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Abstract

Mapping evolutionary trajectories of discrete traits onto phylogenies receives consid-

erable attention in evolutionary biology. Given trait observations at the tips of a phylo-

genetic tree, researchers are often interested where on the tree the trait changes its state

and whether some changes are preferential in certain parts of the tree. In a model-based

phylogenetic framework, such questions translate into characterizing probabilistic prop-

erties of evolutionary trajectories. Moreover, if one adopts a Bayesian point of view, it

is possible to incorporate uncertainty about model parameters, including phylogenies,

into calculations of evolutionary trajectory properties. Current methods of assessing

these properties rely on computationally expensive simulations. In this paper, we show

that analytic approaches exist for two important and ubiquitous evolutionary trajectory

properties. The first is the mean number of trait changes during evolutionary history,

where changes can be divided into classes of interest (e.g. synonymous/nonsynonymous

mutations). The mean evolutionary reward, accrued proportionally to the time a trait

occupies each of its states, is the second property. We present an efficient, simulation-

free algorithm for computing these two properties. Our exact algorithm requires only

two tree traversals. Therefore, its computational efficiency is comparable to the familiar

pruning algorithm for phylogenetic likelihood calculation. We provide two examples that

illustrate practical importance of our method for Bayesian hypothesis testing. First, we

employ posterior predictive diagnostics to detect correlation between two evolutionary

traits. In the second example, we map synonymous and nonsynonymous mutations onto

an HIV intrahost phylogeny and develop a formal test to compare fractions of nonsyn-

onymous mutations on terminal and internal branches of an HIV intrahost phylogeny.
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Introduction and Background

Reconstructing evolutionary histories from present-day observations is a central problem in

quantitative biology. Phylogenetic estimation is one example of such reconstruction. How-

ever, phylogenetic reconstruction alone does not provide a full picture of an evolutionary

history, because evolutionary paths (mappings) describing trait states along the phyloge-

netic tree remain hidden. Although one is rarely interested in detailed reconstruction of

such mappings, certain probabilistic properties of the paths are frequently used in evolu-

tionary hypotheses testing (Nielsen, 2002; Huelsenbeck et al., 2003; Leschen and Buckley,

2007). For example, given a tree and a Markov model of amino acid evolution, one can

compute the expected number of times a transition from a hydrophobic to a hydrophilic

state occurs, conditional on the observed amino acid sequence alignment. Such expecta-

tions can inform researchers about model adequacy and provide insight into features of the

evolutionary process overlooked by standard phylogenetic techniques (Dimmic et al., 2005).

Nielsen (2002) introduces stochastic mapping of trait states on trees and employs this

new technique in a model-based evolutionary hypothesis testing context. The author starts

with a discrete evolutionary trait X that attains m states. He further assumes that this

trait evolves according to an evolutionary model described by a parameter vector θ, where

θ consists of a tree τ with n tips and branch lengths T = (t1, . . . , tBn), root distribution

π = (π1, . . . , πm), and a continuous-time Markov chain (CTMC) generator Λ = {λij}

for i, j = 1, . . . ,m. Let mapping Mθ = ({X1t}, . . . , {XBnt}) be a collection of CTMC

trajectories along all branches of τ and H(Mθ) be a real-valued summary of Mθ. Clearly,

even when parameters θ are fixed, h(Mθ) remains a random variable. Nielsen (2002)

proposes to test evolutionary hypotheses using prior and posterior expectations E [H(Mθ)]

and E [H(Mθ) |D], where D = (D1, . . . ,Dn) are trait values observed at the n tips of
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τ . Since these expectations are deterministic functions of θ and D, they can be used as

discrepancy measures for posterior predictive p-value calculations (Meng, 1994; Gelman

et al., 1996).

A major advantage of Nielsen’s stochastic mapping framework is its ability to account

for uncertainty in model parameters, including phylogenies. A major limitation of stochas-

tic mapping is its current implementation that relies on time consuming simulations. In

describing his method for calculating E [H(Mθ)] and E [H(Mθ) |D], Nielsen (2002) writes

“In general, we can not evaluate sums in Equations 5 and 6 directly, because the set [of all

possible mappings] is not of finite size.” However, the infinite number of possible mappings

does not prevent one from explicitly calculating E [H(Mθ)] for some choices of H. For

example, if

H (Mθ) =















1 if Mθ is consistent with D

0 if Mθ is inconsistent with D,

(1)

then E [H(Mθ)] = Pr (D), the familiar phylogenetic likelihood that can be evaluated with-

out simulations (Felsenstein, 2004). Therefore, hope remains that other choices of H may

also permit evaluation of E [H(Mθ)] and E [H(Mθ) |D] without simulations.

