; : : : ; r

o
. Subject-level covariates wh are added to the

multinomial models via a linear predictor by taking �hij D � ijwh.

2.4. Complete data likelihood

We assume m independent subjects. The vector (o; x/ denotes the complete data (observed data and
underlying latent trajectory) for a given subject. The model parameters � D .�;ƒ;E/ characterize the
initial distribution, CTMC transitions, and emission probability matrix, respectively. The complete data
log-likelihood (LL) has exponential family form and is a linear function of complete data sufficient
statistics. For a subject, these sufficient statistics include nT .i; j /, the total counts of transitions from
state i to state j ; dT .i/, the total duration spent in state i ; ´i , the initial latent state indicator ; and
oT .i; j /D

Pn
lD1 I.xl D i/I.ol D j /, the total co-occurrences of latent state i and observed state j .

For this subject, the complete data LL has the factored form

l.�I o; x/D l.�I x1/C l.ƒI xjx1/C l.EI ojx; x1/D
sX
i

´i log.�i /C
sX
iD1

X
j¤i

nT .i; j / log.�ij /

�

sX
iD1

dT .i/

0
@ sX
j¤i

�ij

1
AC sX

iD1

rX
jD1

oT .i; j / logfe.i; j /g:

(2)

The separation of parameters in the factored LL means that �;ƒ, and E can be dealt with one by one.
Moreover, given the independence of individual subjects, the score and information are additive, such
that Pl.�/D

Pm
hD1
Plh.�/ and Rl.�/D

Pm
hD1
Rlh.�/, where h indexes the score or information contribution

of individual h.

3. Expectation–maximization algorithm

3.1. Maximization step

The exponential family form of the complete data LL enables a straightforward M-step in the EM
algorithm. Web Appendix A provides the score vectors and Hessian matrices for ƒ, �, and E. In the
absence of covariates, the score equations solved in the M-step have closed-form solutions, namely
O�ij D

Pm
hD1 n

h
T
.i;j /Pm

hD1 d
h
T
.i/

, Oeij D
Pm
hD1 o

h
T
.i;j /Pm

hD1

Pr
jD1 o

h
T
.i;j /

, and O�.i/ D
Pm
hD1Z

h
i

m
; where h denotes an individual.
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With covariates, we can solve the score equations by using the Newton–Raphson algorithm, which
requires the Hessian as well as the score. Generally, the r th iteration of the Newton–Raphson method

for parameter � is given by �.r/ D �.r�1/ � Rl
�
�.r�1/

��1
Pl
�
�.r�1/

�
. We can apply this procedure sep-

arately to update the parameter vectors corresponding to �;ƒ and E. In fact, Newton–Raphson need
not be run to convergence, as a single update will still yield the same EM convergence properties as full
maximization [6].

3.2. Expectation step

The expectation step (E-step) requires computing the expectation of the complete data LL (2) conditional
on the observed data. The LL for an individual is additive across time intervals Tl D Œtl ; tlC1�. Hence,

EŒl.�I o; x/�D
sX
iD1

EŒ´i jo� log.�i /C
n�1X
lD1

sX
iD1

X
j¤i

EŒnTl .i; j /jo� log.�ij /

�

n�1X
lD1

sX
iD1

EŒdTl .i/jo�

0
@X
j¤i

�ij

1
AC n�1X

lD1

sX
iD1

rX
jD1

EŒoTl .i; j /jo� log .e.i; j // :

This reduces the E-step to finding the conditional expectation of the complete data sufficient statistics
across Tl .

Conditional expectations for ´i and oTl .i; j / are computed as in the Baum–Welch algorithm, using
the smoothing probabilities P.Xl D xl jo/D

bl .m/˛l .m/
P.o/ , where ˛l.m/ and ˇl.m/ are HMM forward and

backward probabilities (Web Appendix B) and P.o/ refers to equation (1). Hence,

EŒ´i jo�D P.X1 D i jo/D
ˇl.m/˛l .m/

P.o/

and

EŒoT .j;m/jo�D
X
l

I.Ol Dm/P.Xl D j jo/D
X
l

I.Ol Dm/
ˇl.j /˛l.j /

P.o/
:

