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Continuous-time linear birth–death-immigration (BDI) processes are fre-
quently used in ecology and epidemiology to model stochastic dynamics of
the population of interest. In clinical settings, multiple birth–death processes
can describe disease trajectories of individual patients, allowing for estima-
tion of the effects of individual covariates on the birth and death rates of
the process. Such estimation is usually accomplished by analyzing patient
data collected at unevenly spaced time points, referred to as panel data in the
biostatistics literature. Fitting linear BDI processes to panel data is a non-
trivial optimization problem because birth and death rates can be functions
of many parameters related to the covariates of interest. We propose a novel
expectation–maximization (EM) algorithm for fitting linear BDI models with
covariates to panel data. We derive a closed-form expression for the joint gen-
erating function of some of the BDI process statistics and use this generating
function to reduce the E-step of the EM algorithm, as well as calculation of
the Fisher information, to one-dimensional integration. This analytical tech-
nique yields a computationally efficient and robust optimization algorithm
that we implemented in an open-source R package. We apply our method to
DNA fingerprinting of Mycobacterium tuberculosis, the causative agent of tu-
berculosis, to study intrapatient time evolution of IS6110 copy number, a ge-
netic marker frequently used during estimation of epidemiological clusters of
Mycobacterium tuberculosis infections. Our analysis reveals previously un-
documented differences in IS6110 birth–death rates among three major lin-
eages of Mycobacterium tuberculosis, which has important implications for
epidemiologists that use IS6110 for DNA fingerprinting of Mycobacterium
tuberculosis.

1. Introduction. Linear birth–death-immigration (BDI) processes provide
useful building blocks for modeling population dynamics in ecology [Nee (2006)],
molecular evolution [Thorne, Kishino and Felsenstein (1991)] and epidemiology
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[Gibson and Renshaw (1998)], among many other areas. Although Keiding (1975)
has extensively studied inference for fully observed continuous-time BDI pro-
cesses, more often such processes are not observed completely, posing challenging
computational problems for statisticians. Here, we use applied probability tools to
develop a new, efficient implementation of the expectation–maximization (EM)
algorithm for fitting discretely observed BDI processes.

We are interested in situations where we observe multiple independent conti-
nuous-time BDI trajectories at fixed, possibly irregularly spaced, time points. Such
observations, called panel data, often arise in medical applications, with indepen-
dent BDI trajectories corresponding to some stochastic process recorded in dif-
ferent patients under study [Crespi, Cumberland and Blower (2005)]. The birth
and death rates can then be modeled as functions of patient-specific covariates.
This modeling framework is similar to the use of continuous-time Markov chains
(CTMCs) in multi-state disease progression models with a finite number of states
[Kalbfleisch and Lawless (1985)]. Although established methods for fitting finite
state CTMCs to panel data exist [Jackson (2011), Kalbfleisch and Lawless (1985),
Lange (1995)], less attention has been paid to infinite state-space processes, such
as BDI models.

Outside of medical applications, estimating parameters of discretely observed
BDI models is considered in the molecular evolution and bioinformatics literature
[Holmes (2005), Thorne, Kishino and Felsenstein (1991)]. For example, Holmes
(2005) proposed an EM algorithm for discretely observed BDI processes in the
context of finding the most optimal alignment of multiple genomic sequences. The
author argues that the EM algorithm’s simplicity and robustness make this method
attractive for large-scale bioinformatics applications. Unfortunately, implementa-
tion of the EM algorithm by Holmes (2005) is applicable only to a very restricted
class of BDI processes. In this paper, we develop a more general EM algorithm that
applies to a large class of BDI models and is not restricted to molecular evolution
applications.

Computing expectations of the complete-data log-likelihood, needed for exe-
cuting an EM algorithm, can be challenging, especially if the complete-data were
generated by a continuous-time stochastic process. When the complete data are
generated by a finite state-space CTMC, these expectations can be computed ef-
ficiently [Holmes and Rubin (2002), Lange (1995)]. Although the BDI process is
also a CTMC, the infinite state-space of the process prohibits us from using these
computationally efficient methods. Holmes (2005) considers a BDI model with
the immigration rate either zero or proportional to the birth rate. Under this restric-
tion, the complete-data likelihood belongs to the exponential family, which means
that the complete-data log-likelihood is a linear function of sufficient statistics
of the complete data. Making further stringent assumptions about the initial state
of the process, Holmes (2005) computes expectations of these sufficient statis-
tics by numerically solving a system of coupled nonlinear ordinary differential
equations (ODEs). Working with this birth–death-restricted immigration (BDRI)
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model, but without any restrictions on the starting state of the process, we de-
velop a new computationally efficient method for computing the expected suffi-
cient statistics. Our method combines ideas from Kendall (1948) and Lange (1982)
and reduces computations of the expected sufficient statistics to one-dimensional
integration, a computational task that is much simpler than solving a system of
nonlinear ODEs. We develop a similar integration method to compute the observed
Fisher information matrix via Louis’ formula [Louis (1982)] and use this matrix
for calculation of confidence intervals and sets. In addition, when we have multiple
BDRI trajectories observed, we allow the birth and death rates to be functions of
trajectory-specific covariates.

We first test our EM algorithm on simulated data and then turn to a problem of
estimating birth and death rates of the transposable element IS6110 in Mycobac-
terium tuberculosis, the causative bacterial agent of most tuberculosis (TB) in hu-
mans. Mycobacterium tuberculosis genome carries multiple IS6110 copies that get
duplicated and deleted rapidly during replication. Estimating IS6110 copy number
birth (duplication) and death (loss) rates is an important task in TB molecular
epidemiology because researchers use IS6110 copy number to group infected in-
dividuals into epidemiological clusters [Small et al. (1994)]. In the United States,
the resurgence of TB cases, attributed to significant changes in socioeconomic fac-
tors, started in the late 1980s, with the number of TB cases reaching its peak in
1991 and steadily declining since then [Cattamanchi et al. (2006)]. Since 1991,
the University of California, San Francisco has been maintaining a database of TB
cases reported to the San Francisco Department of Public Health. The database
contains demographic and certain clinical information as well as M. tuberculosis
genotypes (e.g., IS6110 copy number) for each reported TB case [Jasmer et al.
(1999)]. Rosenberg, Tsolaki and Tanaka (2003) used a subset of this database to
estimate IS6110 birth and death rates. These authors proposed an approximate like-
lihood method to accomplish this estimation. We revisit this problem using our EM
algorithm and compare our results with the approximation of Rosenberg, Tsolaki
and Tanaka (2003). Further, we examine differences in birth and death rates among
three main lineages of M. tuberculosis and find that the East-Asian M. tuberculo-
sis is evolving at a slower rate than its European–American counterpart. This novel
finding has serious implications on the definition of epidemiological clusters based
on the IS6110 copy number. To investigate the possibility of spurious effect of M.
tuberculosis lineage on IS6110 birth and death rates due to a confounding factor,
we build a more complicated model for birth and death rates. In addition to the lin-
eage, we include M. tuberculosis drug-resistance status and HIV infection status
of each patient as birth and death rate covariates. We find that after including these
covariates, the lineage remains the only variable that significantly affects IS6110
birth and death rates.

2. BDRI process with covariates. We start with m independent continuous-
time homogeneous linear BDRI processes {Xp,t }, for p = 1, . . . ,m, with corre-
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sponding per capita birth rates λp ≥ 0, per capita death rates μp ≥ 0 and immi-
gration rates νp = βλp , where β ≥ 0 is a known constant. Assuming that each
process p has c1 covariates related to the birth rates and c2 covariates related
to the death rates, collected into vectors z′

p,λ = (zp,λ,1, . . . , zp,λ,c1) ∈ R
c1 and

z′
p,μ = (zp,μ,1, . . . , zp,μ,c2) ∈ R

c2 , we model birth and death rates as log-linear
functions of these covariates:

logλp = z′
p,λγ λ and logμp = z′

p,μγ μ,(1)

where γ ′
λ = (γλ,1, . . . , γλ,c1) and γ ′

μ = (γμ,1, . . . , γμ,c2) are birth and death re-
gression coefficients. Covariate vectors zp,λ and zp,μ are assumed to be known
and fixed for every process p. For example, if each BDRI process models a dis-
ease related trajectory for each patient, then covariates are usually composed of
patient-specific clinical and demographic information (e.g., gender, medical his-
tory).

We assume that we observe the pth process at n(p) + 1 distinct times, 0 =
tp,0 < tp,1 < · · · < tp,n(p). We denote our data vector by

Y = (X1,t1,0, . . . ,X1,t1,n(1)
, . . . ,Xm,tm,0, . . . ,Xm,tm,n(m)

)

and the parameter vector by γ = (γ λ,γ μ) ∈ R
c1+c2 . We are interested in comput-

ing the parameter maximum likelihood estimates (MLEs), γ̂ = arg maxγ lo(Y;γ ),
where

lo(Y;γ ) :=
m∑

p=1

n(p)−1∑
i=0

logpXp,tp,i
,Xp,tp,i+1

(tp,i+1 − tp,i;λp,μp)(2)

is the observed-data log-likelihood and pi,j (t;λ,μ) = Pλ,μ(Xt = j |X0 = i),
i, j = 0,1, . . . , are the transition probabilities of the BDRI process. These transi-
tion probabilities can be calculated either using the generating function derived by
Kendall (1948) or via the orthogonal polynomial representation of Karlin and Mc-
Gregor (1958). Despite the explicit algebraic nature of the orthogonal polynomials,
the latter method can be numerically unstable and the generating function method
is often preferred [Sehl et al. (2011)]. Although one can maximize the likelihood
lo(Y;γ ) using standard off-the-shelf optimization algorithms, such generic algo-
rithms can be problematic when the BDI rates are functions of a high-dimensional
parameter vector, such as the vector of regression coefficients γ in our case. As
an alternative to generic optimization, we develop an EM algorithm, known for
its robustness and ability to cope with high-dimensional optimization [Dempster,
Laird and Rubin (1977)].

3. EM algorithm for the BDRI process. The complete data in our case con-
sist of the BDRI trajectories {Xp,t }, observed continuously during the correspond-

ing intervals [0, tp,n(p)], p = 1, . . . ,m. Let X = {Xp,t }t∈[0,tp,n(p)]
p=1,...,m be the complete
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data and let lc(X;γ ) be the complete data log-likelihood. The EM algorithm starts
by initializing the parameter vector to an arbitrarily chosen vector γ 0. At the kth
iteration of the algorithm we set

γ k = arg max
γ

Eγ k−1

[
lc(X;γ )|Y]

.(3)

To accomplish the above maximization, we need to be able to evaluate the expec-
tation in (3) for any vector γ . Traditionally, a numerical procedure for computing
such an expectation is called an E-step of the EM algorithm. The maximization of
the expectation is called an M-step of the EM algorithm. Below, we develop effi-
cient algorithms for implementing these E- and M-steps for the discretely observed
BDRI process. As is often the case, we will see that to compute the needed expec-
tations for all γ ∈ R

c1+c2 , we need to compute only the expectations of certain
statistics that do not depend on γ .

3.1. E-step. Since our BDRI process is a CTMC, the log-likelihood of the
complete data is

lc(X;γ ) = −
m∑

p=1

[ ∞∑
i=0

dp(i)
[
i(λp + μp) + νp

]
(4)

+
∞∑
i=0

(
n

p
i,i+1 log(iλp + νp) + n

p
i,i−1 log(iμp)

)]
,

where dp(i) is the total time spent by Xp,t in state i and n
p
i,j is the number of jumps

from state i to state j during the interval [0, tp,n(p)] [Guttorp (1995)]. Replacing
νp with βλp in the above equation, we arrive at a more compact representation of
the complete-data log-likelihood:

lc(X;γ ) =
m∑

p=1

[−Rp,tp,n(p)
(λp + μp) − tn(p)βλp

(5)
+ N+

p,tp,n(p)
logλp + N−

p,tp,n(p)
logμp

] + const,

where the number of jumps up N+
p,tp,n(p)

:= ∑
i≥0 n

p
i,i+1, the number of jumps

down N−
p,tp,n(p)

:= ∑
i≥0 n

p
i,i−1, and the total particle-time

Rp,tp,n(p)
:=

∫ tp,n(p)

t0

Xs ds =
∞∑
i=0

idp(i)

for p = 1, . . . ,m, are the sufficient statistics. Equation (5) shows that, for the
E-step, the only expectations we need are Eγ̃ [N+

p,tp,n(p)
|Y], Eγ̃ [N−

p,tp,n(p)
|Y] and

Eγ̃ [Rp,tp,n(p)
|Y] for all values γ̃ . Using independence of the p BDRI processes,
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the Markov property and additivity of expectations, we break the desired expecta-
tions into sums of expectations of the numbers of jumps up and down and the total
particle time during each time interval [tp,k, tp,k+1], conditional on Xp,tp,k

and
Xp,tp,k+1 . By the homogeneity of each of the BDRI processes, in order to complete
the E-step of the EM algorithm, we need to be able to calculate

Ui,j (t) = Ui,j (t;λ,μ) = E
(
N+

t |X0 = i,Xt = j
)
,

Di,j (t) = Di,j (t;λ,μ) = E
(
N−

t |X0 = i,Xt = j
)

and(6)

Pi,j (t) = Pi,j (t;λ,μ) = E(Rt |X0 = i,Xt = j)

for all nonnegative integers i and j .
Following Minin and Suchard (2008), we choose to work with restricted mo-

ments

Ũi,j (t) = Ũi,j (t;λ,μ) = E
(
N+

t 1{Xt=j }|X0 = i
)
,

D̃i,j (t) = D̃i,j (t;λ,μ) = E
(
N−

t 1{Xt=j }|X0 = i
)

and(7)

P̃i,j (t) = P̃i,j (t;λ,μ) = E(Rt1{Xt=j}|X0 = i),

that we can divide by transition probabilities pi,j (t) to recover the conditional
expectations (6),

Ui,j (t) = Ũi,j (t)/pi,j (t),

Di,j (t) = D̃i,j (t)/pi,j (t) and(8)

Pi,j (t) = P̃i,j (t)/pi,j (t).

In order to compute the restricted moments, we first consider the joint generating
function

Hi(u, v,w, s, t) := E
(
uN+

t vN−
t e−wRt sXt |X0 = i

)
,(9)

where 0 ≤ u, v, s ≤ 1 and w ≥ 0. Partial derivatives of this function,

∂Hi(u,1,0, s, t)

∂u

∣∣∣∣
u=1

=
∞∑

j=0

sj
∞∑

n=0

nPri
(
N+

t = n,Xt = j
)

=
∞∑

j=0

Ũi,j (t)s
j ,

∂Hi(1, v,0, s, t)

∂v

∣∣∣∣
v=1

=
∞∑

j=0

sj
∞∑

n=0

nPri
(
N−

t = n,Xt = j
)

=
∞∑

j=0

D̃i,j (t)s
j and(10)
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∂Hi(1,1,w, s, t)

∂w

∣∣∣∣
w=0

= −
∞∑

j=0

sj
∫ ∞

0
x d Pri (Rt ≤ x,Xt = j)

= −
∞∑

j=0

P̃i,j (t)s
j

are power series with coefficients Ũi,j (t), D̃i,j (t) and −P̃i,j (t), respectively, for
j = 0,1, . . . ,∞, where Pri denotes probability conditional on X0 = i. We will
denote these power series by G+

i (t, s), G−
i (t, s) and G∗

i (t, s), respectively. If we
can compute G+

i (t, s), G−
i (t, s) and G∗

i (t, s) for every possible t and s, then we
should be able to recover coefficients of the corresponding power series via dif-
ferentiation or integration. Numerical evaluation of the partial derivatives (10) is
straightforward if we can compute finite differences of Hi(u, v,w, s, t). Remark-
ably, Hi(u, v,w, s, t) is available in closed form, as we demonstrate in the theorem
below, so one can even obtain derivatives (10) analytically. Note that the theorem
below applies to a general linear BDI process, not only to the BDRI processes.

THEOREM 1. Let {Xt } be a linear BDI process with parameters λ ≥ 0, μ ≥ 0
and ν ≥ 0. Over the interval [0, t], let N+

t be the number of jumps up, N−
t be the

number of jumps down and Rt be the total particle-time. Then Hi(u, v,w, s, t) =
E(uN+

t vN−
t e−wRt sXt |X0 = i) satisfies the following partial differential equation:

∂

∂t
Hi = [

s2uλ − (λ + μ + w)s + vμ
] ∂

∂s
Hi + ν(us − 1)Hi,(11)

subject to initial condition Hi(u, v,w, s,0) = si . The Cauchy problem defined by
equation (11) and the initial condition has a unique solution. When λ > 0, the
solution is

Hi(u, v,w, s, t) =
(

α1 − α2(s − α1)e
−λ(α2−α1)ut/(s − α2)

1 − (s − α1)e−λ(α2−α1)ut/(s − a2)

)i

(12)

×
(

α1 − α2

s − α2 − (s − α1)e−λ(α2−α1)ut

)ν/λ

e−ν(1−uα1)t ,

where α1 = λ+μ+w−
√

(λ+μ+w)2−4λμuv

2λu
and α2 = λ+μ+w+

√
(λ+μ+w)2−4λμuv

2λu
.

When λ = 0, the solution is

Hi(u, v,w, s, t) =
(
se−(μ+w)t − vμ(e−(μ+w)t − 1)

μ + w

)i

(13)
× eνu[vμ−(μ+w)s](e−(μ+w)t−1)/(μ+w)2+ν(uvμ/(μ+w)−1)t .

PROOF. Our proof, detailed in Appendix A, is a generalization of Kendall’s
derivation of the generating function of Xt [Doss et al. (2013), Kendall (1948)].

�
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Having Hi in closed form gives us access to functions G+
i , G−

i and G∗
i , so we

are left with the task of recovering coefficients of these power series. One way
to accomplish this task is to differentiate the power series repeatedly, for exam-

ple, Ũi,j (t) = 1
j !

∂jG+
i (s,t)

∂sj |s=0. In Appendix C, we demonstrate that for the death-
immigration model (λ = 0, ν 	= 0, μ 	= 0) and the BDRI model considered by
Holmes (2005), these derivatives can be found analytically [Doss et al. (2013)]. In
general, repeated differentiation of G+

i , G−
i and G∗

i needs to be done numerically,
making this method impractical. Instead, we extend G+

i (t, ·), G−
i (t, ·) and G∗

i (t, ·)
to the boundary of a unit circle in the complex plane by the change of variables
s = e2πiz (i in this context is the imaginary number

√−1, not the initial state of
the BDI process). For example,

G+
l

(
t, e2πiz) =

∞∑
j=0

Ũl,j (t)e
2πijz

is a periodic function in z, which means that Ũl,j (t) are Fourier coefficients of
this periodic function. Therefore, we can use the Riemann approximation to the
Fourier transform integral to obtain

Ũl,j (t) =
∫ 1

0
G+

l

(
t, e2πis)e−2πijs ds ≈ 1

K

K−1∑
k=0

G+
l

(
t, e2πik/K)

e−2πijk/K

for some suitably large K . The Fast Fourier Transform (FFT) [Henrici (1979)] can
be applied to quickly compute multiple Fourier coefficients [Dorman, Sinsheimer
and Lange (2004), Lange (1982), Suchard, Lange and Sinsheimer (2008)]. We do
not, however, use the FFT in our algorithm because, for a particular time interval
length t , we almost always need to compute Ũi,j (t), D̃i,j (t), P̃i,j (t) for only one
value of j .

Now, we can put the pieces together to compute Eγ̃ [lc(X;γ )|Y]. As mentioned
above, N+

p,tp,n(p)
equals the sum of the number of jumps up over the disjoint inter-

vals [tp,i−1, tp,i), i = 1, . . . , n(p). The Markov property says that the conditional
expectations of the number of jumps up of Xp,t over [tp,i−1, tp,i) given Y is equal
to the conditional expectation of the number of jumps up over [tp,i−1, tp,i) given
just Xp,tp,i−1 and Xp,tp,i

. Using similar logic for N−
p,tp,n(p)

and Rp,tp,n(p)
, this gives

for p = 1, . . . ,m,

Eγ̃ p

[
N+

p,tp,n(p)
|Y] =

n(p)∑
i=1

UXp,tp,i−1 ,Xp,tp,i
(tp,i − tp,i−1; λ̃p, μ̃p),

Eγ̃ p

[
N−

p,tp,n(p)
|Y] =

n(p)∑
i=1

DXp,tp,i−1 ,Xp,tp,i
(tp,i − tp,i−1; λ̃p, μ̃p) and(14)

Eγ̃ p
[Rp,tp,n(p)

|Y] =
n(p)∑
i=1

PXp,tp,i−1 ,Xp,tp,i
(tp,i − tp,i−1; λ̃p, μ̃p),
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where log λ̃p = z′
p,λγ̃ p,λ and log μ̃p = z′

p,μγ̃ p,μ. Thus, by (5), (8) and (14), we
see that, up to an additive constant, Eγ̃ [lc(X;γ )|Y] is equal to

m∑
p=1

{
−tn(p)βλp

+
n(p)∑
i=1

(
−

P̃Xp,tp,i−1 ,Xp,tp,i
(tp,i − tp,i−1; λ̃p, μ̃p)

pXp,tp,i−1 ,Xp,tp,i
(tp,i − tp,i−1; λ̃p, μ̃p)

(λp + μp)

+
ŨXp,tp,i−1 ,Xp,tp,i

(tp,i − tp,i−1; λ̃p, μ̃p)

pXp,tp,i−1 ,Xp,tp,i
(tp,i − tp,i−1; λ̃p, μ̃p)

logλp

+
D̃Xp,tp,i−1 ,Xp,tp,i

(tp,i − tp,i−1; λ̃p, μ̃p)

pXp,tp,i−1 ,Xp,tp,i
(tp,i − tp,i−1; λ̃p, μ̃p)

logμp

)}
,

where the transition probabilities pXp,tp,i−1 ,Xp,tp,i
(tp,i − tp,i−1; λ̃p, μ̃p) can be cal-

culated by using the (known) generating function for the BDI process, as is de-
scribed in Appendix A [Doss et al. (2013)].

3.2. M-step. To complete the M-step for each iteration of the EM algorithm,
we use a Newton–Raphson algorithm to maximize

f (γ ) = Eγ̃

[
lc(X;γ )|Y]

.

In each Newton–Raphson step, we update γ via the following recursion:

γ new = γ cur − [
Hf (γ cur)

]−1∇f (γ cur),

where ∇f (γ cur) is the gradient vector and Hf (γ cur) is the Hessian matrix
of the function f (γ ). If we collect the observation times into a vector T′ =
(t1,n(1), . . . , tm,n(m)), the expectations of the sufficient statistics into vectors

U′ = (
Eγ̃

[
N+

1,t1,n(1)
|Y]

, . . . ,Eγ̃

[
N+

m,tm,n(m)
|Y])

,

D′ = (
Eγ̃

[
N−

1,t1,n(1)
|Y]

, . . . ,Eγ̃

[
N−

m,tm,n(m)
|Y])

,(15)

P′ = (
Eγ̃ [R1,t1,n(1)

|Y], . . . ,Eγ̃ [Rm,tm,n(m)
|Y]),

and the process-specific birth and death rates into vectors

λ′ = (λ1, . . . , λm) and μ′ = (μ1, . . . ,μm),
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then after defining covariate matrices

Z′
λ = (z1,λ, . . . , zm,λ) and Z′

μ = (z1,μ, . . . , zm,μ),

the gradient and the Hessian can be compactly expressed in matrix form as

∇f (γ ) = (
Z′

λ

[−diag(P + βT)λ + U
]
,Z′

μ

[−diag(P)μ + D
])

,(16)

Hf (γ ) =
(−Z′

λ diag(P + βT)diag(λ)Zλ 0
0 −Z′

μ diag(P)diag(μ)Zμ

)
,(17)

which we show in Appendix B; see (S-4), (S-6) and (S-9) [Doss et al. (2013)].
Notice that the algebraic separation of the birth and the death components in the
complete-data likelihood results in blocks—corresponding to γ λ and γ μ—in the
above formulae. The fact that the gradient and Hessian of f (γ ) is available ana-
lytically results in fast execution of Newton–Raphson updates. In our experience,
the Newton–Raphson algorithm in our M-step converges after only 3–5 iterations.
However, we also note that it is not critical to achieve convergence of this algo-
rithm since even a single Newton–Raphson update within the M-step is enough to
guarantee the usual convergence properties of the EM algorithm [Lange (1995)].

We obtain the observed Fisher information via Louis’ formula:

ÎY(γ̂ ) = Eγ̂

[−Hlc(X; γ̂ )|Y] − Eγ̂

[∇lc(X; γ̂ )∇lc(X; γ̂ )′|Y]
,

where ∇lc is the gradient and Hlc is the Hessian of the complete-data log-
likelihood [Louis (1982)]. This requires calculation of the conditional cross-
product means, E[N+

t N−
t |Y], E[N+

t Rt |Y], E[N−
t Rt |Y], and the conditional sec-

ond moments of N+
t ,N−

T and Rt . The derivation of the information in terms of
these moments is in Appendix B [Doss et al. (2013)]. These conditional second-
and cross-moments, as well as P and D, can be computed in analogous fashion to
U above, using the joint generating function (12). We use the information matrix to
compute approximate standard errors of γ̂ and use these standard errors together
with asymptotic normality of maximum likelihood estimators to form confidence
intervals and sets for our model parameters.

4. Results.

4.1. Simulations. To test our methods, we simulate data from the BDRI model
with λ = 0.07, μ = 0.12 and β = 1.2, where β is assumed to be known, leaving us
with only two parameters to estimate: λ and μ. We choose these parameters to re-
semble, but not exactly match, the dynamics of our biological example, discussed
in the next subsection. We simulate 100 independent processes starting from initial
states drawn uniformly between 1 and 15. From each process we collect at least
two observations. We place observation times uniformly between 0 and 30. Table 1
gives some summary statistics for the simulated data.
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TABLE 1
Summary statistics for the simulated and M. tuberculosis IS6110 data

Value Simulated data IS6110 data

Number of intervals 387 252
Average interval length 5 0.35
Number of individuals 100 196
Number of intervals with an increase 78 14
Average increase given an increase 1.5 1
Number of intervals with a decrease 190 14
Average decrease given a decrease 2.5 1.2
Number of intervals with no change 119 224
Mean starting state 5.5 11
Standard deviation of starting state 3.8 5.3
Total length of time 1947 89

We test our EM algorithm and confidence interval calculations on these simu-
lated data with initial parameter values of 0.2 for both λ and μ. We considered
other choices of starting values, but the algorithm was not sensitive to them. No-
tice that this is the simplest parameterization of our BDRI model, where both zλ

and zμ are vectors of ones. We estimate 0.067 with a 95% confidence interval
of (0.052,0.081) for λ and 0.12, (0.1,0.14) for μ, indicating that our algorithm
successfully recovered these BDRI model parameters. We also conduct a simi-
lar simulation study for the BDRI model with covariates, successfully estimating
parameters of this model as well, but omit detailed results of this simulation for
brevity.

4.2. Comparison with the frequent monitoring method. We compare our EM
algorithm for computing the actual MLE to the frequent monitoring (FM) method
of Rosenberg, Tsolaki and Tanaka (2003) for computing the MLE of an approxi-
mate likelihood. In the FM method, Rosenberg, Tsolaki and Tanaka (2003) assume
that if the starting and ending values of the birth–death process are equal for a par-
ticular interval, then no jumps occurred in this interval. Further, if the difference
between the starting and ending values is −1 or 1, then exactly one jump up or
exactly one jump down must have occurred, respectively. The authors exclude all
observed intervals, for which starting and ending values differ by more than one
unit. Let i be the starting state for an interval, t the length of the interval and
λi = i(λ + μ). Then the corresponding probabilities for the three possible events
are e−λiu, iλ

λi
(1 − e−λiu) and iμ

λi
(1 − e−λiu), respectively. Rosenberg, Tsolaki and

Tanaka (2003) use this FM method to estimate rates in what is effectively a multi-
state branching process, but we will compare the two methods on our BDRI model
with the immigration rate β constrained to be 0. We again simulate an underlying
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FIG. 1. Box plots of birth (left panel) and death (right panel) rate estimates, obtained from 200
simulated data sets using the EM algorithm and frequent monitoring (FM) method. The true param-
eter values, used in data simulations, are marked by the horizontal dashed lines. Above the box plots,
we show Monte Carlo estimates of coverage probabilities of the 95% confidence intervals.

BD process using λ = 0.07 and μ = 0.12. To compare the two methods, we gener-
ate three different sets of data. In each set, we generate observed states of the BD
process at a fixed constant distance dt apart. This distance varies across the data
sets, taking the values 0.2,0.4 and 0.6, respectively. We repeat this procedure 200
times and compute birth and death rate estimates and corresponding 95% confi-
dence intervals using the EM algorithm and FM approximation method. We show
box plots of the resulting estimates for λ and μ in Figure 1. As expected, the FM
estimates behave reasonably when interval lengths are small, but the approxima-
tion becomes poor as we increase the interval length. The FM method always un-
derestimates the parameters since the method effectively undercounts the number
of unobserved jumps in the BD process. We also compute Monte Carlo estimates
of coverage probabilities of the two methods, shown above the box plots in Fig-
ure 1. Not surprisingly, coverage of the 95% confidence intervals computed under
the proper BD model likelihood are very close to the promised value of 0.95. In
contrast, the FM approximation-based 95% confidence intervals contain the true
parameter value less than 95% for all three simulation scenarios.

4.3. Mycobacterium tuberculosis IS6110 transposon. We apply our EM algo-
rithm to estimation of birth and death rates of the transposon IS6110 in M. tubercu-
losis [McEvoy et al. (2007)]. A transposon, or transposable element, is a genetic se-
quence that can duplicate, remove itself and jump to a new location in the genome.
IS6110 is a transposon that plays an important role in epidemiological studies of
tuberculosis. More specifically, the number and locations of IS6110 elements in
the M. tuberculosis form a genetic signature or genotype of the mycobacterium,



BIRTH–DEATH PROCESSES FOR PANEL DATA 2327

allowing epidemiologists to draw inference about disease transmission when the
same genotype is observed among patients with active tuberculosis [van Embden
et al. (1993)]. Such genotypic comparison can translate into meaningful epidemi-
ological inference only if the dynamics of IS6110 evolution are well understood.
Therefore, accurate estimation of rates of changes of IS6110-based genotypes is
critical for using these genotypes in epidemiological studies [Tanaka and Rosen-
berg (2001)].

We analyze data from an ongoing population-based study that includes all
tuberculosis cases reported to the San Francisco Department of Public Health
[Cattamanchi et al. (2006)]. Our data include patients with more than one M. tu-
berculosis isolate from specimens sampled more than 10 days apart and genotyped
with IS6110 restriction fragment length polymorphism. We ignore genomic loca-
tions of IS6110 and assume that the transposon counts are discretely observed
realizations of a BDRI process, with no immigration (β = 0); in particular, we as-
sume that patients are not reinfected with a different strain of the bacteria in the
period between observations. The third column in Table 1 gives summary statistics
for the data.

We first use a simple model with one single birth rate and one single death
rate of the IS6110 for all patients. In the analysis presented, we start the EM
algorithm with parameter guesses of 0.05 and 0.05 for λ and μ, respectively,
and their MLEs are 0.0176 and 0.0207, respectively. The starting values for the
EM do not affect these results. Our estimate and 95% confidence interval for
λ, 0.0176 and (0.0082,0.027), are consistent with the corresponding quantities,
0.0188 and (0.0085,0.0291), from Rosenberg, Tsolaki and Tanaka (2003). Al-
though the authors’ confidence interval for μ, (0.0057,0.0237), overlaps with
ours, (0.011,0.031), our estimate for μ, 0.0207, is noticeably higher than Rosen-
berg, Tsolaki and Tanaka’s (2003) estimate of 0.0147. Note from Table 1 that
among the intervals with a decrease, the average count drop is by more than 1;
there are 3 intervals where IS6110 counts drop by 2, whereas there are no in-
tervals that experience an increase by more than 1. Thus, we would expect our
estimate for μ to increase over Rosenberg, Tsolaki and Tanaka’s (2003) approx-
imation, whereas that of λ should be similar between the two methods. We also
point out that we analyze an updated version of the data analyzed by Rosenberg,
Tsolaki and Tanaka (2003). Moreover, Rosenberg, Tsolaki and Tanaka (2003) use
a slightly more complicated model for IS6110 evolution, which takes into account
shifts in transposon location. We conclude that estimates of birth and death rates
of IS6110 do not vary dramatically when estimation methods and data collection
are altered. We now turn to more complicated BDRI models that have not been
applied before to the M. tuberculosis IS6110 copy number evolution. These mod-
els will take into account potential dependence of IS6110 birth and death rates on
patient-specific covariates.
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4.3.1. Mycobacterium tuberculosis lineage comparison. In addition to esti-
mation of the global birth and death rates, we separately estimate these parameters
in each of the three lineages of M. tuberculosis observed in San Francisco. Based
on genomic sequence similarity, M. tuberculosis is divided into six main lineages:
Euro-American, East-Asian, Indo-Oceanic, East-African–Indian, West-African I
and West-African II [Gagneux et al. (2006)]. In our lineage-specific analysis, we
consider 109 individuals infected with Euro-American (EU) lineage strains, 54 in-
dividuals infected with East-Asian (EA) lineage strains and 25 individuals infected
with Indo-Oceanic (IND) lineage strains. One simple way to accommodate this
lineage effect is to build a log-linear model for birth and death rates with two cat-
egorical covariates:

logλp = γλ,1 + γλ,2 EUp +γλ,3 INDp, logμp = γμ,1 + γμ,2 EUp +γμ,3 INDp,

where EUp = 1 if patient p is infected with the EU strain and 0 otherwise, and
INDp = 1 if patient p is infected with the IND strain and 0 otherwise. The in-
tercepts, γλ,1 and γμ,1, correspond to birth and death of the EA strain. We trans-
form the coefficients (γλ,1, γλ,2, γλ,3) and (γμ,1, γμ,2, γμ,3) into the M. tubercu-
losis lineage-specific birth and death rates and show these estimates together with
their corresponding confidence in the first column of Figure 2. Most notably, there
appears to be a substantial difference between death rates of the Euro-American

FIG. 2. Point estimates and 95% confidence intervals for birth and death rates of the IS6110 trans-
posable element obtained by separately analyzing three M. tuberculosis lineages: European–Amer-
ican (EU), Indo-Oceanic (IND) and East Asian (EA) (leftmost column) and by fitting the log-linear
model with lineage, drug resistance and HIV status as covariates. For the latter model, the estimated
regression coefficients are transformed into four sets of lineage-specific birth and death rates (last
four columns).
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TABLE 2
Results of the two log-linear models for birth and death rates of IS6110. The lineage model includes

only effects of M. tuberculosis lineages (EA, EU, IND). The full model combines the effects of
lineages, HIV infection status (HIV+) and drug resistance status (DR). The birth and death rate

multiplier estimates for the EU lineage are highlighted in bold to indicate that the confidence
intervals for these parameters are above one

Lineage model Full model

Coefficient MLE CIs MLE CIs

EA birth rate, exp(γλ,1) 0.011 (0.003, 0.034) 0.012 (0.006, 0.025)
EU multiplier, exp(γλ,2) 2.63 (0.689, 10.0) 3.2 (1.1, 9.4)
IND multiplier, exp(γλ,3) 1.40 (0.229, 8.53) 1.7 (0.29, 9.7)
DR multiplier, exp(γλ,4) – – 0.88 (0.36, 2.1)
HIV+ multiplier, exp(γλ,5) – – 0.61 (0.28, 1.3)
EA death rate, exp(γμ,1) 0.004 (0.0005, 0.028) 0.004 (0.0005, 0.031)
EU multiplier, exp(γμ,2) 9.32 (1.19, 72.8) 11 (1.2, 114)
IND multiplier, exp(γμ,3) 5.40 (0.553, 52.6) 6.2 (0.36, 1.1)
DR multiplier, exp(γμ,4) – – 1.1 (0.52, 2.3)
HIV+ multiplier, exp(γμ,5) – – 0.64 (0.36, 1.1)

and East-Asian lineages. We report regression coefficients on the multiplicative
scale [e.g., exp(γλ,1)] with their corresponding 95% confidence intervals in the
lineage model columns of Table 2. In this table the highlighted EU rate multiplier
shows that the death rate of IS6110 copy number is estimated to be approximately
ten times higher than the corresponding death rate in the EA lineage. The confi-
dence interval of the EU rate multiplier does not contain one, indicating that EA
and EU lineages have different death rates of the IS6110 transposon.

Since this is a novel result that has implications for monitoring tuberculosis
with molecular genotyping, we examine the difference in death rates between the
three lineages more closely. More specifically, we add two binary covariates to our
log-linear model: M. tuberculosis drug resistance (DR) and HIV infection status
of each patient (HIV+). Our new model for birth and death rates becomes

logλp = γλ,1 + γλ,2 EUp +γλ,3 INDp +γλ,5 DRp +γλ,4 HIV+
p ,

logμp = γμ,1 + γμ,2 EUp +γμ,3 INDp +γμ,5 DRp +γμ,4 HIV+
p ,

where DRp = 1 if patient p is infected with a drug resistant strain M. tubercu-
losis and 0 otherwise, and HIV+

p = 1 if patient p is infected with HIV and 0
otherwise. Parameter estimates of this full model and their corresponding 95%
confidence intervals are reported in the full model columns of Table 2. The HIV
infection and drug resistance appear to have no effect on the birth and death rates
of IS6110 transposon. IS6110 copy number variation may have an impact on func-
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tions of neighboring genes in the M. tuberculosis genome [Alonso et al. (2011)].
Therefore, IS6110 copy number can potentially interact with other M. tuberculosis
phenotypes, such as drug resistance and adaptation to HIV and antiviral treatment,
with the help of selection [McEvoy et al. (2007)]. However, we do not expect to see
association between IS6110 copy number and M. tuberculosis phenotypes within
one patient because selection is unlikely to play a role on such a short time scale.
Hence, we view our estimated small effects of HIV infection and drug resistance
on IS6110 copy number as biologically plausible. The EU lineage effect on the
death rate remains statistically significant even after controlling for the two addi-
tional covariates. Interestingly, the EU lineage effect on the birth rate also becomes
statistically significant in the full model. Effect sizes for both birth and death rates
increase and the confidence intervals include larger values in the full model over
the lineage-only model. This indicates that the full model tends to find more dif-
ferences in rates between the lineages than the lineage-only model does. While
more data are certainly needed to confirm that EU lineage birth rate effect is not 1,
the full model may be capturing information the simpler lineage-only model does
not, which, in the face of limited data, is valuable. For practical considerations,
the fact that our most parameter rich full model results in significant effects of EU
lineage on IS6110 birth and death rates suggests that M. tuberculosis lineage has
to be taken into consideration when IS6110 genotype data are used to uncover the
history of M. tuberculosis transmission.

4.3.2. IS6110 counts. The initial number of IS6110 elements is a potential
confounder in our analysis because patients infected with Euro-American and
East-Asian differ drastically in the number of IS6110 elements at the beginning
of the observation period. The isolates from the Euro-American lineage have be-
tween 2 and 17 IS6110 elements, with 41 out of 109 patients having the first
recorded IS6110 count less than 6, while IS6110 counts vary between 6 and 22
for the East-Asian isolates. Warren et al. (2002) suggest that IS6110 genotypes
with fewer than six elements have a very low rate of change, because in their data
cases with no observed changes in the genotype are dominated by such low-count
genotypes. However, our birth–death model very well predicts the conclusion of
Warren et al. (2002) that low-count genotypes evolve slower than high-count geno-
types. To demonstrate this, we simulate 1000 data sets using our global birth and
death rates and observed initial IS6110 counts for each patient. We record the
number of intervals with equal starting and ending values less than six, n0,<6, and
equal starting and ending values greater or equal to six, n0,≥6. We also recorded
the length sum of both kinds of intervals: t0,<6 and t0,≥6. In our data, nobs

0,<6 = 53

and nobs
0,≥6 = 171 with nobs

0,<6/tobs
0,<6 = 4.6 > 2.8 = nobs

0,≥6/tobs
0,≥6, in agreement with

Warren et al.’s (2002) analysis. Histograms of simulated values of the four statis-
tics, n0,<6, n0,≥6, t0,<6 and t0,≥6, shown in Figure 3, demonstrate that our birth–
death model replicates well the observed dynamics of low-count and high-count
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FIG. 3. Low- vs high-count genotype analysis. Histograms of simulated numbers of intervals and
sums of interval lengths are plotted for intervals with starting values less than six and greater or
equal to six. The vertical dashed lines indicate the observed values of the four statistics.

IS6110 genotypes. We conclude that our data do not provide evidence that evolu-
tionary dynamics of low-count genotypes differ from high-count genotype dynam-
ics. Therefore, it is unlikely that a high percentage of low-count genotypes in the
Euro-American lineage isolates causes our estimated discrepancy between death
rates of Euro-American and East-Asian M. tuberculosis lineages.

5. Discussion. In this paper we present a novel EM algorithm for fitting birth–
death processes to panel data. We allow logarithms of birth and death rates to be
linear combinations of individual-level covariates. Such birth–death models with
covariates share analogy with covariate-dependent CTMC models on finite state
spaces—a widely used class of models in medical statistics [Kalbfleisch and Law-
less (1985)]. To our knowledge, there is no established and well tested method for
fitting birth–death processes, considered in this paper, to panel data. We hope that
by filling this void with our new EM algorithm, accompanied by an open-source R
package DOBAD (available at http://cran.r-project.org), we will stimulate statistical
applications of birth–death processes, at least in the context of panel data.

We illustrate the applicability of birth–death models by analyzing the evolution-
ary dynamics of the IS6110 transposon—an important genetic marker that serves
as a genetic signature of the M. tuberculosis bacterium. By building realistic mod-
els for IS6110 dynamics, we uncover differences in IS6110 birth and death rates
among major lineages of M. tuberculosis, while controlling for other clinical co-
variates. This novel result is important because IS6110 copy number is used as
a genetic marker to create DNA fingerprints of M. tuberculosis using the restric-
tion fragment length polymorphism technology [Kato-Maeda, Metcalfe and Flores
(2011), van Embden et al. (1993)]. Strains that have the same IS6110 counts and in
which the IS6110 element is located in DNA fragments of similar size are consid-
ered identical. When such identical strains are found in community-based studies,
the strains are clustered and patients carrying these strains are inferred to belong

http://cran.r-project.org
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to the same M. tuberculosis transmission chain [Kato-Maeda, Metcalfe and Flores
(2011)]. However, if some M. tuberculosis lineages evolve at much slower rates
than others, as we discover in our analysis, then using the same notion of similar-
ity between IS6110 counts for these slow-evolving lineages could be highly mis-
leading. Therefore, we suggest that when using IS6110 genotypes, M. tuberculosis
lineage effect should be included explicitly in statistical protocols of estimating
tuberculosis epidemiological clusters.

Although in our M. tuberculosis fingerprinting example we do not consider the
possibility of immigration, we include immigration in our methodological devel-
opments. More specifically, our EM algorithm and the accompanying software
package allow for immigration to occur at a rate proportional to the birth rate. We
have two reasons for including this generalization. First, this limited form of im-
migration complicates neither our mathematical developments nor computational
tractability of the EM algorithm. Second, incorporating immigration makes our
EM algorithm more transferable to other domains of application of birth–death
processes. For example, our methodological developments directly apply to mod-
eling the evolution of insertions and deletions in molecular sequences, where im-
migration is needed to prevent molecular sequences contracting to length zero
[Holmes (2005), Thorne, Kishino and Felsenstein (1991)]. Moreover, as we show
in Appendix C, for this particular application, the E-step of our EM algorithm is
available in closed form, eliminating the need for numerical integration [Doss et al.
(2013)]. Another example of potential transferability of our EM algorithm is for
hidden death-immigration models for recurrent medical conditions, such as that
considered by Crespi, Cumberland and Blower (2005). Although our EM algo-
rithm does not apply directly to the application these authors consider, because the
states of the immigration-death process are only partially observed at discrete time
points, our mathematical results remain useful here. More specifically, one can use
our mathematical developments in the context of continuous-time hidden Markov
models [Roberts and Ephraim (2008)] in order to develop an EM algorithm, akin
to a classical Baum–Welch algorithm [Baum et al. (1970)]. As in the aforemen-
tioned insertion-deletion model, Appendix C demonstrates that the expectations of
complete data sufficient statistics for the death-immigration model are available in
closed form [Doss et al. (2013)]. We note that because our Theorem 1 applies to
general linear BDI models, we are able to use this theorem to study properties of
a death-immigration model, which is not a BDRI model—the main focus of this
manuscript.

Finally, we would like to point out that the generating functions derived in The-
orem 1 are useful not only for developing EM algorithms for birth–death mod-
els, but also for probabilistic characterization of birth–death trajectories in gen-
eral. For example, we are not aware of analytic formulae for expectations of the
sufficient statistics that do not involve the ending state of the process at time t :
E(N+

t |X0 = i), E(N−
t |X0 = i) and E(R+

t |X0 = i). These expectations, useful for
prediction purposes, arise analytically from the generating functions in Theorem 1
[e.g., E(N+

t |X0 = i) = ∂Hi(u,1,0,1, t)/∂u|u=1].
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