In this paper, we consider a class of additive mapping summaries of the form

H(Mθ) =
∑

b∈Ω

h ({Xbt}) , (2)

where h ({Xbt}) is a one-dimensional summary of the Markov chain path along branch b

and Ω is an arbitrary subset of all branches of τ . Moreover, we restrict our attention to

the two most popular choices of function h. Let L ⊂ {1, . . . ,m}2 be a set of ordered index

pairs that label transitions of trait X. For each Markov path {Xt} and interval [0, t), we

count the number of labeled transitions in this interval and arrive at

h1 ({Xt}) = NL - number of state transitions labeled by set L, (3)
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where we omit dependence on θ and t for brevity. Although our second choice of h is

more abstract, it is motivated by Huelsenbeck et al. (2003), who use Nielsen’s stochastic

mapping algorithm to calculate the mean dwelling time of a trait in a particular state. Let

w = (w1, . . . , wm) be a set of rewards assigned to each trait state. Trait X is “rewarded”

the amount t × wi for spending time t in state i. We obtain the total reward of Markov

path {Xt} by summing up all rewards that X accumulates during interval [0, t),

h2 ({Xt}) = Rw - evolutionary reward defined by vector w. (4)

To obtain dwelling times of X in a predefined set of trait states, we set wi = 1 if i belongs

to the set of interest and wi = 0 otherwise.

For these two choices of function h, we provide an algorithm for exact, simulation-free

computation of E [H(Mθ)] and E [H(Mθ) |D]. Similar to phylogenetic likelihood calcula-

tions of Pr (D), this algorithm relies on the eigen-decomposition of Λ and requires travers-

ing τ . Despite the restricted form of these summaries, our results cover nearly all current

applications of stochastic mapping. We conclude with two applications of stochastic map-

ping illustrating the capabilities of exact computation. In our first example, we examine

co-evolution of two binary traits and demonstrate that a previously developed simulation-

based test of independent evolution can be executed without simulations. We then turn to

a large codon Markov state-space, on which simulation-based stochastic mapping generally

experiences severe computational limitations. Using our exact computations, we study tem-

poral patterns of synonymous and nonsynonymous mutations in intrahost HIV evolution.
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Local, One Branch Calculations

In this section, we provide mathematical details needed for calculating expectations of

stochastic mapping summaries on one branch of a phylogenetic tree. We first motivate

the need for such local computations by making further analogies between calculations

of Pr (D) and expectations of stochastic mapping summaries. The additive form of H

reduces calculation of E [H(Mθ)] and E [H(Mθ) |D] to computing branch-specific expec-

tations E [h({Xbt})] and E [h({Xbt)} |D]. Recall that according to most phylogenetic mod-

els, trait X evolves independently on each branch of τ , conditional on trait states at all

internal nodes of τ . This conditional independence is the key behind the dynamic program-

ming algorithm that allows for efficient calculation of Pr (D) (Felsenstein, 1981). For this

likelihood calculation algorithm, it suffices to compute finite-time transition probabilities

P(t) = {pij(t)}, where

pij(t) = Pr (Xt = j |X0 = i) , i, (5)

for arbitrary branch length t. Similarly, to obtain E [h({Xt})] and E [h({Xt}) |D], we require

means of computing local expectations E(h, t) = {eij(h, t)}, where

eij(h, t) = E
[

h ({Xt}) 1{Xt=j} |X0 = i
]

, (6)

and 1{·} is the indicator function. After illustrating how to compute E(NL, t) and E(Rw, t)

without resorting to simulations, we provide an algorithm that efficiently propagates lo-

cal expectations E(h, t) and finite-time transition probabilities P(t) along τ to arrive at

E [h({Xt})] and E [h({Xt}) |D].
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Expected Number of Labeled Markov Transitions

Abstracting from phylogenetics, let NL(t) count the number of labeled transitions of a

CTMC {Xt} during time interval [0, t). It follows from the theory of Markov chain-induced

counting processes that

E(NL, t) =

∫ t

0
eΛzΛLeΛ(t−z)dz, (7)

where ΛL = {λij × 1{(i,j)∈L}} (Ball and Milne, 2005). Since most evolutionary models are

locally reversible, we can safely assume that Λ is diagonalizable with eigen-decomposition

