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Researchers routinely estimate distances between molecular sequences using continuous-time Markov chain models. We
present a new method, robust counting, that protects against the possibly severe bias arising from model misspecification.
We achieve this robustness by generalizing the conventional distance estimation to incorporate the empirical distribution
of site patterns found in the observed pairwise sequence alignment. Our flexible framework allows for computing
distances based only on a subset of possible substitutions. From this, we show how to estimate labeled codon distances,
such as expected numbers of synonymous or nonsynonymous substitutions. We present two simulation studies. The first
compares the relative bias and variance of conventional and robust labeled nucleotide estimators. In the second
simulation, we demonstrate that robust counting furnishes accurate synonymous and nonsynonymous distance estimates
based only on easy-to-fit models of nucleotide substitution, bypassing the need for computationally expensive codon
models. We conclude with three empirical examples. In the first two examples, we investigate the evolutionary dynamics
of the influenza A hemagglutinin gene using labeled codon distances. In the final example, we demonstrate the
advantages of using robust synonymous distances to alleviate the effect of convergent evolution on phylogenetic analysis

of an HIV transmission network.

Introduction

How to estimate the evolutionary distance between
molecular sequences is a fundamental problem for compar-
ative analyses (Lio and Goldman 1998; Gascuel 2005). In
these analyses, distance often implies an estimate of the ex-
pected number of substitutions between aligned sequences
under an assumed continuous-time Markov chain (CTMC)
model of nucleotide or codon substitution. Reflecting dis-
tances’ importance in biology, a large volume of literature
of different methods has grown up for making this calcu-
lation (Jukes and Cantor 1969; Hasegawa et al. 1985; Nei
and Gojobori 1986; Li and Gu 1995; Rzhetsky and Nei
1995). Researchers, for example, rely on these distances
to generate phylogenies, estimate adherence to a molecular
clock, and identify nucleotide or amino acid sites that ex-
perience distinct evolutionary pressure. Evolutionary dis-
tances can be generalized to “count” only certain subsets
of transitions in the CTMC. We call these labeled distances.
An important example of labeled distances is nonsynony-
mous and synonymous distances that mark codon transi-
tions by whether or not they induce an amino acid
change, respectively. Researchers eagerly exploit these dis-
tances, for example, to identify positive selection across the
influenza genome (Earn et al. 2002, see citations therein),
study convergent evolution in the HIV genome (Lemey
et al. 2005), and establish orthologous and paralogous gene
relationships (Goodstadt and Ponting 2006).

In this paper, we introduce a new framework for cal-
culating labeled distances between sequences that we call
robust counting. The framework builds on any reversible
CTMC model of substitution and provides strong protec-
tion against bias originating from model misspecification.
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The method achieves robustness by first conditioning on
pairwise site patterns to calculate the conditional mean
numbers of labeled substitutions and then averaging these
conditional expectations over the empirical distribution of
site patterns found in the “observed” sequence data. This is
in contrast to conventional distance estimation methods that
implicitly average over the theoretical distribution of pair-
wise site patterns. The conditioning part of our method cap-
italizes on the recent progress in efficient calculations of the
distributional moments of a Markov chain—induced count-
ing process (Holmes and Rubin 2002; Hobolth and Jensen
2005; Minin and Suchard 2008).

Distance estimation methods for nucleotide sequences
commonly rely on maximum likelihood estimates (MLEs)
of CTMC models of nucleotide substitution. Usually, these
CTMC models impose that nucleotide changes between se-
quences arise from a stationary, time reversible Markovian
process that is independent across sites. An infinitesimal
rate matrix specifies these models, determining the rates
at which nucleotide states transition among themselves.
Jukes and Cantor (1969) introduce the use of CTMC
models for nucleotide substitution by assuming an equal
frequency for all nucleotides at stationarity and no differ-
ence in rates among nucleotides states. Kimura (1980) re-
fines this model by introducing a parameter x to account for
differences between transitional and transversional nucleo-
tide substitution rates. Kishino and Hasegawa (1989) and
Hasegawa et al. (1985) further expand these efforts to ac-
count for unequal nucleotide frequencies in the F84 and
HKY models, respectively. More elaborate models follow
these initial approaches, accounting for additional variabil-
ity in substitution patterns (Tamura and Nei 1993), and lead
to a general time reversible (GTR) model with maximal
parametric freedom among reversible rates (Gu and Li
1996). Several of these authors also consider methods
for determining labeled nucleotide distances, such as the
expected numbers of transitions or transversions.

Methods for estimating labeled codon distances are
noticeably fewer, primarily limited to the context of non-
synonymous or synonymous distance estimation, yielding
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two main approaches. The first approach parallels nucleo-
tide distance estimation and suggests fitting an appropriate
codon CTMC model to the observed data and using the fit-
ted model to predict the expected number of labeled codon
substitutions (Goldman and Yang 1994; Muse and Gaut
1994; Nielsen and Yang 1998). Two problems arise with
this approach. First, the high complexity of the codon state
space significantly increases one’s chance of grossly mis-
specifying the codon evolutionary model. Second, even the
simplest codon models require computationally costly nu-
merical likelihood maximization, defeating the purpose of
using fast distance-based phylogenetic reconstruction
methods. Schneider et al. (2007) try to address these prob-
lems by using previously estimated empirical codon matri-
ces to infer synonymous distances. However, the general
applicability of preestimated empirical codon matrices is
not yet clear. Doron-Faigenboim and Pupko (2007) find
a middle ground between parametric and empirical ap-
proaches, but similarly to purely parametric approaches,
their algorithm requires nontrivial numerical likelihood
maximization. The second approach, taken by Nei and
Gojobori (1986, denoted as NG86), Ina (1995), and Yang
and Nielsen (2000, denoted as YNOO), first uses a parsimony
argument for counting synonymous and nonsynonymous
mutations and then tries to correct the parsimony estimates
using simple nucleotide evolutionary models. The chief ad-
vantage of these methods is their computational efficiency.
The main drawback of the second approach lies in its
heuristic nature, complicating theoretical analysis, and
making generalizations nearly impossible. Robust count-
ing, applied to synonymous and nonsynonymous distance
estimation, rests somewhere between these two existing
approaches for inferring these distances. Similarly to the
heuristic approach, we use easy-to-fit nucleotide models
to build a deliberately misspecified model of codon evolu-
tion. However, instead of the heuristic parsimony-based ar-
guments, we profit from probabilistic conditioning and
Markov chain theory to count the unobserved synonymous
and nonsynonymous mutations.