We can obtain expectations of dTl .i/ and nTl .i; j / by first conditioning on the latent states xl and
xlC1, that is,

EŒdTl jo�D E
�
E
�
dTl jo; Xl D a;XlC1 D b

��
D E

�
E
�
dTl jXl D a;XlC1 D b

�
jo
�
;

and likewise for nTl .i; j /. Thus, we break the task down into finding the ‘inner’ expectations,
EŒdTl jXl D a;XlC1 D b� and EŒnTl .i; j /jXl D a;XlC1 D b�, and the ‘outer’ expectations, which
involve summing over the latent states conditional on the observed data.

3.2.1. Inner expectations: conditional moments of occupancy durations and transition counts. In a
general time-homogeneous CTMC, we express conditional expectations of transition counts nt .i; j /
and occupancy durations dt .i/ in terms of the joint expectations EŒnt .i; j /I.X0 D a/jXt D b� and
EŒdt .i/I.Xt D b/jX0 D a� divided by Pab.t/, the probability of transitioning from a to b. These
joint expectations are given by the integrals

R t
0 �ijPai .u/Pjb.t � u/du and

R t
0 Pai .u/Pib.t � u/du;

respectively [18]. We calculate the joint expectation integrals via the efficient matrix-based methods
of Minin and Suchard [24,25]. These methods assumeƒ has no repeated eigenvalues and rely on eigen-
decomposition. Whenƒ has repeated eigenvalues, we compute the integrals by using the uniformization
approach [26, 27].

Our exact method of obtaining information of parameter estimates requires joint second and cross
moments of nt .i; j / and dt .i/. We define these quantities as EŒnt .i; j /nt .l; m/I.Xt D c/jX0 D a�;
EŒdt .i/dt .j /I.Xt D c/jX0 D a�; and EŒdt .i/nt .l; m//I.Xt D c/jX0 D a�. Minin and Suchard [25]
and Hobolth and Jensen [26] provide details for these computations using eigen decomposition and
uniformization, respectively.

Joint first and second moments are also desired when the interval endpoint coincides with the time
of absorption, Y. Let S refer to specific statistics of interest, such as nt .i; j /, dt .i/, nt .i; j /nt .l;m/,

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 4581–4595
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dt .i/dt .j /, or dt .i/nt .l;m/. We seek the differentiated joint moment @
@t

EŒS � I.Y < t/jX0 D a� D
EŒS jX0 D a; Y D t � � f .t jX0 D a/. Asmussen et al. [17] present the methods for obtaining these
moments, and Web Appendix C describes these methods in detail.

3.2.2. Outer expectations: summing over latent states. To finish the E-step, we need to compute the
outer expectations EŒSTl jo� D EŒEŒSTl jXl D a;XlC1 D b�jo�; for the complete data sufficient statistics
STl D dTl .i/ or nTl .i; j / on each time interval Tl . To integrate over latent states xl and xlC1, we exploit
the bivariate smoothing probabilities

P.Xl D a;XlC1 D bjo/D
e.b; olC1/˛l.a/ˇlC1.b/P.XlC1 D bjXl D a/

P.o/

delivered by the Baum–Welch algorithm. Thus, the expression for the conditional expectation of the
complete data sufficient statistic across the entire time interval T D Œt1; tn� is

EŒST jo�D
n�1X
lD1

rX
aD1

rX
bD1

EŒSTl jXl D a;XlC1 D b�P.Xl D a;XlC1 D bjo/:

In the case where tn corresponds to a known time of absorption, y, the summand corresponding to the
final interval is altered accordingly. The inner expectation is replaced by EŒSTn�1 jXn�1 D a; Y D tn�,
the transition probability is replaced by the density f .tn � tn�1jXn�1 D a/, and the denominator is
replaced by @

@y
P.o; Y < y/, the observed data likelihood with a known absorption time (section 2.2).