Λ = U×diag(d1, . . . , dm)×U−1, where eigenvectors of Λ form the columns of U, d1, . . . , dm

are the real eigenvalues of Λ, and diag(d1, . . . , dm) is a diagonal matrix with elements

d1, . . . , dm on its main diagonal. Such analytic or numeric diagonalization procedure permits

calculation of finite-time transition probabilities P(t) = U × diag(ed1t, . . . , edmt) × U−1,

needed for likelihood calculations (Lange, 2004). Minin and Suchard (2008) show that one

can use the same eigen-decomposition of Λ to calculate local expectations

E(NL, t) =
m

∑

i=1

m
∑

j=1

SiΛLSjIij(t), (8)

where Si = UEiU
−1, Ei is a matrix with zero entries everywhere except at the ii-th entry,

which is one, and

Iij(t) =



















tedit if di = dj ,

edit − edjt

di − dj

if di 6= dj .

(9)

Expected Markov Rewards

For the reward process Rw(t), we define a matrix cumulative distribution function V(x, t) =

{Vij(x, t)}, where

Vij(x, t) = Pr (Rw(t) ≤ x,Xt = j |X0 = i) . (10)
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Neuts (1995) demonstrates that local reward expectations can be expressed as

E(Rw, t) = −
d

ds
V∗(s, t)

∣

∣

∣

s=0
, (11)

where

V∗(s, t) =

∫ ∞

0
e−sx dV(x, t) = e[Λ−diag(w1,...,wm)s]t (12)

is the Laplace-Stieltjes transform of V(x, t). It is easy to see that the matrix exponential

in equation (12) satisfies the following differential equation

d

dt
V∗(s, t) = V∗(s, t) [Λ − diag(w1, . . . , wm)s] . (13)

Differentiating this matrix differential equation with respect to s, exchanging order of in-

tegration, and evaluating both sides of the resulting equation at s = 0, we arrive at the

differential equation for local expectations

d

dt
E(R, t) = E(R, t)Λ + eΛtdiag(w1, . . . , wm), (14)

where E(R, 0) is the m × m zero matrix. Multiplication of both sides of equation (14) by

integrating factor e−Λt from the right and integration with respect to t produces solution

E(Rw, t) =

∫ t

0
eΛzdiag(w1, . . . , wm)eΛ(t−z)dz. (15)

Similarity between equations (7) and (15) invites calculation of the expected Markov rewards

via spectral decomposition of Λ,

E(Rw, t) =

m
∑

i=1

m
∑

j=1

Sidiag(w1, . . . , wm)SjIij(t). (16)

In summary, formulas (8) and (16) provide a recipe for exact calculations of local expecta-

tions for the number of labeled transitions and rewards.
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Assembling Pieces Together over a Tree

Notation for Tree Traversal

Let us label the internal nodes of τ with integers {1, . . . , n−1} starting from the root of the

tree. Recall that we have already arbitrarily labeled the tips of τ with integers {1, . . . , n}.

Let I be the set of internal branches and E be the set of terminal branches of τ . For each

branch b ∈ I, we denote the internal node labels of the parent and child of branch b by p(b)

and c(b) respectively. We use the same notation for each terminal branch b except p(b) is

an internal node index, while c(b) is a tip index. Let i = (i1, . . . , in−1) denote the internal

node trait states. Then, the complete likelihood of unobserved internal node states and the

observed states at the tips of τ is

Pr (i,D) = πi1

∏

b∈I

pip(b)ic(b)(tb)
∏

b∈E

pip(b)Dc(b)
(tb). (17)

We form the likelihood of the observed data by summing over all possible states of internal

nodes,

Pr (D) =
m

∑

i1=1

· · ·
m

∑

in−1=1

πi1

∏

b∈I

pip(b)ic(b)(tb)
∏

b∈E

pip(b)Dc(b)
(tb). (18)

Clearly, when data on the tips are not observed, the prior distribution of internal nodes

becomes

Pr (i) = πi1

∏

b∈I

pip(b)ic(b)(tb). (19)

Posterior Expectations Of Mapping Summaries

Consider an arbitrary branch b∗ connecting parent internal node p(b∗) to its child c(b∗).