In the case of labeled codon distances, researchers may
intentionally oversimplify evolutionary models to reach
computational tractability (Yang and Nielsen 2000). How-
ever, because the “true” model of nucleotide substitution is
never known and is most likely not Markovian, model mis-
specification is inherent to “almost” any CTMC-based se-
quence analysis (Blount et al. 2008). Although the harmful
consequences of CTMC model misspecification are well
documented (Hasegawa et al. 1985; Yang 1997; Buckley
et al. 2001), the only solution available to researchers is
to choose among a small and possibly inadequate set of
evolutionary models (Suchard et al. 2001; Sullivan and
Joyce 2005).

We propose to approach the problem of model misspe-
cification from the perspective of robust statistics, a set of
statistical procedures that are relatively insensitive to devi-
ations from assumed underlying distributions (Huber
1981). To arrive at our robust distance estimators, we first
provide a general derivation for conventional distance cal-
culations in terms of both Markov chains and Markov
chain—induced counting processes. We then show how,
in this framework, robust counting is a natural extension

of conventional methods. As part of this discussion, we
present a unified understanding of labeled distances, dem-
onstrating how to make estimates of these distances with
both conventional and robust methods.

To establish the efficiency of robust counting, we pro-
vide two simulation studies, the first describing the capacity
of the method to calculate robust estimates of labeled nu-
cleotide distances and the coverage properties of the esti-
mators and the second demonstrating how the robust
codon method can be used to estimate nonsynonymous
and synonymous changes. This latter study finds that robust
counting performance in estimating nonsynonymous dis-
tances is substantially better than existing methods. We
conclude with three empirical examples. The first exhibits
how robust counting estimates of nonsynonymous and syn-
onymous distances can be used to detail the positive selec-
tion history of the influenza A hemagglutinin gene. The
second employs the same data and considers the structure
of volatility change distances (Plotkin and Dushoff 2003),
illustrating the flexibility of robust counting in estimating
novel labeled distances. The third example reveals how ro-
bust estimates of synonymous distances can be employed to
reduce convergent evolution bias during a distance-based
phylogenetic analysis of a known HIV transmission net-
work (Lemey et al. 2005).

Methods
Conventional Distances and Mutation Labeling

Let Yi=(y11,...,y1) and Yo=(y21,...,y2) be two
aligned molecular sequences of length L. Each site (yyy, y2,)
for s=1,...,L evolves independently under an irreducible,
reversible M-state CTMC {X,} with infinitesimal generator
A = {A;}. We define the rate of the leaving state i to be
A= Zf; Aij. Let m = (my, ..., my) be the stationary dis-
tribution of this process. The conventional method for find-
ing the distance between two sequences consists of two
steps. In the first step, the model parameters A are estimated
between pairs of sequences by maximizing the likelihood of
the data directly or by using a suitable approximation, as in
Yang (1994). Using finite-time transition probabilities P =
N = {p;(H)}, we can write the likelihood of the data as

L
Pr(Y1, Y2 | A1) = [] tnprom (1), (1)

s=1

where 1t, for appropriate models, is usually estimated using
empirical state frequencies, possibly from a larger set of se-
quences (Gu and Li 1996). For some models, the stationary
distribution may be fixed and so 7 = . As sequences con-
tain only information about the product Az, we may either
impose additional constraints on A or set t = 1. Through-
out this paper, we will assume ¢ = 1 and estimate A. In the
second step of conventional estimation, A is used to calcu-
late the expected number of substitutions per site predicted
under the Markov model

M
d="S & =#&[A — diag(A)]1, (2)
i=1



where diag(A) is a matrix obtained by setting all off-
diagonal elements of A to 0 and 1 is an M-column vector
of ones.

We generalize this definition of distance to any subset
of labeled transitions by introducing the concept of a count-
ing process induced by the underlying Markov chain. De-
fine the set £ to be a subset of the lattice, {1,...,m}>, of
those specific i — transitions we wish to count Elements
(i, i) are always excluded from £. We now define N, ,E to be
the counting process that tracks only transitions labeled by
L. Defining g(f)=E(NF), we can write the Chapman-—
Kolmogorov equation for this process:

M M
gt+h)= Zl ile(t) (1 — kh) + g(t)é:)‘ijhl{(i,j)eéﬁ}
i= JAi
M
+ (g(t) + 1)%;7\5;'111{(1',,‘)@} + o(h),
J7F

(3)

where £ is a small 1ncrement in time and 1., is the indicator
function. Noting that Z i— =1, rearrangmg terms and di-
viding through by A, we arrive at

(r+h

Zlml g(hi+g(r) - ;lﬁzkul{ueﬂ}]
i= JFt J#

M M
= >y Milgijecy-
=1 A

(4)
Taking the limit as #— 0 yields

M M
g0=>mY ilijecy

i=1  j#i

(5)

Imposing the boundary condition that g(0) = 0, equa-
tion (5) can be solved explicitly, giving

M M
D=1 m Y Milgjecy-

i=1 A

(6)

Setting t = 1 as before, we now construct distances
for the labeling set £

M M
dg = E(N[: = = Zniz 7\'1‘]'1{(1‘,/)65} = ﬂAgl,
i=1 JA#i

(7)

where A= {Xij X 1 jecy } is the restricted generator ma-
trix. As with unlabeled counts, estimates of 7r and A are
inferred from the data to give d.. In previous work involv-
ing conventional distances, several authors have calculated
d for specific labeling sets of small Markov chains, usually
of different types of nucleotide changes such as transitions
or transversions (Felsenstein 2004, Chapter 13). We believe
that this general formulation of conventional labeled distan-
ces in terms of any arbitrary Markov chain—induced count-
ing process is novel.
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Robust Distances

Using the law of total expectation, we can write d as

M

de="> E(N[|Xo=iX1=))Pr(Xo=i,X =)).
ij=1

(3)

Notice that the conventional distance estimation im-
plicitly assumes
Pr(Xo =i,X; =j) = mp; (1), 9)
to arrive at the estimate d, . The central idea of robust count-
ing is to replace the predicted probabilities of site patterns
(9) with the empirical frequencies of (i, j) found in the se-
quence data, that is

P(Xo—lxl—j

Zl{)n =i,y =j}+

(10)

By taking this empirical approach to estimation of
Pr(Xo = i, X, = j), we partially free ourselves from the
CTMC'’s parametric assumptions and so make our estima-
tion more robust to model misspecification. Plugging em-
pirical frequencies into equation (8), we arrive at a new
definition of labeled distances

: :’y]: 3Y2s

s—l

where

ri(f) =E(NF|Xo =i,X, = ). (11)

In contrast to conventional distances, in order to esti-
mate d,, we first need to obtain E(N¥ | Xo=i,X; =/) for all
i,j=1,...,m. Because these quantities are not directly ob-
served in the data, we cannot use a completely empirical
approach and return briefly to our Markov chain model.
We follow the first step of conventional distance estimation
and obtain 4 empirically and A by maximizing the likeli-
hood (1) or employing a suitable approximation. Given
(7%, A), it is now possible to efficiently compute the condi-
tional expectations (11).

Define the restricted first moment of the counting pro-
cess Nf: to be

cif(1) (12)

=E(N/ - 1ix,=jy[Xo =1i).

Assembling these terms into a matrix C(r) = {c;(1)}
and following Ball and Milne (2005), we have that

t
/ eMA LM gy,
0

This integral can be calculated efficiently for revers-
ible Markov chains (Minin and Suchard 2008) and so
we plug A into equation (13) to obtain ¢;;(1). We use these

C@r) = (13)
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values to calculate #;(1) through the definition of condi-
tional expectation:

cii(7)
it

rij(t) = (14)

=

We use the estimate A to calculate P(1) —eh. Setting
F;(1)=¢;(1)/p;(1), we use equation (15) to furnish our ro-
bust estimator

NI R
dL:ZZryu,yz,\(l)- (15)

s=1

It is important to note that if the Markov model is
known without error, then the strong law of large numbers
and asymptotic consistency of MLEs yield

. 1<
limy I Z Ly, =iy, =j = Tip;(1) almost surely,

s=1

(16)
and

limL_, o ﬁ,’ﬁ,‘j (1) = TC,'p,'j(l) in probablhty (17)
As the estimation of site pattern probabilities is the on-
ly difference between the robust and conventional distan-
ces, the asymptotic consistency of MLEs applied to
equation (8), implies that
limg— o |dz — d| = 0in probability. (18)
However, these asymptotic results hold only if no
model misspecification occurs. The hope is that using em-
pirical site pattern frequencies will make robust distances
less prone to biases due to model misspecification. Notice
that in robust distance calculations we still use potentially
misspecified A to calculate site-specific expectations (11).
For short evolutionary distances seen in real data, the error
in these calculations should be relatively small. We do ex-
pect the bias of robust distances to increase with the number
of substitutions between sequences. The behavior of this
bias will be explored in our simulation studies.

Handling Missing Data

In the previous subsection, we assume that our pair-
wise sequence alignment Y = (Y, Y,) has no missing data.
Now, suppose that Y may contain sites of the form (i, —),
(—, i), and (—, —) that require calculation of conditional
expectations

i (1) =E(NE[Xo = 1), (1)
=E(Nf|Xi =i)andr__ (1) =E(NF). (19

As before, we accomplish these calculations with the
help of estimates 7 and A and setting 1 = 1.

First, we notice that reversibility of {X,} insures that
ri_(f) = r_g1). Collecting these expectations into a column
vectorr(1)=(r_ (), ..., rm_(t))" and recalling that e*®1 =
1, we arrive at

t
r(t)=C(n1= / eMdu x Arl.
0

(20)

The integral on the right handside of equation (20) can
be computed with the help of the fundamental matrix of
{X,} (Ball and Milne 2005). However, because C(?) is avail-
able to us, we simply multiply this matrix by the column
vector of ones. The last expectation in (19) reduces to
r__(t) = wC(r)1 = mwA ;11 because we® = 1. Notice that
when both nucleotides are missing at a site, we use the con-
ventional labeled distance to impute the missing number of
labeled mutations at this site.

Simulations

To demonstrate the utility of robust counting and to
compare its operation with conventional methods, we per-
form two simulation studies. The first study compares con-
ventional and robust methods in estimating the number of
labeled nucleotide transitions when the underlying CTMC
model of substitution is correctly and incorrectly specified.
The second study contrasts a robust counting-based ap-
proach against two established methods for estimating
the number of nonsynonymous or synonymous codon sub-
stitutions between sequences. We implement the robust
counting methods in a new R package called markovjumps
available at  http://www.stat.washington.edu/vminin/
markovjumps. R is an open source statistical software pro-
gram available at http://www.r-project.org. Sequence data
simulation employs the markovjumps package and PAML
(Yang 2007), where the latter also provides the established
nonsynonymous distance estimators.

Nucleotide Distances under Model Misspecification

In this first study, we compare the conventional ap-
proach against robust counting for estimating labeled nucle-
otide distances. As we can specify the model of nucleotide
substitution from which the data derive, we can test the per-
formance of the two methods under both the true and mis-
specified models. We first generate data under the GTR
model for nucleotide substitution. For a simple misspecified
model, we consider F84 as detailed in Yang (1994). We
then draw inference via conventional and robust counting
methods building on both GTR and F84 as underlying
CTMCs.

We generate 1,000 pairwise sequence data sets of
L = 2,000 nt for a set of six different pairwise distances
under GTR with

NmGg mMnTc I3nr
_ | "1ma F4Tc  I'sTr
AGTR = ) . (@D
My T4 - reTtT
3Ta  FsTg  TeTc
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Fig. 1.—Performance box-plots for conventional GTR (dark gray),
robust GTR (medium gray), conventional F84 (light gray), and robust F84
(white) estimators over six pairwise sequence distances. We standardize
performance across distances via normalized deviations, (ds — dy)/dy.
The true distances for each of the six simulation conditions are listed on
the x axis.

specified by r = (0.5, 0.3, 0.6, 0.2, 0.3, 0.2) and 7 = (0.2,
0.2, 0.3, 0.3). We note that these parameter values ensure
that the GTR model is not a degenerate form of the F84
model. The true pairwise distances d between sequences
are given on the x axis in figure 1. For labeling, we consider
counting transitions only into and out of the state “A” such
that our choice of labeling corresponds to the generator ma-
trix AL::{)\,U' X 1{(Lj)e£} L={(i,A)} U{(A,))}}. We let
d, denote this labeled distance. Using equation (7), we
can calculate the theoretical number d,4 of such transitions
for each value of d.

For each pair of simulated sequences (Y, Y,), we cal-
culate the model parameters in the following way. The es-
timate of the stationary distribution, 4, is the nucleotide
frequencies observed across both sequences. We find the
remaining parameters of Agrg by maximizing equation
(1) with respect to each of the model parameters using
the Nelder—-Mead algorithm. To find the remaining param-
eters for Aggq, we employ a closed-form, approximate so-
lution (Yang 1994; Yang and Nielsen 2000). We then use
equation (7) to generate conventional distance estimates.
Similarly, we use equation (15) to generate robust distance
estimates.

Figure 1 presents the results from this experiment. For
each simulated distance, we summarize the performance of
four different estimators (conventional GTR, robust GTR,
conventional F84, and robust F84) via box-plots of the es-
timators’ normalized deviation from the true value. The bias
of conventional estimates under the true model and robust
estimates under both the true and misspecified model are
virtually identical. Unsurprisingly, conventional estimates
under F84 return substantially greater bias. Whereas the
variance of the robust F84 estimator is considerably larger
than for the conventional F84 estimator, the performance of
the robust F84 estimator is nearly identical to both the ro-
bust and conventional estimators under the true model. Be-
cause we estimate estimator biases via Monte Carlo
simulations, we need to examine the precision of these es-
timates. For example, in the second simulation regime with
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d = 0.0027 and d4, = 0.0016, we estimate F84-based con-
ventional and robust estimator expectations as 0.0016 and
0.0011, respectively. The corresponding Monte Carlo stan-
dard errors of these expectations are 2.8 x 107> and
1.8 x 1075, two orders of magnitude smaller. Hence,
1,000 Monte Carlo iterations provide more than sufficient
information to compare estimator biases.

To further explore the relationship between robust
counting estimates under model misspecification relative
to conventional estimates under the true model, we perform
a simple simulation to examine how the variance and mean
squared error (MSE) of these estimators change as the num-
ber of nucleotide sites L increases. We generate 500 addi-
tional pairwise alignments under GTR with L = {1,200,
2,400, 4,800, 9,600, 19,200, 38,400} at d4 = 0.061 and
apply the conventional GTR and robust F84 estimators
to measure this distance. Figure 2 demonstrates that the var-
iance of the robust F84 estimator is consistently smaller
than the conventional GTR estimator variance. However,
this advantage comes at the cost of larger asymptotic bias
as revealed by the MSE plot in figure 2. Interestingly, the
MSE of both estimators essentially coincide when the align-
ment length is equal to 1200 and 2400, showing that the
robust F84 and conventional GTR estimators perform com-
parably at realistic sample sizes.

Nonsynonymous Distances

In this second study, we compare an application of ro-
bust counting with the NG86 and YNOO methods of esti-
mating the number of nonsynonymous substitutions
between sequences. To estimate the expected number of
synonymous and nonsynonymous mutations with robust
counting, we first require a Markov model on the state space
of codons. We would like to avoid standard codon models
(Goldman and Yang 1994; Muse and Gaut 1994) because
their estimation requires computationally costly and occa-
sionally unstable numerical optimization. Therefore, we
settle for an easy-to-fit product composition of nucleotide
models. This model does not appropriately account for dif-
ferences in the rates of synonymous and nonsynonymous
mutations in protein coding regions, leaving this task to ro-
bust counting.

Let X' be a CTMC model of nucleotide substitution
for codon positions ¢ = 1, 2, 3, specified by infinitesimal
rate matrices A, For each codon position, we use empir-
ical nucleotide frequencies to estimate stationary distribu-
tions 'ﬁ'(l), 'ﬁ'(z), and &), Next, we maximize the likelihood
(1) or employ a suitap}(% approximation for each codon
position and arrive at A" *. Depending on the informative-
ness of the nucleotide data, we may be able to estimate each

/AX(C) independently or allow all codon sites to be identically
distributed by letting /A\“):/AX(Z):/A\B). In either case, we
establish three models for nucleotide substitution at each
of the codon positions. From these, we generate a new
CTMC Z, that is the product space composition of the
three X,”’s

z= (x" % xY). (22)
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conventional GTR (solid lines) and robust F84 (dotted line) estimators.

Assuming independence among codon positions, the
64 x 64 infinitesimal generator of Z,, W, is obtained by
the Kronecker sum of the infinitesimal rate matrices of
the nucleotide models (Neuts 1995)

W=ADpAPpA® (23)

In this simulation study, we use three different F84
models to model codon evolution. Approximate expres-
sions for the F84 infinitesimal generator MLE are available
in closed form, making the estimation part of robust count-
ing procedure extremely fast. We define nonsynonymous
labeling set Ly by letting (i,) € Ly if there is a single nu-
cleotide change in any one of the three codon positions and
the change does alter the translated amino acid, otherwise
not. Although start and stop codons are permissible states in
our product composition of F84 models, we exclude them
from the nonsynonymous labeling set.

The NG86 method compares the estimated numbers of
synonymous and nonsynonymous mutations with expecta-
tions under neutrality. The method begins by calculating

“potential” numbers of synonymous and nonsynonymous
sites, S and N, that represent the numbers of alignment sites
expected to experience synonymous and nonsynonymous
mutations under a neutral model of evolution. The second
step estimates the numbers of observed synonymous and
nonsynonymous mutations using a parsimony argument
with some heuristic modifications to account for situations
where two codons differ at two or three positions. Finally,
the estimator divides these parsimony-derived counts by the
potential quantities and applies a Jukes—Cantor correction
to these normalized counts One can interpret the resulting
estimates r?G% and 7 6, more commonly denoted by dS
and dN, as expected numbers of synonymous and nonsy-
nonymous substitutions per synonymous or nonsynony-
mous site, respectively. Ina (1995) modifies the NG86
method to account for different transitional and tranversion-
al rates in the neutral evolutionary model. Finally, Yang and
Nielsen (2000) substantially refine the method by exploit-
ing the F84 nucleotide model and empirical codon frequen-
cies to make the neutral model more realistic, providing
estimates r}{N and 7 NNOO

Because robust counting is designed to estimate the
absolute expected number of labeled substitutions, we con-
vert the NG86 and YNOO estimates to the absolute labeled
distance scale via the following transformations:

. 38 . 3N
ds=fs<A A>anddN=rAN(A A>.
N+ S N+ S

We simulate sequence data under the M, model of co-
don substitution (Goldman and Yang 1994) parameterized
in terms of the transition/transversion rate ratio x and non-
synonymous/synonymous rate ratio o, employing a range
of parameter values for «, , the number of codon sites L¢
and the pairwise sequence distances (table 1), as well as
considering three different codon frequency distributions.
These are the uniform distribution (equal), primate mito-
chondrial RNA frequencies (mt), and HIV env frequencies
(env) provided in PAML (Yang 2007). Our parameter space
covers that used in Yang and Nielsen (2000) for a similar
estimator comparison. For each simulation, we calculate
dy, the estimated nonsynonymous distance, under robust
counting, NG86 and YNOO.

In finding estimates from YNOO, we employ the codon
weighting option provided in PAML, although we observe
only a slight improvement relative to unweighted runs.

Across this broad range of parameter values, distances,
and codon distributions, we observe that robust counting
generally performs better than either YNOO or NG86 in es-
timating dy. Figure 3 presents estimator comparisons under
four prototypical regimes.

We see the largest qualitative difference in perfor-
mance across estimators when considering different codon
frequencies. Under the uniform distribution (fig. 3, bottom-
left), YNOO estimates demonstrate the smallest bias; how-
ever, advantage fades for increasing values of x and w (data
not shown). Variances here also remain grossly equal
across estimators. Under the two empirically derived distri-
butions, robust counting returns the smallest bias at the cost
of increased variance. This trade-off becomes more pro-
nounced as distance increases. However, the exchange is
beneficial as the 95% coverage of robust counting much
more likely covers the true value than the other estimators
(e.g., see fig. 3, top-left).

(24)



Table 1
Parameter Values Used for Nonsynonymous Distance
Simulations

Parameter Values

K 1,2,5, 10, 20

w 0.33,1,2,3,5,10

L¢ 100, 300, 500

Distance 0.017, 0.033, 0.083, 0.17, 0.33, 0.5

Note.—We provide distances in number of nucleotide substitutions per codon
site.

The number of codon sites in the data also affects the
estimators’ performances. Estimator variances naturally de-
crease with an increasing number of sites. The rate of
shrinkage varies by method, with NG86 demonstrating only
slight improvement and robust counting and YNOO decreas-
ing comparably, consistent with our findings for nucleotide
distances. However, the relative performance of the estima-
tors varies in different regimes of x and w; some regimes

k=1,0=10, Lc= 300, mt
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proffering one estimator over another and some not. Al-
though the examples in figure 3 vary in their sequence
length and codon frequency, the four are also prototypical
of estimator behavior with increasing x and w separately
and together. Despite that this robust counting implemen-
tation only relies on a product composition of three nucle-
otide models instead of a full codon model, the method
generally provides the best coverage properties.

Empirical Examples
Evolution of Influenza H3N2 Hemagglutinin

Studies of influenza evolutionary dynamics focus
heavily on patterns of change in the hemagglutinin protein
(HAO), the primary determinant of viral cell surface binding
and membrane fusion. Over the past 20 years, research sup-
ports the existence of a phylogenetic backbone for hemag-
glutinin, where temporally sequential clusters of taxa
originate successively from a single trunk lineage (Fitch

k=20, =10, L= 500, mt
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Fic. 4—Time course of nonsynonymous distances (top), synonymous distances (middle), and their ratio (bottom) of influenza A H3N2
hemagglutinin sequences from 1969 to 2003. We report confidence intervals computed through 2,000 bootstrap iterations. The dark lines denote
observed values. The lower and upper dashed lines trace 5% and 95% quantiles. Each gradation in gray reflects a 10% change in confidence. We report
distances in substitutions per site and embed a time-scaled phylogenetic tree, constructed via TREBLE (Yang et al. 2007), in the top row of plots.

et al. 1997). The number of nonsynonymous substitutions
along the backbone is in excess relative to the number ex-
pected by a neutral model of codon substitution, indicating
strong positive selection (Bush et al. 1999; Plotkin et al.
2002). A phylogenetic reconstruction of HAO influenza
subtype H3N2 depicts this backbone clearly (fig. 4, embed-
ded in the first row of plots). In this example, we illustrate
how robust counting can aid in studying sequence evolution
along phylogenetic backbones. Our data comprise 96 nt se-
quences of the influenza A subtype H3N2 HAO gene, sam-
pled over 36 years from 1968 until 2003, downloaded from
the National Center for Biotechnology Information Influ-
enza Database (Bao et al. 2007). GenBank accession num-
bers are available upon request. To generate a codon
alignment, we first convert the nucleotide sequences into
their corresponding amino acid sequences using Jalview
(Clamp et al. 2004). We then align the amino acid sequen-
ces using Clustal (Li 2003). RevTrans (Wernersson and
Pedersen 2003) finally imposes the amino acid alignment
on the nucleotide sequences. To ensure consistency across
columns in the codon alignment, we remove the final col-
umns for which some sequences have no nucleotide char-
acters, resulting in a final alignment of 972 nt (324 codons).

To count the synonymous and nonsynonymous substi-
tutions occurring along the phylogenetic backbone, we take
the earliest sequence—Hong Kong, 1968—to represent the
origin and examine pairwise distances from the origin to
each of the subsequent sequences, ordered by ascending
sampling time. This is an approximation as sequence sam-
ples do not lie along the backbone. However, all samples
are proximal to the backbone, making the approximation

reasonable. We employ nonsynonymous labeling set Ly
as in the simulation study and synonymous labeling set
L similarly defined. We pool the pairwise labeled distance
estimates for all sequences within a given year. The number
of sequences within each year varies, from none for 1979 to
five for 2003, with the median number at three sequences
per year. To quantify uncertainty in all estimates, we per-
form a bootstrap on the alignment with 2,000 iterations
(Efron 1979).

To capture potential variation within the alignment in
the number and ratio of synonymous and nonsynonymous
mutations between rapidly evolving sites and slowly evolv-
ing sites, we generate two sub-alignments using consensus
scores: 1) a “fast” evolving set of 113 codons and 2)
a “slow” evolving set of 211 codons. In inferring the num-
ber of codon substitutions for the full and sub-alignments,
we employ a product composition of F84 nucleotide sub-
stitution models fit to the full alignment but modify equa-
tion (11) to only count sites within a particular (sub-
)alignment. We compare the full, fast, and slow alignments
in terms of nonsynonymous and synonymous distances and
their ratio as functions of time. The ratio furnishes an in-
formative portrait of the patterns and tempo of selection
in HAO evolution. In considering this ratio, we note that
it is distinct from the quantity o often employed in the lit-
erature, although the quantities should be highly correlated.

In the full alignment, we observe clear trends that in-
dicate that certain codon sites experience strong positive
selection, whereas other sites simultaneously experience
strong negative selection (fig. 4). We see a strong linear
trend in time, both for nonsynonymous and synonymous



distances, with a small variance distributed symmetrically
about the observed values. This indicates a regular fixation
of amino acid changes in time along the hemagglutinin
backbone. Considering the ratio of the distances, we see
a sharp initial increase terminating in 1975, followed by
a long plateau. In the flat regime, we note that the mean
value of the ratio is slightly less than 5, suggesting a strong
excess of nonsynonymous as compared with synonymous
substitutions. The flatness of the curve in time suggests that
the rates of fixation of synonymous and nonsynonymous
substitutions are highly correlated in time.

In the slow alignment, we find a strikingly different
pattern across time. Whereas the synonymous distances’
course is nearly identical to that observed in the full align-
ment, the nonsynonymous distances do not discernibly in-
crease with time. Because we do indeed observe some
nonsynonymous substitutions in the alignment, this indi-
cates that these mutations are fixing at a negligible rate.
Looking at the ratio of the nonsynonymous to synonymous
distances, we find an initial spike due to a paucity of syn-
onymous substitutions, trending downward to less than 1 as
synonymous distances increase with time. This ratio is
markedly lower than that observed for the full alignment,
reflecting fewer nonsynonymous per synonymous substitu-
tions at sites with more conserved amino acids.

Finally, considering the fast alignment, we observe
a distinct pattern from the previous alignments. We again
see a linear increase in the nonsynonymous distances with
time, as in the full alignment. The magnitude of the increase
is approximately three times that for the full alignment, sug-
gesting that the fast alignment contains nearly all the fixed
amino acid changes. Interestingly, years 1995, 1997, and
1999 exhibit three alternating peaks above the linear trend.
Examining the relevant portions of the alignment, we find
that these peaks are due to a high number of correlated
amino acid substitutions (ca. 5) during those years that
do not appear in later taxa. In part, the alternating pattern
is likely due to binning of distances into years as we see
many of the same amino acid changes within each peak.
Looking at the synonymous distances, we observe a similar
pattern to that for the nonsynonymous distances. As we do
not observe any structural changes in the alignment, this
close correlation suggests that the rate of synonymous sub-
stitution relates closely to that for nonsynonymous substi-
tution at these sites. Considering the ratio of the distances,
we find an initial peak followed by a relatively flat line at
approximately 8, higher than that observed in both the full
and slow alignments.

Viewed jointly, the full, fast, and slow alignments pro-
vide a coherent picture of the evolution along the phyloge-
netic backbone. In all alignments, we observe a strong
linear time trend for synonymous distances, indicating
the gradual accumulation of such substitutions across the
gene. This suggest that the synonymous substitution pro-
cess is approximately uniform across sites and independent
of the nonsynonymous process. Independence advocates
that changes in selective pressures, viewed here through
the ratio of nonsynonymous to synonymous distances, oc-
cur primarily through alterations in the rate of fixation of
nonsynonymous changes at certain codon sites (Cox and
Bender 1995, see discussion therein).
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Volatility Evolution of Influenza Hemagglutinin

Robust counting provides a convenient and versatile
framework for estimating distances under arbitrary labeling
sets. Whereas, by far, the most commonly used labelings
identify nonsynonymous and synonymous changes, others
of biological interest exist and are now conveniently ap-
proachable through robust counting. We construct a novel
labeling set to explore changes in codon volatility (Plotkin
and Dushoff 2003). The volatility of a given codon equals
the number of potential single nucleotide changes that yield
nonsynonymous amino acid changes to that codon. Plotkin
and Dushoff (2003) conjecture that sites experiencing
strong positive selection correlate with high volatility
scores and, as such, volatility is an evolved property of
a protein’s nucleotide code.

To examine this codon volatility hypothesis in the con-
text of HAO evolution, we focus on a set of codons com-
posing the hemagglutinin antibody interaction sites that
previous research indicates experience strong positive se-
lection (Wilson and Cox 1990; Bush et al. 1999). This
set comprises 25 sites that we call the “epitope” codons,
although they include only a fraction of all epitope sites.
We ask if the distribution of volatility changes within epi-
tope codons is the same as elsewhere; rejecting this limited
hypothesis lends support to the more general volatility hy-
pothesis.

First, we establish a measure of volatility change, dy,
by robust counting, through a labeling set that contains (i, j)
if there is a change in volatility between those codons. Stop
and start codons are excluded. Next, we consider the influ-
enza alignment developed in our previous example, exclud-
ing the 140 codon sites that experience no amino acid
changes over the 96 sequences. Taking the earliest se-
quence (Hong Kong 1968) to represent the origin, we es-
timate the pairwise labeled distances dy between epitope
codons from the origin to each of the remaining sequences
ordered by ascending sampling time. To draw inference, we
resample 25 codon sites without replacement from the re-
duced alignment 1,000 times and Areestimate dy,. We then
compare over time the observed dy to the distribution of
dy, under the null hypothesis.

Figure 5 reports the average within each year of the
proportion of resamples with distances more extreme than
the observed epitope distance. The time series supports the
volatility hypothesis. For the first several years (1968—
1972), when little sequence change has occurred, we ob-
serve a high proportion of resamples that have higher vol-
atility distance than those for the epitope codons. Looking
directly at the codon alignment converted to volatility, we
see only a small number of volatility changes, all at non-
epitope codons. Subsequently, we see a rapid fall off in
the fraction, indicating that the epitope codons experience
significantly more volatility substitutions than other evolv-
ing sites. We observe a reversal of this trend in 1982, where
the curve spikes dramatically. Examining the volatility
alignment changes within this year we find two simulta-
neous progressions: a reversion to volatility states at the or-
igin for some epitope codon sites, decreasing dy for the set,
and a large number of volatility changes at nonepitope sites,
increasing the fraction of resamples with d, higher than that
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FiG. 5.—Time series plot of Py, the fraction of random codon sets that have a more extreme estimated volatility change distance dy than that for
the epitope codon set. For each year, we average the fraction across all sequences within that year. Insets show dy distributions of random sets for
a special case within year (1982, top) and within a typical year (1988, bottom). Asterisks mark observed dy value for epitope codons.

for the epitope sites. These two processes progress within
the year but do not continue to subsequent years. As 1982
corresponds to a change in antigenic type, we conjecture
that sequence changes within antigenic type are a scale
of interest in understanding the structure of volatility.

The insets of figure 5 show histograms for a typical
resample and for the special case within 1982. In the typical
case, we see that the epitope codons give a volatility dis-
tance that departs substantially from the distribution of re-
sampled distances. The volatility distance for epitope
codons is close to one, indicating that every site in the an-
tigenic epitope experiences change in volatility during this
time interval. Given that the epitope codons were selected
based on their positive selective pressure that they show
such markedly higher volatility distance over the time
course suggests that positive selection and volatility change
are strongly related for hemagglutinin.

Convergent Evolution in an HIV Transmission Network

In this final example, we demonstrate how robust syn-
onymous distances can be used to solve a convergent evo-
lution problem, frequently faced during evolutionary
analyses of molecular sequences under positive selection.
Convergent evolution can be observed when selection
drives molecular sequences to the same state, making some
sequences appear more closely related than they really are
(Doolittle 1994). The convergent evolution problem can be
sometimes overcome by excluding the first two codon po-

sitions from phylogenetic inference. Mutations at the third
codon position are almost always synonymous due to the
genetic code redundancy. Therefore, using only the third
codon positions, one diminishes the effect of nonsynony-
mous mutations on the phylogenetic reconstruction. As-
suming that selection acts only at the amino acid level,
phylogenetic inference based only on synonymous muta-
tions should be free of the convergent evolution bias. Un-
fortunately, removing two-thirds of the data often leaves
little information to reconstruct phylogenies. Similarly to
the first two codon position removal approach, one can
eliminate influence of nonsynonymous mutations on the
distance-based phylogenetic reconstruction by considering
only synonymous distances. Advantageously, this distance-
based approach uses information more efficiently by not
discarding informative synonymous mutations at the first
two codon positions.

Lemey et al. (2005) encounter the convergent evolu-
tion problem in their analysis of a known HIV transmission
network. The authors collect 16 pol and env gene sequences
from 9 HIV+ individuals and find that their maximum like-
lihood and Bayesian analyses of the pol sequences produce
phylogenetic tree estimates that disagree with the transmis-
sion history. In contrast, the phylogenies of the env coding
region show no conflict with the transmission network in-
formation. Lemey et al. (2005) hypothesize that convergent
evolution, driven by antiviral drug resistance-driven selec-
tive pressure, may bias phylogenetic estimation in the pol
region. We revisit this problem to illustrate how synony-
mous distances can be used to reduce this bias. Starting with
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Fic. 6.—HIV transmission network. (@) Illustrates the HIV transmission network as a directed graph with nodes corresponding to the HIV+
patients. (b) Provides the results of our distance-based phylogenetic analysis. All three phylogenetic trees are majority consensus trees with bootstrap
clade probabilities shown in light gray circles. The first tree (left) is a result of applying Neighbor-Joining to the conventional F84 DNA distances. The
middle tree is constructed with the help of the conventional F84 DNA distances using only third codon positions. The last tree (right) is estimated using
our robust synonymous distances. The dark gray box highlights the patient B clade that is erroneously grouped with the G and F sequences in the

original study by Lemey et al. (2005).

a codon-based alignment of 16 pol sequences, we use
a Neighbor-Joining algorithm (Saitou and Nei 1987) to re-
construct phylogenies of the pol sequences under three dif-
ferent distance measures. First, we estimate regular DNA
distances using the F84 model. Next, we remove the first
two codon positions from our alignment and reconstruct
F84 pairwise distances based only on third codon positions.
We obtain our third distance measure by calculating the ro-
bust synonymous distances between all pairs of the pol se-
quences using the same product composition of F84 models
that we use in the simulations.

Figure 6a demonstrates the transmission network of
the 9 HIV+ individuals, labeled as A, B, ..., I. We show
the majority rule consensus trees reconstructed under the
three distance measures and over 1,000 bootstrap iterations.
During the calculation of bootstrap support with the third
codon position distances and robust synonymous distances,
we resample codons rather than DNA sites of the alignment.
The bootstrap support probabilities for each bipartition are
shown in circles. Notice that we infer unrooted trees and
arbitrarily root them for the sake of presentation. The
branch lengths are purposefully not drawn to scale in order
to align the tip labels. The first letter of each tip label cor-
responds to an individual’s label.

In their likelihood-based phylogenetic analysis,
Lemey et al. (2005) observe clustering of individual B’s

sequences with the G-F clade. This clustering suggests
an HIV transmission between individual B and either indi-
vidual F or G, creating an inconsistency with the transmis-
sion network. Interestingly, the consensus tree based on
regular DNA distances correctly places the B sequences.
However, the low bootstrap support of the node that sep-
arates individuals A, G, and F from everyone else indicates
that many trees still support the incorrect placement of the
individual B sequences. The support at this node signifi-
cantly increases in the tree reconstructed from the third co-
don position distances. However, this reduction in bias
comes at the expense of losing resolution in other parts
of the tree. For example, the third codon position tree can-
not resolve the clade of individual C sequences and has low
support for the individual D’s clade. The tree, reconstructed
using robust synonymous distances, also successfully re-
covers the A—G-F clade. Similarly to the third codon po-
sition analysis, removing phylogenetic information
provided by nonsynonymous mutations results in increased
uncertainty in the inferred phylogeny. However, the loss of
resolution is less severe in the robust synonymous tree than
in the third codon position tree. For example, the individual
D’s sequence clade is well resolved using the robust syn-
onymous distances.

Lemey et al. (2005) also resort to distance methods to
study the effect of convergent evolution bias on the
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phyl Igenetlc inference in the pol gene. They estimate iNGSé

and ¢~ values using Syn-SCAN (Gonzales et al. 2002)
and use these pairwise distance measures to reconstruct
Neighbor-Joining trees of 16 pol sequences. The authors
do not perform a bootstrap analysis to assess the uncertainty
of their estimates. More importantly, it is not clear that
”NGgG and 7 “NG% values are appropriate distance measures.
As we mentlon earlier in the text, the expected number of
synonymous and nonsynonymous m mutations per codon site
can be obtained from 7" and 7¢ ® via possibly nonlinear
transformations (24). The nonlinearity of these transforma-
tions depends critically on the behavior of the potential syn-
onymous and nonsynonymous counts S and N as functions
of pairwise alignments.

Using the HIV transmission network sequences, we
plot all possible pairwise rNC'86 and 5086 values against

0?11:1,086 and dAIS\I ase in the first row of figure 7 and find a nearly
perfect linear relationship between these two types of syn-
onymous and nonsynonymous distance measures. This lin-
ear relationship is produced by an approximate invariance
of N and § estlmates among different sequence pairs. As
a result, the r,I:,I and ”s distance matrices can be ap-

proximated by multiplying c&G% and QIS\I ase matrices by
a scalar. This is good news for researchers who use 7y
and 7 values for distance-based phylogenetic reconstruc-
tion because linear transformation of a distance matrix does
not affect phylogenetic relationships encoded by the distan-

ces. However, phylogenetic branch lengths have much
more meaningful interpretation if the phylogeny is esti-
mated using absolute expectations dy and ds. Despite
the strong empirical evidence in favor of the approximate
invariance of N and $ among all pairs of a sequence align-
ment, we are not aware of a general theoretical result that
would guarantee this behavior. In addition, several authors
point out serious problems in estimation of the potential
quantities N and $ that could compromise heuristic calcu-
lations of both 7y, /s and dy, dg values (Ina 1995; Muse
1996; Bierne and Eyre-Walker 2003).

Finally, we compare performance of the robust
counting and Syn-SCAN synonymous and nonsynony-
mous distance estimation in the HIV example by plotting
these estimates against each other in the bottom row
of figure 7. The robust counting consistently predicts
smaller expected number of synonymous and nonsynon-
ymous mutations between the HIV sequences. There is
a substantial number of nucleotide ambiguities in the
HIV sequences. Our current implementation of robust
counting treats ambiguities as missing values, whereas
Syn-SCAN uses this additional information more care-
fully. Therefore, we do not expect a perfect agreement be-
tween the robust counting and Syn-SCAN even if the
robust counting and the NG86 method perform compara-
bly on these data. We plan to include more efficient treat-
ment of nucleotide ambiguities in the next release of
markovjumps.



Discussion

The novel framework we present in this paper integra-
tes model-based prediction of the number of labeled sub-
stitutions between two molecular sequences with
a model-free estimate of the pairwise site pattern distribu-
tion. This combination yields robust estimates of labeled
distances between sequences. Providing substantial protec-
tion against the bias arising from model misspecification of
the underlying CTMC, robust counting is an important step
in making consistent and reliable estimates of sequence
change for biological analysis.

When the underlying CTMC is misspecified, robust
counting exchanges a significant reduction in estimation bias
for a moderate increase in variance relative to conventional
estimates under the same CTMC. This trade-off is typically
advantageous for the robust estimator as it leads to better
coverage properties in a large majority of model misspecifi-
cations we consider here. As expected, comparing robust es-
timates under a misspecified model against conventional
estimates under the true, more complex model, we observe
smaller variance but larger bias. However, MSE of these two
estimators suggest that for realistic sample sizes, robust es-
timators under simple models compete well with conven-
tional estimators based on complex models.

Assessing the bias and variance of robust counting is
only one of many interesting theoretical problems that our
new method raises. Perhaps, the most important open ques-
tion that we have not even attempted to answer is “How
robust is robust counting? ” or, in other words, how se-
verely can we misspecify a CTMC model of substitution
and still hope to recover true labeled distances via robust
counting? We should be able to answer this question quan-
titatively by characterizing the dependence of conventional
and robust distance estimator bias in terms of an as-yet-un-
defined metric between the misspecified and the true sub-
stitution model. With a solid theoretical understanding of
the robust counting bias behavior in hand, we will be able
to analyze many further model misspecifications without
time-consuming simulations.

In pursuing these properties of robust counting, we stress
that our procedure has very little in common with the standard
robust estimation applied to generalized linear models (Huber
1981). Therefore, theoretical studies may find advantage in
viewing robustcounting as asemiparametric procedure, where
nonparametric estimation of site pattern frequencies is com-
bined with fully parametric estimates of conditional expecta-
tions of the number of labeled transitions. Clearly, the robust
and semiparametric facets of robust counting donot contradict,
but rather complement, each other.

Afforded by some simple models of evolution, com-
putational efficiency is a very important property of any dis-
tance estimation procedure, constituting the primary
advantage of distance-based phylogenetic reconstruction
over full likelihood-based approaches. Fortunately, robust
counting inherits its computational efficiency from conven-
tional distance estimation, additionally requiring only the
very rapid calculation of conditional expectations (Holmes
and Rubin 2002; Minin and Suchard 2008). We emphasize
that working with simple nucleotide models with approx-
imate, closed-form expressions for the generator MLEs,
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such as the F84 model, keeps labeled distance estimation
computationally inexpensive. For example, estimating
the synonymous distance between two HIV sequences in
our last example takes 0.08 s with an F84-based codon
model coupled with our robust estimation. Conventional
distance estimation requires fitting an MO codon model
and runs 83 s. Although our suboptimal implementation
of MO parameter estimation may partially explain the dras-
tic difference between running times of conventional and
robust procedures, this example clearly illustrates the ad-
vantage of avoiding numerical likelihood optimization. Un-
derstandably, we find that for labeled codon distances,
robust counting compares fairly in speed with the estab-
lished methods NG86 and YNOO.

Although we concentrated on the nucleotide and codon
state spaces in this paper, the generality of robust counting
grants biological researchers freedom to fashion their own
labeled distances for any discrete evolutionary trait, specific
to their problem of interest. For example, we envision using
robust counting for computing distances between molecular
sequences measured in expected number of transitions be-
tween predefined amino acid classes, such as hydrophobic
and hydrophilic amino acids. Clearly, protection against
model misspecification will be of great advantage in these
ambitious attempts to fill in the missing details of evolution-
ary history—relating sequences.
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