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Appendix A. Here, we prove our main result. We repeat the theorem formulation first.

THEOREM 1. Let {X;} be a linear BDI process with parameters A > 0, u >0, and v > 0. Over
the interval [0,t], let Nt'" be the number of jumps up, N, be the number of jumps down, and R; be

the total particle-time. Then H;(u,v,w,s,t) = FE (uvaN; e whigXt| X = z) satisfies the following
partial differential equation:
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subject to initial condition H;(u,v,w,s,0) = s'. The Cauchy problem defined by equation (S-1) and
the initial condition has a unique solution. When A > 0, the solution is
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Proor. We consider a joint measure V; j(ni,n2,2,t) = P(X; = j, N = ny, N =ng, Ry <
x| Xo = 7). For ease of notation, we will let \;; be the instantaneous rate of transitioning from state
i to state j for the BDI process and \; = Z#i Aij. Also, we will let a; = ¢ be the reward rate for
Ry; that is, for staying in state ¢ for time h, the process R, increases by ih. Following Neuts (1995),
we start with

Vij(ni,n2,2,t) = 1uonlisan ln—n—ore

t
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0
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where 1 is the indicator function. Next, we derive differential equations for the Laplace-Stieltjes
transform Vifj(nl, ng, w,t) = fooo e~ dV; j(n1,ne, x, t):
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We now write H;(u, v, w, s,t) = Zj>0 hi ;(u,v,w, t)s? where h; j(u,v,w,t) =" V> (ny,ng, w, t)u™v"2.

n1,n2 " 5,J

The functions h; ; then satisfy

0
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+ (] + 1)Mvhi,j+1 (U, v, w, t)

Using this fact, we arrive at
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which proves that H; satisfies equation (S-1).
Using the method of characteristics, we solve the above PDE with initial condition H;(u, v, w, s,0) =
s'. When X > 0, the solution is

_ s—a1 ,—Aag—a1)ut @ L4
[ g/ e ap — o A —v(l—uan)t
Hi(u,v,w,s,t) = e !
i\U, U, W, o, 1 - $—x e—)\(a2—a1)ut s — a9 — (S _ 061) e*)\(azfoq)ut )
s—ag

A pt+wF+/ (A+ptw)2 -4 puv

where «; = e , for i = 1,2. In the case of A = 0 (death-immigration model),
the solution is
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In Section 3.1 of the main document, we show how to use this generating function
to compute the conditional moments we need for the EM algorithm. We use the
same strategy to compute the joint and cross-moments we need for computation
of the information matrix in Appendix B. For instance, in the main document on
page 7 where we compute G; (t,s) = 0H;(u,1,0,s,t)/0ul,—1 when we want to compute
E [NtﬂXo =1, X = j], we now instead compute one of

0?H;(u,1,w, s,1)
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or

when we want to compute one of —E [N;rRt]Xo =i, X; = j], —-E [Nt_Rt|X0 =i, X; = j], or



E [N;FNHXQ =14, X; = j} , respectively, for some ¢,j € N. Similarly, we compute one of

0?H;(u, 1,0, s,t) ‘
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or

when we want to compute one of E [N["Q\XO =4, X; = j], E [N[QIXO =1,X; = j], or

E [Rt2|X0 =1, Xy :j], respectively. Then, we use the Riemann approximation to the
Fourier transform as described on page 8 of the main document to access the power se-
ries coefficient corresponding to the specific j that we want. The Riemann approxima-
tion approach is also the method we use to compute transition probabilities (Henrici,
1979; Sehl et al., 2011). Given a probability generating function P(s) = ijo pjs!, we

can extend P to the complex plane by defining P(¢>™V 1) = > js0Pi 2™ ~1t and then
the jth coefficient p; is equal to p; = f P( 27r\ﬁ’f) —2m/=1jt4t. We can thus approximate
pj by

27rft —2nﬁjk/K
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for large K. Thus, to compute the transition probabilities, which we need to convert
joint moments into conditional ones as in (7) in the main document, we simply apply
the above formula where P is the generating function for the BDI process X;. This
generating function is given by H;(1,1,0,s,t) where H; is from Theorem 1. This yields
the know form of the BDI generating function (Lange, 2004, page 168).

Appendix B. In this section, we provide details for calculating the observed information ma-
trix. Louis (1982) shows that, in problems with incomplete observations, the observed information
Iy () can be calculated as
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where [, and [. are the observed-data and complete-data likelihoods, as defined in (2) and (3) of the
main paper, and where the last term is 0 when we plug in the MLE 4 of . Recalling log A, = z; A YA
we get for 1 < j < ¢y,
a m
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or in matrix form,
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where for x = (z1,...,25) € R®, some natural number s, we set diag(x) to be the matrix with
0’s on the non-diagonal elements and z; as the (i,7)th element, and we define the vectors R :=
(Ri, .o s Bm) = (Bay s oo Bty oy )s T = (T1se o Tin) = (B1ngs -+ <5 tnn(my)'s and N+ .=
(N{,...,N}) = (N1+t1 iy N":vtm,n(m) ) all in R™. Here that we take eZ*7* to be the exponential
function applied componentw1se to the vector Zyvy. Next, for 1 < j < ¢9, we see

0 n ’ —
(5-5) mlc(X; v) = Z:l — Ry, €7 Zp 1+ N i 0o
) p=

and, in matrix form,

(S-6) ilC(X;’y) =7, (- diag(R)eZmn + N7),
0y
where N~ := (Ny,...,N,,) == (Nl_,t1 ) s Nt Mm))’ e R™.
We next need to compute the squared gradient. We can write it as
0 0 A B
S_7 71@ X, 710 X7 /: ,
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where we can calculate the matrix blocks by

A =17 (—diag(R + BT)A + NT)(— diag(R + ST)X + NT)'Z,
(S-8) B = Z)(— diag(R + BT)X + NT)(— diag(R)u + N7)'Z,
C =17, (—diagR)p + N7 )(—diag(R)p + N")'Z,,.

To get the Hessian of I, we differentiate again, starting with (S-3), to see for 1 < j, k < ¢y,
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or, in matrix form,
2

o 2 1.(X;v) = —Z) diag(R + BT) diag(eZ ") Z,.
Next, differentiating (S-5) we get for 1 < j, k < co,
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or, in matrix form,

62
oz 1e(X;7) = —Z/, diag(R) diag(e?* ™) Z,,.
Since for all 1 < j < ¢; and 1 <k <co,
82
— I (X;) =0,
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we have now calculated the squared gradient and the Hessian of [.. We need only to take expecta-
tions. For the squared gradient, second- and cross-moments appear, whereas for the Hessian only
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first moments appear. For the squared gradient, we now take expectations element-by-element. We
denote the kth element of the sufficient-statistic expectation vectors U, D, and P that are defined
in (12) of the main paper by Uy, Dy and Py, respectively. We see for 1 < p,q < ¢ that E5 [Apg’Y]
is equal to

> N ((PePi+ PTB + PTeB + TiTiB) Aehy
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For the Hessian term, since for 1 < j < ¢; and 1 < k < ¢o, W[ (X;7) = 0, we see that
J TR

E4 —WZC(X, 'y)} equals
(8-9) < Z/, diag(P + BT) diag(X)Zy 0 >
0 Z), diag(P) diag(p)Z,

The generating function presented in Theorem 1 can be used to compute the conditional means of all
the needed cross-products and square terms in the gradient and Hessian, as shown in Appendix A.
Thus we have now computed all the terms in (S-2).

Appendix C. In this section, we show that for two important special cases of the BDI model
the E-step of the EM algorithm does not require any numeric approximations. Notice that the
first of these two models, the death-immigration model, is not a BDRI model — the
focus of the main document. Nonetheless, we think it is important to illustrate that
our theoretical developments apply to the death-immigration process, because this
model plays an important role in applications of BDI processes (Crespi, Cumberland
and Blower, 2005).
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Death-Immigration Model. We have shown that the generating function, H;(u,v,w,s,t) =
E (uNQLth_ e WhsXt| Xy = i), for the death-immigration model is

e (ptw)?2
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Suppose we are interested in computing E (Nt+1{Xt:j}|X0 = z) First, we fix v = 1 and w = 0.
Next, we differentiate the generating function once with respect to u and j times with respect to
s, plugging in 1 and 0 respectively:
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Now, the derivatives with respect to s can be recovered by expandmg 3. Hi (u,1,0,s,t) . into a
u=
power series:
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One can derive expectations of N, and R; in a similar fashion.

Sequence Alignment BDI Model. Here we demonstrate that our generating function approach
results in analytic formulae for the E-step in the evolutionary EM algorithm, developed by Holmes
(2005). This is in contrast to the original Holmes (2005)’s implementation, which requires numer-
ically solving a system of nonlinear ordinary differential equations. Holmes (2005)’s algorithm is
based on a TKF91 model of sequence alignment evolution (Thorne, Kishino and Felsenstein, 1991).
Instead of diving into the intricacies of this model, we refer the reader to Ian Holmes’ web page
(http://biowiki.org/TkfIndelModelPathSummaries), where he poses an open problem of deriv-
ing the E-step of Holmes (2005)’s algorithm in closed form and explicitly formulates this problem
in terms of the BDI process. To derive the E-step of Holmes (2005)’s algorithm in closed form,
using our BDI notation, one needs to find analytic expressions of the following expectations:

L. E (N 1x,—| X0 =0), E (N; 1{x,-1| X0 = 0), and E (R¢1{x,—;3|Xo = 0) when v = A,
2. B (N 1{x,—j3|Xo = 1), E(N; 1{x,-| X0 = 1), and E (R;1{x,—j;| X0 = 1) when v =0,

Notice that in the the sequence alignment BDI model, X; is a BDRI process (with § =
1) when X, = 0 and X; is a linear birth-death process (with no immigration) when X, =
1. We derive the analytic formulae for E (N; 1;x,—;3|Xo =0) (v =) and E (Nt+1{Xt:j}|X0 =1)
(v = 0). The other expectations can be derived analogously.

1. Objective: E (Nt+1{Xt:j}|X0 =0) (v=2A):
First, ‘
10 &
+ —0) — +
E (N 1{x,-;| X0 =0) = ﬁgﬁHo(r,s,t)
7

)
s=0,r=1



where
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As before, .
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Then
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