First, we introduce restricted moments

E [h({Xb∗t})1D] = E [h({Xb∗t}) |D] × Pr (D) . (20)
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The expectation (20) integrates over all evolutionary mappings consistent with D on the

tips of τ . Invoking the law of total expectation and the definition of conditional probability,

we deduce

E [h({Xb∗t})1D] = E [h({Xb∗t)} |D] × Pr (D) =
∑

i

E [h({Xb∗t}) | i,D] × Pr (i,D)

=
∑

i

E
[

h({Xb∗t)} | ip(b∗), ic(b∗)

]

πi1

∏

b∈I

pip(b)ic(b)(tb)
∏

b∈E

pip(b)Dc(b)
(tb)

=
∑

i

eip(b∗)ic(b∗)
(h, tb∗) πi1

∏

b∈I\{b∗}

pip(b)ic(b)(tb)
∏

b∈E\{b∗}

pip(b)Dc(b)
(tb).

(21)

The last expression in derivation (21) illustrates that in order to calculate the posterior

restricted moment (20) along branch b∗ ∈ I, we merely need to replace finite-time tran-

sition probability pip(b∗)ic(b∗)
(tb∗) with local expectation eip(b∗)ic(b∗)

(h, tb∗) in the likelihood

formula (18). Similarly, if b∗ ∈ E , we substitute eip(b∗)Dc(b∗)
(h, tb∗) for pip(b∗)Dc(b∗)

(tb∗) in

(18). Given matrices P(tb) for b 6= b∗ and E(h, tb∗), we can sum over internal node states

using Felsenstein’s pruning algorithm to arrive at the restricted mean E [h({Xb∗t})1D] and

then divide this quantity by Pr (D) to obtain E [h({Xb∗t}) |D].

This procedure is efficient for calculating the posterior expectations of mapping sum-

maries for one branch of τ . However, in practice, we need to calculate mapping expectations

over many branches and consequently, execute the computationally intensive pruning algo-

rithm many times. Schadt et al. (1998) encounter a similar problem during differentiation

of the likelihood with respect to branch lengths. These authors formalize an algorithm that

allows for computationally efficient, repeated replacement of one of the finite-time transi-

tion probabilities with an arbitrary function of the corresponding branch length in equation

(18). This algorithm finds informal use since the 1980s in pedigree analysis (Cannings et al.,

1980) and PAUP (personal communication, J. Huelsenbeck).

Let Fu = (Fu1, . . . , Fum) be a vector of forward, often called partial or fractional, likeli-
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hoods at node u. Element Fui is the probability of the observed data at only the tips that

descend from node u, given that the state of u is i. If u is a tip, then we initialize partial

likelihoods via equation Fui = 1{i=Du}. In case of missing or ambiguous data, Du denotes

the subset of possible trait states, and forward likelihoods are set to Fui = 1{i∈Du}. During

the first, upward traversal of τ , we compute forward likelihoods for each internal node u

using the recursion

Fui =





m
∑

j=1

Fc(b1)jpij(tb1)



 ×





m
∑

j=1

Fc(b2)jpij(tb2)



 , (22)

where b1 and b2 are indices of the branches descending from node u and c(b1) and c(b2) are

the corresponding children of u. Schadt et al. (1998) suggest recording the quantities in

square brackets in equation (22) together with Fu. Naturally, these directional likelihoods

Sb = (Sbi, . . . , Sbi) arise through the recursion

Sbi =

m
∑

j=1

Fc(b)jpij(tb). (23)

Finally, we define backward likelihoods Gu = (Gu1, . . . , Gum), where Gui is the probability

of observing state i at node u together with other tip states on the subtree of τ obtained

by removing all lineages downstream of node u. A second, downward traversal of τ yields

Gu given the precomputed Sb. We initialize the traversal by setting backward likelihoods

at the root G1 = π. Other Gu follow from the recursion

Gui =

m
∑

j=1

Gp(b)jSbjpji(tb), (24)

where b is the branch leading from node u to its parent p(b).

For each branch b∗, we can sandwich pij(tb∗) among the forward, directional and back-

ward, forward likelihoods and write

Pr (D) =

m
∑

i=1

m
∑

j=1

Gp(b∗)iSb′ipij(tb∗)Fc(b∗)j , (25)
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where b′ is the second branch descending from the parent node p(b∗). Therefore, with Fu,

Sb and Gu precomputed for all of τ , we can replace pij(tb∗) with any other quantity for any

arbitrary branch b without repeatedly traversing τ . In particular, the posterior restricted

moment for branch b∗ can be expressed as

E [h({Xb∗t})1D] =

m
∑

i=1

m
∑

j=1

Gp(b∗)iSb′ieij(h, tb∗)Fc(b∗)j . (26)

In Figure 1, we use an example tree to illustrate the correspondence between each quantity

in sandwich formula (26) and the part of the tree involved in this quantity computation.

Remarkably, traversing τ twice and caching Fu, Sb and Gu allows one to calculate

posterior expectations of global additive mapping summaries E [h({Xb∗t)} |D] repeatedly

without any further traversals. We summarize all steps that lead to the computation of

the global mean E [H(Mθ) |D] in Algorithm 1. Notice that Pr (D), needed to transition

between conditional and restricted expectations in formula (20), is computed with virtually

no additional cost in step 4 of the algorithm.

Pulley Principle for Evolutionary Mappings

Suppose that we are interested in a mean mapping summary E [H(Mθ) |D], obtained as a

sum of local mapping summaries over all branches of the phylogenetic tree τ . We would like

to know whether quantity E [H(Mθ) |D] changes when we move the root of τ to a different

location.

Recall that reversibility of the Markov chain {Xt} makes Pr (D) invariant to the root

placement in τ if the root distribution π is the stationary distribution of {Xt} (Felsenstein,

1981). Felsenstein’s pulley principle rests on the detailed balance condition

πipij(t) = πjpji(t) (27)
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and Chapman-Kolmogorov relationship

pij(t1 + t2) =

m
∑

k=1

pik(t1)pkj(t2). (28)

Applying both formulas (27) and (28) once in equation (18) allows one to move the root

to any position along the two root branches without changing Pr (D). Therefore, Pr (D) is

invariant to moving the root to any position on any branch of τ since we can repeatedly

apply the detailed balance condition and the Chapman-Kolmogorov equation.

Invariance of Pr (D) to root placement together with formula (20) suggests that root

position invariance of conditional expectations E [H(Mθ) |D] holds if and only if invariance

of joint expectations E [H(Mθ)1D] is satisfied. Consider a 2-tip phylogeny with branches

of length t1 and t2 leading to observed trait states D1 and D2 respectively. According to

formulas (2) and (21), we may expect that

E [H(Mθ)1D] =

m
∑

k=1

πkekD1(h, t1)pkD2(t2) +

m
∑

k=1

πkekD2(h, t2)pkD1(t1)

=

m
∑

k=1

πD1eD1k(h, t1)pkD2(t2) +

m
∑

k=1

πD1ekD2(h, t2)pD1k(t1)

= πD1eD1D2(h, t1 + t2)

(29)

depends only on the sum t1+t2. Therefore, we can move the root anywhere on this phylogeny

without altering expectations. It is easy to see that repeated application of derivation (29)

readily allows for extension of the root invariance principle to n-tip phylogenies.

In derivation (29), we use identities

eij(h, t1 + t2) =

m
∑

k=1

[eik(h, t1)pkj(t2) + ekj(h, t2)pik(t1)] (30)

and

πieij(h, t) = πjeji(h, t). (31)

Equation (30) splits computation of the expected summary on interval [0, t1 + t2) into

calculations bound to intervals [0, t1) and [t1, t1 + t2) with the help of the total expectation
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law and Markov property. The derivation parallels the derivation of Chapman-Kolmogorov

equation (28). Identity (31) requires more care as it does not hold for all choices of function

h. Using equation (16), detailed balance condition (31) holds for h2 = Rw. However

equation (7) suggests that we can guarantee the detailed balanced condition (31) for h1 =

NL only when (i, j) ∈ L if and only if (j, i) ∈ L.

Prior Expectations of Mapping Summaries

In many applications of stochastic mapping, one wishes to compare the prior to posterior

expectations of summaries (Nielsen, 2002). In this section, we derive formulas necessary for

computing prior expectations. Similar to our derivation of posterior expectations, we begin

by considering an arbitrary branch b∗ and use the law of total expectation to arrive at

E [h({Xb∗t})] =























∑

i
eip(b∗)ic(b∗)

(h, tb∗)πi1

∏

b∈I\{b∗} pip(b)ic(b)(tb) if b∗ ∈ I

∑

i
eip(b∗)

(h, tb∗)πi1

∏

b∈I pip(b)ic(b)(tb) if b∗ ