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ABSTRACT

Tissue microarrays (TMAs) are a new high-throughput tool for the study of protein expression

patterns in tissues and are increasingly used to evaluate the diagnostic and prognostic importance

of biomarkers. TMA data are rather challenging to analyze. Covariates are highly skewed, non-

normal, and may be highly correlated. We present statistical methods for relating TMA data

to censored time-to-event data. We review methods for evaluating the predictive power of Cox

regression models and show how to test whether biomarker data contain predictive information

above and beyond standard pathology covariates. We use nonparametric bootstrap methods

to validate model fitting indices such as the concordance index. We also present data mining

methods for characterizing high risk patients with simple biomarker rules. Since researchers in

the TMA community routinely dichotomize biomarker expression values, survival trees are a

natural choice. We also use bump hunting (patient rule induction method), which we adapt

to the use with survival data. The proposed methods are applied to a kidney cancer tissue

microarray data set.
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1 INTRODUCTION

Tissue microarrays (TMAs; Kononen et al., 1998) make high throughput molecular analysis

of large numbers of tumor samples in a single immunohistochemical staining reaction possible.

TMAs are a tool to validate the role of newly-identified tumor biomarkers. With additional

molecular information and appropriate statistical models, biomarkers are expected to lead to

improved diagnostic, prognostic and therapeutic applications in the clinic. For example, the

cell proliferation biomarker Ki-67, has been shown to be significantly associated with survival

in prostate cancer (Bettencourt et al., 1996).

The basic tissue array technique is summarized in Kononen et al. (1998). Hundreds of

tiny (typically 0.6 mm diameter) cylindrical tissue cores are densely and precisely arrayed into a

single histologic paraffin block. The block may be divided into up to 300 serial 4 to 8 µm thick

sections, which we refer to as tissue array slides (figure 1). These tissue array slides serve as

targets for immunohistochemical staining reactions. Each tissue array slide yields information

about protein staining pattern, distribution, intensity, background, and target tissue. TMAs

are widely used in determining cellular expression values and tissue distribution patterns for

newly-identified genes on a variety of normal and diseased tissue specimens.

In this paper, we propose statistical methods for relating TMA data to right censored

failure times, e.g. post-operative survival or time to first tumor recurrence. Censored times are

an important outcome in practice, but it is straightforward to adapt our methods to uncensored

or binary outcomes.

The paper is organized as follows: section 2 describes TMA data; section 3 presents

methods for showing that TMA data predict survival when biomarker expression measures

are defined prior to looking at clinical outcomes; section 4 presents rule induction methods for

characterizing high risk patients in terms of TMA data; section 5 shows an application to kidney
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cancer TMA data; section 6 discusses the results.

2 TISSUE MICROARRAY DATA

A typical TMA data set consists of three parts on different levels of observation. On the highest,

most aggregated level, one deals with clinical patient information, e.g., age at surgery, health

performance status ECOG = 0, 1, 2, 3, post-operative survival time, etc.

On a lower level, one deals with pathology case information. A case is a surgical event,

from which representative tissues are taken and sampled into the tissue array. A patient may

have several surgical events and so several pathology cases may correspond to one patient. For

simplicity, we assume that there is a one-to-one relation between clinical patient and pathology

case data represented on each tissue array. Pathology case covariates include tumor morphology

information such as T-stage (tstage = 1, 2, 3, 4), metastasis status (met, binary) and tumor

grade (grade = 1, 2, 3, 4).

On the lowest level, one deals with spots on a particular tissue array slide. A typical tissue

array slide is presented in figure 1. Each patient is represented by multiple spots in a tissue

microarray. We assume here that each tissue array slide is immunohistochemically stained by

a single biomarker. For a particular spot, stained by a single biomarker, a pathologist arrives

at several staining scores that measure biomarker expression. In our real data, three staining

scores have been measured: i) the maximum staining intensity Max ∈ {0, 1, 2, 3}, ii) the percent

of cells staining Pos ∈ {0, . . . , 100}, and iii) the percent of cells staining with maximum intensity

PosMax ∈ {0, . . . , 100}. For a given marker, the staining scores (Max, Pos, and PosMax) tend

to be highly correlated. The distribution of Pos tends to be highly skewed (figure 2) or semi-

continuous. For example, the Pos value of the majority of spots may be 0 but follow a continuous

distribution for the remaining spots. To denote which staining score is measured for a particular
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biomarker, we usually append the staining score method to the biomarker name, e.g., P53Max,

P53Pos, or P53PosMax.

In this paper, we propose methods for relating staining scores of biomarkers to clinical

outcome information. Thus, there is a need to pool multiple spot measurements across each

case (patient). TMA case data contain pooled estimates of spot biomarker staining scores across

each case (patient). The simplest pooling methods are to form the mean, median, maximum or

minimum value of the spot measurements. We denote these corresponding pooled measurements

by appending .mn, .md, .max, and .min, respectively to biomarker variable names. For example,

P53Max.mn denotes the mean pooled maximum intensity staining score of biomarker P53.

As is to be expected, the different spot pooling methods result in highly correlated staining

scores, e.g., Pos.mean will usually be highly correlated with Pos.md. Thus, one arrives at

multiple highly correlated pooled staining scores: Pos.mn, Pos.md, . . ., Max.mn, Max.md, etc.

To add to this multiplicity, consider that it is a standard practice in the TMA community to

dichotomize pooled staining scores since over- and under-expression of a biomarker lends itself

to easy biological interpretation. For each biomarker, one arrives at numerous highly correlated

dichotomous biomarker expression scores. Explicitly, the number is the product of the number

of staining scores, the number of pooling methods, and the number of potential cut-off values.

We have found that different choices can lead to covariates with very different significance levels

in subsequent Cox regression models (Cox, 1972).

2.1 Definining Biomarker Expression Indices

A challenge is to pick a staining score (e.g. Max, Pos, or PosMax), a pooling method, and

possibly a cut-off value for each biomarker. Ideally, these choices should be guided by prior

biological knowledge. For example, the cell proliferation marker Ki-67 is usually measured by
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its Pos score. The pooling method should also reflect knowledge about the biological action of

the protein. For example, mean pooling would be appropriate if one expects that the average

(global) biomarker expression is related to survival. When these choices are made prior to

looking at the outcome data, it is straightforward to test whether the biomarker is significantly

associated with survival time (see the section on using TMA data to predict survival).

However, if no prior biological knowledge is available on how to score, pool, and di-

chotomize a biomarker, it is of interest to develop rules for constructing biomarker covariates.

For this case, we present several data mining methods for evaluating how to dichotomize and

combine biomarker staining scores (see our section on characterizing high risk patients with

biomarker rules).

3 USING TMA DATA TO PREDICT SURVIVAL

Here we study predictive models of patient survival when the biomarker covariates were defined

prior to looking at the clinical or pathology data. The standard method is to use the biomarker

covariates along with clinical covariates in a Cox regression model (Cox, 1972). The Cox regres-

sion model assumes non-informative censoring and proportional hazards, which can be verified

with the use of Schoenfeld residuals (Schoenfeld, 1982).

Below we will construct three different Cox models: a clinical model with clinical and

pathology covariates only, a biomarker model with biomarker covariates only, and a biomarker/clinical

model based on both biomarker and clinical covariates. An important scientific question is to

study whether biomarkers add predictive information above and beyond clinical and pathology

covariates.

To measure the predictive accuracy (discriminatory power) of different Cox models, we

use the condordance (C-) index (Harrel et al., 1982; Harrel et al., 1984; Harrel, 2001) and the
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Nagelkerke’s R2 (Nagelkerke, 1991). We will briefly describe both model fitting indices below.

The C-index is increasingly used in the medical literature to assess the discriminatory power of

a survival model (Aaronson et al., 1997; Hachamovitch et al., 2003; Clark et al., 2003). This

index is a generalization of the area under the Receiver Operating Characteristics (ROC) curve

to survival outcomes and is closely related to Somers’ Dxy rank correlation (Somers, 1962),

Dxy = 2(C − 0.5). The C-index is the proportion of all pairs of subjects whose survival time

can be ordered such the subject with the higher predicted survival is the one who survived

longer. The subjects’ survival times cannot be ordered if both subjects are censored or if one

has failed and the follow-up time of the other is less than the failure time of the first. The

C-index is a probability of concordance between predicted and observed survival, with C = 0.5

for random predictions and C = 1 for a perfectly discriminating model. A C-index of 0 indicates

that the ‘opposite’ predictor has perfect discriminatory power. Nagelkerke’s R2 index is defined

as R2 = 1−(L(0)/L(β̂))2/n

1−L(0)2/n where L(β̂) and L(0) denote the Cox partial likelihoods of the fitted

and the null (intercept only) model, respectively. Nagelkerke’s R2 ranges from 0 to 1. In our

analyses, we use functions in the Design and Hmisc libraries (Harrel, 2001) of the R software

(Ihaka and Gentleman, 1996).

To protect against overfitting due to including multiple covariates in a Cox model, we

compute ‘validated’ model fitting indices to ascertain whether predicted values from the model

are likely to accurately predict responses on future subjects or subjects not used to develop

our model. Specifically, the enhanced bootstrap (Efron, 1983) is used to estimate the bias

due to overfitting or the ‘optimism’. After the optimism is estimated, it is subtracted from

the corresponding model fitting index that was derived from the original sample to obtain a

bias-corrected estimate; see the validate of the Design library in R (Harrel, 2001).

The validated model fitting indices R2 and C are used to rank the different models. Harrel
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(2001) introduced a U-test statistic based on the C-index, which has asymptotically a standard

normal distribution under the null hypothesis of no difference in predictive power (rcorrp.cens

function of the Design library). This function computes the rank correlation for paired predictors

with a censored response. The percentage of pairs is determined for which one model correctly

selects the patient with the longer survival time while the competing model does not.

We have found that clinicians often appreciate a nomogram to visualize the final Cox

regression model (figure 3). A nomogram is a visualizing aid to obtain predicted values manually

from a Cox model. We will briefly review how to evaluate the nomogram. For each predictor,

read the points assigned on the 0 − 100 scale and add these points. Read the results on the

‘Total Points’ scale and then read the corresponding predictions below it. For example, if a

patient has met= 1, CA9MemPos.mn= 0, p53Pos.mn= 0, pTENPos.mn= 100, VimPos.mn= 0,

ECOG= 1, grade= 2, tstage= 1, the total number of points is 86 + 65 + 33 + 10 = 194. The

predicted 3-year survival rate is about 0.53 and the median survival time is about 3.7 years.

4 CHARACTERIZING HIGH-RISK PATIENTS

Biologists are sometimes interested in simple rules involving biomarkers that characterize high

risk or low risk patients. In this data exploration phase, one is interested in rule induction

methods. For example, when dealing with a particular biomarker a biologist may want to know

which staining score (Max or Pos), pooling method, and cut-off value should be used to arrive

at a binary biomarker covariate that optimally distinguishes high risk from low risk patients.

When dealing with multiple biomarkers one may wonder how to characterize high risk patients

with multiple biomarker scores. Since it is customary in the TMA community to dichotomize

biomarker expression values, it is natural to use tree-predictors (Breiman et al., 1984; Zhang

and Singer, 1999; Ahn and Loh, 1994) or bump hunting (Friedman and Fisher, 1999) for these
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questions. Both methods are described in more detail below.

Numerous methods have been proposed for fitting tree structured predictors to censored

failure times (Zhang and Singer, 1999; Ahn and Loh, 1994). A simple approach is to use mar-

tingale residuals that result from fitting an intercept-only Cox regression model to the censored

survival times as (uncensored) outcome in a regression tree (Therneau et al., 1990). For the

ith subject the martingale residual is defined as Mi = δi − Λ0(ti) where ti is the possibly cen-

sored survival time, Λ0 is an estimate of the baseline cumulative hazard function, and δi is the

censoring indicator. Here we will use deviance residuals (LeBlanc and Crowley, 1992), which

have a more symmetric distribution than martingale residuals. For the ith subject the deviance

residual is defined as

di = sign(Mi)

√
2[δilog(

δi

Λ0(ti)
)−Mi]. (1)

LeBlanc and Crowley (1992) demonstrated a) that using deviance residuals in regression trees

is similar to the survival tree methods presented by Segal (1988) and Ciampi et al. (1986), and

b) that using deviance residuals is more efficient than using martingale residuals with regression

trees. To fit regression trees to the deviance residuals, we use the default settings of the rpart

function in R: the nodes are split with the Anova method, which is equivalent to maximizing

the between-groups sum-of-squares. Future studies should investigate how this compares to

alternative survival tree methods, e.g. to (Ahn and Loh, 1994)

Compared to the Cox regression model, survival trees have several advantages. First,

there are no problems with convergence when dealing with multiple highly correlated covariates.

This is a primary reason for using them when analyzing the staining scores of a biomarker.

Second, there is no need to validate the proportional hazards assumption. Third, the results

are intuitively interpretable and easier to understand for non-statisticians. One major drawback

of tree based methods is that at each step the data are recursively partitioned into two parts,
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which constrains the rules to follow a binary tree structure. Most tree based methods are

based on a greedy minimization method, which may run out of data before examining important

interactions.

Bump hunting was introduced by Friedman and Fisher (1999) as an alternative to tree

predictors. It is not constrained to a tree structure and is a more patient rule induction method

in the sense that it has a more efficient way of learning from the data. Bump hunting allows one

to recover complex interactions between covariates together with their cut-off values. The goal

of bump hunting is to partition the feature (covariate) space into box-shaped regions seeking

boxes with a high average of the response variable. Here we propose to use the deviance residual

as surrogate for the censored survival time. The algorithm starts with a box containing all

the data, and proceeds with top-down peeling until the box contains a user-defined minimal

proportion of the data. At each peeling step the box is compressed along one face such that the

proportion α of observations is peeled off and the removed box b∗ satisfies:

b∗ = arg max
b∈C(b)

ave[yi|xi ∈ B − b]

Here xi = (x1i, x2i, . . . , xni) - predictors, yi - response, C(b) is a class of sub-boxes eligible for

removal. After top-down peeling is complete, the resulting box is extended along a face if this

results in an increase of the box mean (bottom-up pasting). After arriving at the final box, the

data in the box are removed and the procedure is repeated on the reduced data set in order to

find the next box (bump). In our studies, we use the bump hunting procedure implemented in

the S-Plus function supgem by Friedman and Fisher (1999). This function comes with several

diagnostic tools that help the user to refine the resulting rules (e.g., one can study how robust

the rule is to choices of cut-off values or one can detect redundant covariates).
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4.1 Biomarker Rules and Kaplan Meier Curves

Rules partition the patients into several groups. It is natural to use Kaplan Meier curves (Kaplan

and Meier, 1958) to visualize the corresponding survivorship functions and to use the logrank

test statistic to arrive at a numeric measure of curve separation. But the logrank p-value should

only be considered as a descriptive measure since the survival outcomes were used to define the

rule, i.e., there is severe overfitting.

Each rule for high risk patients can be encoded in a binary covariate. This covariate

should not be used in a Cox regression model involving the survival outcome used in the rule

construction since this will severely overfit the data. In particular, it is not appropriate to use

survival data to find optimal cut-off values for dichotomizing a staining score, and then to use the

dichotomized covariate in a Cox regression model (Altman et al., 1994; Heinzl, 2000). However

when using the dichotomized covariate in a univariate Cox regression model, one can correct the

resulting p-value for overfitting by using a formula presented in Altman et al. (1994):

pcorrected = φ(z)[z − 1/z]log(
(1− ε)2

ε2
) + 4

φ(z)
z

, (2)

where φ is the density function of the standard normal, z is the (1 − pvalue/2)-quantile of the

standard normal distribution, and ε is the proportion of smallest or largest values that are not

considered as potential cut-off values. In our TMA data analysis, we usually choose ε = 0.1.

Schumacher et al. (1997) propose to use a bootstrap procedure to correct for the dichotomization

bias in multi-variable Cox regression models.

5 KIDNEY CANCER TMA DATA

We used TMA data on 8 biomarkers involving 318 renal cell carcinoma cases. Methods for

collection and analysis of laboratory specimens were described in Bui et al (2003). Renal cell
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carcinoma (RCC) is the most common cancer of the kidney. Its complex natural history can-

not be completely explained by clinical prognostic factors such as grade, stage and tumor size

(Pantuck et al., 2001). It is an important question whether the biomarkers contain predic-

tive information for cancer survival. For most of the biomarkers, the staining scores Max, Pos

and PosMax were measured. Then the staining scores were pooled with four different pooling

methods, which resulted in 116 biomarker staining scores.

Table 1 lists the results of univariate Cox regression models involving different biomarkers.

In the last 2 columns we list the hazard ratios (HR) and the p-value when using un-dichotomized,

mean-pooled Pos scores for each marker. In the first 4 columns, we list the hazard ratios and

p-values that result when using a survival tree to pick a dichotomized pooled staining scores for

each marker. For a given biomarker, we used the deviance residuals as outcome in a regression

tree that contained all staining scores. Then we picked the primary splitter of the root node and

used the corresponding dichotomized covariate in a univariate Cox regression model. Clearly,

this overfits the data and all of the resulting p-values are significant at level 0.05. As mentioned

above, one can use the formula given in Altman et al. (1994) to correct the p-value for the fact

that an optimal cut-off was chosen by the survival tree. Note that the corrected p-values are far

less significant than the uncorrected p-values. Incidentally, the p-values were not corrected for

the fact that the survival tree picked an optimal staining score (Pos, Max, or PosMax).

Table 2 presents the result for all 304 patients with complete information in these pathology

variables. All other clinical variables are significant except grade. Based on these variables, we

construct three prognostic models: a clinical model which consists of pathology variables only,

a biomarker model which contains only biomarkers, and a biomarker/clinical model which is

presented in table 2.

The C-index and R2 values of different Cox regression models are presented in table
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3. We used the un-dichotomized, mean-pooled Pos staining score of each marker. To correct

for over-fitting due to including multiple covariates in the model, we used the nonparametric

bootstrap method implemented in the validate function (Harrel, 2001). We chose 300 bootstrap

samples. Note that the C-index and the R2 measure lead to a similar conclusion: the clinical

covariates contain more predictive information than the biomarker covariates. However, the

combined model that includes both biomarker and clincial information leads to the highest C-

index and R2 value. To test whether the C-index of the combined model is significantly higher

than that of the clinical model, we used the rcorrp.cens function in the Design library of R

(Harrel, 2001). Table 4 lists the U-statistics for comparing different Cox models. Note that the

the clinical/biomarker model is significantly better than the clinical model (p-value = 0.00019).

Thus, we conclude that the biomarkers provide additional predictive information for survival

beyond the clinical predictors. A nomogram based on the biomarker/clinical model is presented

in figure 3.

We used the R function rpart to construct regression trees. When dealing with multiple

biomarkers, one may use a survival tree to detect possible interactions between them, see figure

4. As pointed out above, the tree method may be too greedy to detect significant interactions,

which is why we also analyzed the data with bump hunting.

The results of bump hunting are presented in table 5. We find 2 rules for characterizing

high risk patients. Specifically, the data set was randomly divided into a training (2/3 of the

data) and a test set (1/3 of the data). Bump hunting was applied to the training data set and

the resulting rules evaluated on the test data set. Table 5 lists the mean values of the deviance

residuals and the box supports, i.e., the proportion of cases that satisfy the rule. Boxes (rules)

B1 and B2 cover 35.5% of the initial data set, and only 5% of patients are covered by both sets of

rules. Figure 5 shows the Kaplan Meier curves for patient groups defined by different rules. Note
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that the logrank p-value (p = 7.0 × 10−8) is very small. Since overfitting took place, it should

only be considered as descriptive measure of curve separation. The rules suggest how to form

interaction terms of biomarker expressions. The significance of the corresponding interaction

terms should be tested on future data sets.

6 DISCUSSION

We present statistical tools for addressing important data analysis challenges of TMA data.

A fundamental question is whether biomarkers can replace or complement standard clinical

and pathology covariates. We discuss statistical methods for evaluating whether biomarkers

contain more predictive information than standard clinical or pathology covariates. This is

fairly straightforward when the biomarker expression covariate is defined without peaking at

the clinical data.

But for novel biomarkers it is often unclear how to score them and how to pool several spot

measurements. Biomarker staining scores are challenging since they can be highly skewed, semi-

continous, and highly correlated. Biologists typically prefer dichotomized biomarker expression

values since they lend themselves to easy biological interpretation: dichotomized biomarker

expressions can be interpreted as protein over-expression or protein function loss. This suggests

the use of rule induction methods that dichotomize covariates. Survival tree predictors are an

obvious choice. We also adapted bump hunting to survival outcomes through the use of deviance

residuals. In simulation studies we find that this approach works well. A simulation report can

be downloaded from www.genetics.ucla.edu/labs/horvath/technicalreports.

In our kidney cancer TMA data analysis, bump hunting works well to detect higher level

biomarker interaction effects. However, these should be validated on independent, external

test sets. Survival trees and bump hunting are model-free methods that handle non-linear
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relationships well and lead to easily interpretable results. Rules that characterize high risk

patients can be encoded in binary covariates. These should not be tested for significance in

Cox regression models that use the same survival data. But for the special situation of finding

optimal cut-off values, we review some strategies for correcting the resulting p-values.

To validate biomarker rules, we recommend to (repeatedly) split the data into training and

test data. The rules should be constructed on the training data and validated on the test data.

Alternatively one may use a data resampling scheme or cross-validation to arrive at unbiased

estimates of rule performance.

The increasing use of tissue microarrays for validating tumor markers provides motivation

for the development of appropriate statistical methods. Tissue microarray data are very different

from DNA gene expression microarray data and require different analysis methods.
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Table 1: Univariate Cox regression models involving biomarkers.

Bio- Staining score and pooling picked by survival tree Fixed score(Pos) & mean pool

marker score(pooling) cut-off HR[95%CI] p-val. (corrected p) HR[95%CI] p-value

CA9 PosMax(min) <25 2.09[1.49,2.93] 2.0E-05(8.4E-04) 0.994[0.99,0.999] 1.70E-02

P53 Max(mn) ≥ 1.4 2.8[1.85,4.23] 9.7E-07(5.3E-05) 1.02[1.01,1.03] 8.80E-05

Vimentin Max(mn) < 1.8 1.84[1.31,2.57] 0.00038(0.011) 1.01[1.00,1.01] 0.067

PTEN Pos(min) <60 1.67[1.19,2.34] 0.003(0.063) 0.996 [0.99,1.00] 0.2

Gelsolin Max(max) >0 2.03[1.38,2.98] 0.00031(0.009) 1.00[0.997,1.01] 0.46

Epcam Pos(md) <5 1.68[1.17,2.41] 0.0046(0.089) 0.992[0.984,1.00] 0.042

CA12 Pos(min) <80 2.1[1.38,3.2] 0.00055 (0.015) 0.99[0.984,0.996] 0.0018

Ki67 Pos(md) <15 2.78[1.95,3.97] 1.60E-08(1.15E-06) 1.04[1.03,1.06] 1.10E-07
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Table 2: Multivariable Cox regression with undichotomized

staining scores and pathology covariates.

Marker p-value HR [95%CI]

CA9(Pos.mn) 5.2E-05 0.989[0.984,0.995]

p53(Pos.mn) 1.3E-02 1.011[1.002,1.020]

pTEN(Pos.mn) 2.1E-02 0.993[0.987,0.999]

Vimentin(Pos.mn) 1.7E-02 1.008[1.001,1.014]

met 3.8E-10 4.654[2.877,7.531]

T-stage 2.3E-04 1.560[1.231,1.976]

ECOG 1.8E-04 1.809[1.327,2.467]

grade 1.6E-01 1.196[0.933,1.534]

Table 3: Validated model fitting indices for different Cox

models. The bootstrap was used to estimate the optimism

of each index.

Bias-corrected C-index Bias-corrected R2

clinical 0.795 0.3764

biomarker 0.615 0.053

biomarker/clinical 0.804 0.415



21

Table 4: Results of using the rcorrp.cens function to com-

pare different Cox models.

Model 1 versus model 2 Model 1 a Model 2 b p-value c

clinical versus biomarker 38 5 <0.001

biomarker/clinical versus biomarker 40 3 <0.001

biomarker/clinical versus clinical 8 4 0.00019

apercent of patient pairs where model 1 correctly predicts outcome

while model 2 does not
bpercent of patient pairs where model 2 correctly predicts outcome

while model 1 does not
cU-Statistic p-value

Table 5: Rules produced by bump hunting.

box data set box support box (global) mean rule

B1 training 0.2822 1.62(1.29) Gelsolin(Max.mn)> 0 & P53(Pos.max)> 0.31

test 0.2255 1.97(1.36) & Vimentin(Max.mn)> 1.42

all 0.2632 1.73(1.31)

B2 training-B1 0.1089 2.05 (1.15) CA9(PosMax.min)< 27.5 & Ki67(Pos.mn)> 1.77

test-B1 0.0882 2.12 (1.17) & Gelsolin(Pos.min)< 15

all-B1 0.1513 2.07 (1.16)



22

Tissue Array Slide Several Spots Per Patient Protein Staining Measures:
Maximum Intensity
(Max = 0, 1, 2, 3)
Percent of Cells Staining
(Pos = 0 - 100)

Figure 1: A tissue array slide. Each tumor is represented by multiple spots. Several protein

staining scores are measured for each spot, e.g. the maximum intensity (Max∈ {0, 1, 2, 3}), the

percentage of cells staining (Pos ∈ {0, . . . , 100}), etc.
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Figure 2: Histograms of four pooled biomarker stainined scores. We used mean pooling for the

Pos scores and median pooling for the Max scores. Note that the Pos scores are highly skewed

percentages. The staining intensity (Max) is an ordinal variables with values between 0 and 3.
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Figure 3: A prognostic nomogram for the biomarker/clinical model. For each predictor, read the

points assigned on the 0− 100 scale and add these points. Read the results on the ‘Total Points’

scale and then read the corresponding predictions below it.
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Figure 4: A survival tree (left panel) which involves multiple biomarkers. It was constructed by fitting a regression

tree to the deviance residuals of an intercept only Cox regression model. The higher the number at the terminal

note, the worse is the prognosis. Kaplan-Meier curves (right panel) corresponding to the 4 terminal nodes.
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Figure 5: Kaplan-Meier (KM) curves corresponding to rules resulting from bump hunting. The

KM curves of patients who satisfy rule 1, rule 2 but not rule 1, neither rule, are dashed, dotted,

and solid, respectively. The logrank test p-value of 7.08E − 8 should not be used for inference

due to over-fitting: the rules were constructed using the survival information.