3.2.3. Recursive smoothing for complete data sufficient statistics. Our E-step calculates conditional
expectations of complete data sufficient statistics via marginal and bivariate smoothing probabilities that
condition on a subject’s entire observed data, o. Another option is recursive smoothing, described by
Cappe et al. [19] for general HMMs. Recursive smoothing is an online method for computing expecta-
tions of a functional of the currently encountered latent states conditional on the currently encountered
observations. We will abbreviate x1; : : : ; xk by x1Wk and the first k observations o1; : : : ok by o1Wk . The
functional will be denoted by tk.x1Wk/. The method requires that we can define the functional recursively,
expressing tkC1.x1WkC1/ as a linear combination of tk.x1Wk/ and functions of xk and xkC1, That is, the
functional is initialized at t1.x1/ and is defined as

tkC1.x1WkC1/Dmk.xk; xkC1/tk.x1Wk/C sk.xk; xkC1/; (3)

where mk.xk; xkC1/ and sk.xk; xkC1/ are sequences of possibly vector (or matrix) valued functions.
We obtain the ultimate target, EŒtn.x1Wn/jo1Wn�, through recursive updates of auxiliary functions

�k.xk/ D EŒI.Xk D xk/tk.x1Wk/jo1Wk�, for k D 1; : : : ; n. At each step, EŒtk.x1Wk/jo1Wk� D
P
xk
�k.xk/,

with the final step enabling calculation of EŒtn.x1Wn/jo1Wn�. The auxiliary functions are initialized as

�1.x1/D t1.x1/
e.x1; o1/�.x1/P
a e.a; o1/�.a/

:

Cappe et al. [19] showed that updates to the auxiliary functions are given by

�kC1.xkC1/D
P.o1Wk/

P.o1WkC1/

(X
xk

Œ�k.xk/mk.xk; xkC1/C P.Xk D xkjo1Wk/sn.xk; xkC1/�

� e.xkC1; okC1/PxkxkC1.tkC1 � tk/

)
: (4)

Updates to the auxiliary functions require calculating the filtering probabilities P.Xk D xkjo1Wk/ and the
conditional observed data likelihood P.Ok D okjo1Wk�1/, described in Web Appendix B.

To apply recursive smoothing to the first moments of the complete data sufficient statistics, we define
tk.x1Wk/ as these moments on the interval Œt1; tk� conditional on x1Wk . Let S be the vector of com-
plete data sufficient statistics for a single subject and SŒtl ; tm� be these sufficient statistics confined to
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the interval Œtl ; tm�. Thus, the functional is tk.x1Wk/ D EŒSŒt1; tk�jo1Wk�. The functional is initialized
t1.x1/D EŒSŒt1; t1�jo1� and expressed recursively as

tkC1.x1WkC1/D EŒSŒt1; tkC1�jx1WkC1�D EŒSŒt1; tk�jx1Wk�C EŒSŒtk; tkC1�jxk; xkC1�

D tk.x1Wk/C sk.xk; xkC1/:

Here,mk.xk; xkC1/D 1. Web Appendix B provide the specific values of t1.x1/ and sk.xk; xkC1/ for
latent CTMC complete data sufficient statistics.

There is no computational advantage to using recursive smoothing over our first method for first
moment calculations. However, we can also use recursive smoothing to calculate second moments of
complete data sufficient statistics conditional on o, which are used in our exact method of computing
the information matrix of latent CTMC parameter estimates. It excels for these calculations because
it retains computational complexity O.n/ in the number of time intervals. Second moment recursions
require the same quantities derived for first moments, motivating the introduction here.

4. Information and variance of parameter estimates and disease process functionals

Letting om and .om; xm/ be the observed and complete data for all subjects, we can express the
information matrix of parameter estimates using Louis’ formula [28] as

�Rl.�I om/D EŒ�Rl.�jom��CovŒ Pl.�jom�D EŒ�Rl.�/jom��
n
EŒ Pl.�/ Pl.�/T jom�

�EŒ Pl.�/jom�EŒ Pl.�/jom�T
o
:

The expectation and covariances are taken with respect to the distribution of the complete data given
the observed data for all subjects.

We can calculate EŒ�Rl.�/jom� readily given the factorization of the log likelihood (2) and the relatively
simple forms for Hessian functions (Web Appendix A) for �, �, and E. At the MLE, EŒ Pl.�/jo� D 0, so
we only need to calculate EŒ Pl.�/ Pl.�/T jom�. Given that the score functions are linear in the complete data
sufficient statistics, we need second and cross moments of these statistics conditional on the observed
data. These moments require the inner expectations defined in Section 3.2.1 and use recursive smooth-
ing to integrate over latent states (Web Appendix B). We can obtain approximate interval estimates for
disease process functionals such as hazard functions and first passage CDFs with delta-method standard
errors [29] (Web Appendix D).

5. Implementation

5.1. Software

We have implemented the EM algorithm in R [30], in the form of R package cthmm, available at
http://r-forge.r-project.org/projects/multistate/. The software accommodates panel data and exact times
of absorption and allows for parameterized intensity, initial distribution, and emission matrices. Com-
putationally intensive E-step and information calculations are coded in C++ and rely on Rcpp [31] and
RcppArmadillo packages [32].

5.2. Speeding up the expectation–maximization with acceleration methods

The EM algorithms are robust but slow, displaying linear rates of the convergence in the vicinity of the
maximum LL [14]. EM acceleration algorithms, such as the squared iterative method of Varadhan and
Roland [33], can substantially reduce time to convergence. This method applies to any fixed point algo-
rithm and only requires the EM updating function. Our software uses an implementation of the method
available in the R package SQUAREM [16]. In our tests, SQUAREM reduces the time to convergence
of our EM algorithm by a factor of six without substantial loss of robustness.

5.3. Practical considerations for using the expectation–maximization algorithm

The EM algorithms will converge to local maxima, global maxima, or stationary points [34]. Latent
parameter models are frequently multimodal or have local maxima, underscoring the need to use mul-
tiple starting values. Some starting values may lead to solutions corresponding to infinite values for
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certain �ij , and successive EM iterations of estimates for these �ij increase without bound. These solu-
tions are outside the parameter space for ƒ. Performance of the EM is also problematic given numeric
inaccuracies in calculating exp.ƒt / when certain �ij are high. For practical purposes, it may be worth
bounding estimates of �ij from above. Choice of starting values for � is also important: They should
be close enough to zero to encourage convergence to estimates with finite or zero values of �ij , but dis-
perse enough to make it likely one detects the global maximum. In practice, we have generated random
starting values for log.�ij / from Normal(� D 0, � D :25), but it is worth experimenting with different
starting distributions for specific models and datasets.

With discretely observed data, MLEs with finite entries for ƒ may not exist [35]. This is more likely
as observation intervals are more distantly spaced and as latent transition rates increase. Higher latent
transition rates are associated with higher dimensional latent CTMCs used to approximate the data-
generating distribution. Empirically, nonexistence of an MLE may be detected when multiple starting
values fail to find a global maximum within the allowable parameter space. In this case, investigators
should be aware when they have reached the resolution limit for their process and fit a model with fewer
latent states.

5.4. Model selection

Model selection involves choosing a structure for the latent CTMC rate matrix, choosing the dimension
of the latent space, and adding covariates to the rate matrix, initial distribution, and misclassification
model. Although other latent structures are possible, we are advocating models with disease state sojourn
distributions characterized by Coxian PH structure, because these models can represent distributions with
increasing, decreasing, and nonmonotonic hazard functions and will be uniquely parameterized except in
degenerate situations [10]. Choosing the number of latent states is akin to choosing the number of mix-
ture components in a mixture model, which is challenging from a statistical perspective. Pragmatically,
we recommend comparing models via the BIC because it is easy to obtain, can be used to compare non-
nested models, and has been shown to be adequate in choosing the number of mixture components [36].
We suggest starting by fitting models with small latent spaces and building up to more complex models
as appears warranted by the data. One can also determine the dimensionality for which adding more
latent states has little effect on plotted point estimates of hazard functions, CDFs, or other functionals
of interest.

6. Simulation study

Latent CTMC models can approximate disease state sojourn time distributions with arbitrary hazard
functions. We used simulated data to assess the quality of such approximations under different data-
generating and observation scenarios, focusing on how bias and root mean squared error of the latent
CTMC estimates of hazard functions and first passage time CDFs were affected by data-generating
distribution, observation scheme, and number of latent states in the model. We were also interested in
coverage of confidence intervals for hazard and CDFs based on delta-method standard errors.

We generated data for two-state survival and reversible semi-Markov models with Weibull sojourn
distributions with increasing (shape D 1:5, scale D 1) and decreasing (shape D 0:75, scale D 10)
hazards. Sojourn time distributions with increasing and decreasing hazards are both common in actual
disease models. We generated 100 datasets for each of the three scenarios (survival with increasing
hazard, survival with decreasing hazard, two-state reversible semi-Markov model with increasing, and
decreasing sojourn distributions). With the survival data, we exactly observed death times unless they
exceeded 20, in which case they were right censored; we observed the reversible process discretely at
times (0; 1; :::; 10), jittered by Uniform(�0:5; 0:5) random deviates.

We analyzed the simulated data using latent CTMC models with Coxian PH distributions. Models
II and III fit survival data with Coxian PH models with two and three transient latent states and one
absorbing state, respectively; model IV fits discretely observed data from a two-state reversible model
assuming sojourn distributions with two latent states, analogous to model II. These models are able to
capture sojourn time distributions with increasing or decreasing hazard functions and are less prone
to identifiability or convergence problems than models with more latent states. All data were fit with
our EM algorithm, accelerated by the SQUAREM method, using 10 different random starting val-
ues per dataset. We estimate hazard and CDFs of sojourn distributions for each dataset by using the
corresponding models.
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We limit our analysis to the 96% (481=500) of the simulated datasets that had more than one starting
value that converged to the putative maximum LL. Spot checks on the remainder of datasets suggested
that convergence failure was alleviated when the accelerated EM algorithm was replaced with the tradi-
tional version. Evaluation of interval estimates based on delta-method standard errors was further limited
to datasets with unique MLEs of latent CTMC parameters (449=481D 93%).

Figure 2 summarizes our simulation results by reporting means of CDF and hazard function estimators
(first row), biases (second row), root mean squared errors (third row), and coverages of point-wise 95%
confidence intervals corresponding to these estimators (fourth row). We observe that estimating a hazard
function is more difficult then estimating the corresponding CDF. Also, latent CTMC hazard estimators
perform better near t D 0, which is expected, because latent CTMC hazard functions are asymptotically
(t !1) constant. The shape of the true hazard function and, interestingly, observation scheme (discrete

(a)

(b)

(c)

(d)

Figure 2. Summary of estimates of CDFs and hazard functions based on models fit to data generated from
Weibull.1:5; 1/ and Weibull.0:75; 10/ sojourn distributions. Models II and III fit survival data with Coxian PH
models with two and three transient states, respectively; Model IV fits discretely observed data from a two-state
reversible model assuming sojourn distributions analogous to model II. The data were generated with an arbitrary
time scale, and the x-axis t � t0 refers to time since entry into the state. (a). Mean of point estimates from all
models and the data generating value. (b). Bias of estimates, with intervals representing Monte Carlo 95% con-
fidence intervals. (c). Root mean squared error of estimates. (d). Coverage of nominal 95% confidence intervals

based on delta-method standard errors.
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vs. continuous) significantly affect bias of latent CTMC hazard estimates. We provide a more detailed
discussion of the simulation results in Web Appendix E.

7. Application: Bronchiolitis Obliterans Syndrome

Following lung transplantation, patients are at risk of developing BOS, in which bronchioles are irre-
versibly occluded with scar tissue. Clinically, BOS is diagnosed by>20% reduction in forced expiratory
volume/second (FEV1) from post-transplant baseline [37]. Titman and Sharples [9] use an illness-death
model to characterize the disease process in a study of heart–lung and double lung transplant patients
who had FEV1 monitored at 6 months post-transplant and at 9, 12, and every 6 months thereafter [38].
Our version of the dataset consisted of 122 double lung and 244 heart lung patients. We excluded
individuals with only baseline observations.

The BOS disease process, W.t/, has a state space with three states: RD f1D healthy; 2D BOS; 3D
deathg, where death is absorbing. The model of Titman and Sharples [9] assumes that W.t/ has an
underlying latent CTMC with state space S D f11; 12; 21; 22; 3g and an intensity matrix ƒ imply-
ing Coxian phase-type sojourn distributions of W.t/. To promote parsimony, the intensity matrix ƒ
is structured, as �1221 D �1�1121 , �123 D �1�113, �2211 D �2�2111 , and �223 D �2�213. This param-
eterization says that rates of exiting states 12 and 22 relative to 11 and 21 change by the same factor
regardless of the destination. We expressed this parameterization using log-intensity rates and dummy
covariate effects.

The model includes transplant type in the probability of misclassification of healthy patients as
diseased, such that logit.e.healthy;BOS// D 	0 C 	1 � ZDL; where ZDL is an indicator of dou-
ble lung transplant. Misclassification of diseased patients as healthy does not depend on covariates:
logit.e.BOS; healthy// D 
0: Initially, individuals occupy either state 11 or 21 with a probability
depending on transplant type, according to the parameterization logit.�21/D B0CB1 �ZDL:

7.1. Comparison between our expectation–maximization and other optimization methods

Using maximum likelihood to fit the model of Titman and Sharples (2010) to the BOS dataset, we
compared the performance of our EM algorithm (denoted EM1) with the following: (i) the EM of
Bureau et al. [15] (EM2), (ii) the R implementation of Nelder-Mead (NM) [39], and (iii) the box-
constrained Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization algorithms [40]. The BFGS con-
straints assumed that all model parameters, log-transformed if necessary, fell in the interval .�50; 8/.
We implemented the M-step of EM2 with the BFGS stopping criteria based on a relative convergence
tolerance of 10�3. We accelerated both EM algorithms by SQUAREM [16].

We considered scenarios in which the emission and initial probabilities were unknown or known and
fixed at their MLEs. All methods used the same 30 random starting values generated independently
from Normal.0; � D 0:25/. EM convergence was declared when successive iterations of the LL dif-
fered by < 10�6, or 200 iterations were taken, whichever came first. We ran NM and BFGS algorithms
with the default relative convergence tolerance of ‘optim’ (10�8) and capped likelihood evaluations
at 2500.

Table I summarizes the performance of each of the algorithms for both BOS data models. Figure 3
shows the runtime, in time either to convergence or to the maximum number of iterations, and the final
value of the LL. Our method, EM1, was the clear winner in terms of runtime, taking a median of 80 s
to converge when � and E are unknown. Other methods ran between 5.5 and 18 min before converging
or reaching the maximum iteration limit. NM, BFGS, and EM2 (which used BFGS for its M-step) all
had trials where the algorithm broke for specific reasons: breakdown of the simplex (NM) and entering
nondifferentiable regions of the parameter space (BFGS). EM1 did not encounter issues in computing
the M-step or E-steps for this model.

The maximum attained LL for the BOS data model was�1248:602. There were at least two additional
local optima or stationary points. NM was particularly poor at converging to either global or local max-
ima, reaching the iteration limit for 11=30 trials when (�;E/ were known and 25=30 trials when (�;E/
were unknown. The other methods were all subject to convergence to local, rather than global, optima.
When .�;E/ were unknown, EM1 converged to local optima in 18=30 trials, EM2 in 16=30 and BFGS
in 10=30 trials. In the scenario where .�;E/ were known, EM1 converged to the global maximum for
all but one starting value.
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Table I. Results of fitting the BOS data using different optimization methods with 30 random starting values.

E; � fixed E; � unknown

EM1 EM2 NM BFGS EM1 EM2 NM BFGS

Median run-time (s) 60.6 762.4 532.6 337.0 80.3 1125.3 639.5 431.9
Converged to max. LL 29 24 11 13 12 11 0 18
Convergence to local max. or stationary point 1 3 8 10 18 16 4 10
Iteration limit reached 0 0 11 0 0 0 25 0
Algorithm failure 0 3 0 7 0 3 1 2

Total trials 30 30 30 30 30 30 30 30

(a) (b)

Figure 3. Runtime and attained LL when EM1 (our method), EM2, BFGS, and NM algorithms were used to fit
the BOS data, using 30 random starting values and assuming either .E;�/ was fixed (a), or was unknown (b).

7.2. Bronchiolitis obliterans syndrome results

Our model parameter estimates are similar, but not identical to those obtained by Titman and Sharples
[9], because of differences between the two datasets. Both sets of MLEs were evidently unique, on the
basis of numeric investigations with different starting values. Web Appendix Table 2 shows estimates
and 95% confidence intervals for the rate, emission, and intensity parameters on their original scales
(i.e., rates, emission, and initial probabilities).

Figure 4a represents the first passage CDF for BOS development. The model estimates that the prob-
ability of an initial healthy individual remaining BOS free at 5 years post transplant is 34%, with a 95%
confidence interval of .26%; 44%/. This is consistent with estimates in the literature of a 5 year disease
free probability ranging from 15% to 37% [41]. The model also predicts that the rate of entry into the
diseased states declines with time since transplant; disease rates are initially 35%–40% and drop to 15%
per year after 5 years (Figure 4b). The nonconstant disease hazard of BOS likely reflects heterogeneity
in the lung transplant patient population in terms of progression to BOS. Declining BOS rates are also
consistent with the initial period after transplant being a time of high risk for patients for experiencing
infections or acute rejection episodes, both of which may trigger BOS development [38].

Figure 4c shows the cumulative probabilities of death conditional on starting in healthy state 11 versus
BOS state 21. By 2 years post transplant, we estimate that 12% of those healthy at the start of the study
will have died. After developing BOS, nearly 72% remain alive at 1 year, 50% at 2 years, and 35% at
3 years. These estimates are in agreement with the literature estimates of survival after bilateral lung
transplant of 74%, 46%, and 26% at 1, 3, and 5 years after the onset of BOS, respectively, [42].

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 4581–4595
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(a) (b)

(c) (d)

Figure 4. (a). Cumulative probability of having transitioned to BOS state at least once, conditional on being in
11 at t0. (b). Disease rate conditional on being in healthy state 11 at t0. (c). Cumulative probability of death. (d).
Mortality rate per year, as a function of state at t0. In all figures, the shaded regions represent 95% point-wise

confidence intervals for the estimates.

Our model estimates that mortality, as with BOS onset, has declining hazard rates after an individual
has developed the disease. Prior to BOS development, mortality rates are very low (Figure 4d). After
transitioning to BOS state 21, mortality rates jump dramatically (>50% per year), and then drop to 20%
after 1 year. This pattern in mortality is consistent with the identification of distinct BOS patient popula-
tions: those with acute onset and rapidly deteriorating lung function, and those with more gradual onset
and slowly progressing disease [38, 43].

The latent CTMC model presented here allows for reversible transitions between BOS and healthy
states despite the fact that biologically, BOS is irreversible. Initially, the rate of reversion is estimated at
6%, dropping to 1.6% after a year of having BOS. Titman and Sharples [9]) included BOS! healthy
transitions based on comparing a standard HMM with and without reversible transitions via a likelihood
ratio test. To investigate whether the addition of latent states made it unnecessary to include the reverse
transitions, we compared our model with models with no BOS! healthy transitions and either two or
three latent states per healthy state. We also found support for inclusion of the reversible transitions (Web
Appendix F). It is plausible that the model’s estimates of low rates of BOS! healthy transitions near
the time of disease development may reflect nonconstant misclassification probabilities with respect to
BOS duration.

To assess how well the distribution of the time to BOS development, induced by the latent CTMC
model, fits the observed data, we compared model-based simulations of time of first observed BOS
diagnosis or death with the actual times in the data. Using MLEs for model parameters, we simulated
1000 new disease trajectories for each real individual, retaining real observation and censoring times and
imputing new times if the real participant’s death occurred prior to the corresponding simulated time of
BOS/death. We compared the Kaplan–Meier (K-M) estimates of observed failure time distribution in
the real data with analogous K-M estimates in the artificial data (Web Appendix Figure 3). Given that
the observed K-M curve is within the envelope of the simulated curves, the model appears reasonable in
predicting time to BOS development, particularly in the first 5 years after lung transplant.
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8. Discussion

Multistate disease processes observed in the panel data setting pose challenges for analysis. The
widely used approach of assuming standard CTMCs leads to models that are unrealistic for processes
with duration-dependent sojourn distributions. The latent CTMC framework accommodates duration-
dependent sojourn distributions but yields tractable likelihoods. These models also offer interpretative
advantages, as functionals describing the process are computable analytically.

Our EM algorithm provides an efficient and robust method of obtaining MLEs and standard errors
of latent parameter estimates. On the BOS dataset, the method considerably outperformed other opti-
mization approaches, including those implemented in the R package msm [44] – NM and BFGS –
and the EM algorithm of Bureau et al. [15]. We suspect that results will be similar for other datasets
fit with well-behaved latent CTMC models, in that the out-of-the-box numeric optimization methods
will be considerably slower to converge than the accelerated version of our EM algorithm. We also
suspect that our EM algorithm would be faster than a Newton–Raphson algorithm, because the latter
algorithm requires the computationally expensive calculation of the observed information matrix [45] at
each iteration.

The utility of latent CTMC models lies in their ability to approximate functionals of disease pro-
cesses from nonexponential sojourn time distributions. Our simulation studies investigated frequentist
properties of such estimates using simple survival and two-state disease models to analyze data with
Weibull distributed sojourn times. In practice, many diseases will have more than two states, nonmono-
tonic hazard functions, and misclassification error. Although limited in scope, our investigations fill
a gap in the literature of frequentist properties of latent CTMC parameter MLEs under model mis-
specification. We believe that the results from two-state simulation studies generalize to more complex
disease models.

Overall, these simulation results suggest mixed performance of latent CTMC estimates. Latent CTMC
models, while flexible, are parametric and therefore subject to model misspecification. The bias in
approximations reflects the closeness of the data-generating distribution to that implied by the latent
CTMC model. In particular, although CDF estimates were generally good, hazard estimates may be
quite biased at the times corresponding to the distribution’s tail, when latent CTMC hazards are asymp-
totically constant. However, estimates of the hazard function near the tail of the distribution may be of
limited scientific interest and may be extrapolations to times after all events have occurred. Investiga-
tors should also be aware that estimates of hazard and CDFs may be more biased for panel data. It will
be worth investigating further the sensitivity of estimate bias under different sampling frequencies and
data-generating scenarios.

Confidence interval coverage for disease process functionals was sometimes poor, reflecting both the
bias in the estimates and in certain cases, underestimation of the variability of the estimations using
the delta-method approach. It is worth investigating the use of robust variance estimates in the EM
algorithm context to yield more valid standard errors [46]. We limited our evaluation of confidence
intervals to datasets with unique MLEs. In practice, the likelihood may be multimodal, in which case
delta-method standard errors will not be appropriate. In the absence of unique MLEs, we recommend
applying a nonparametric bootstrap. The computation time required would not be prohibitive given the
increased efficiency of our fitting algorithm.

The issue of model selection for CTMC models still presents many open questions. We have advo-
cated using the BIC to select the dimensionality of the latent state space, given its practical performance
and ease of use [36]. A likelihood ratio testing framework for nested models is also possible but has
accompanying challenges. It is possible to represent a latent CTMC model with p latent states within
a space of k > p latent states, but such parameterization is not unique. Penalized likelihood ratio tests
allow for hypothesis testing in the setting of nonidentifiable parameters under the null model [47]. Cur-
rently, implementation in the latent CTMC context is limited to null models with exponential sojourn
distributions [9], and extending this approach for more general testing is an area of future research. Given
the increased efficiency of our fitting algorithm suggests that it may also be practical to evaluate models
using k-fold cross validation with a goodness of fit statistic measuring prediction error [48].

Our focus has been on frequentist estimation. Bayesian methods also have a strong appeal in this
setting [12]. Sensible priors may yield identifiable latent parameters, and posterior distributions provide
uncertainty estimates for model functionals. Further, model selection may be possible using reversible
jump MCMC [49]. McGrory et al. [50] have implemented Bayesian model selection for PH models of
length of hospital stay, and their approach might be scaled to apply to more general latent CTMC models.
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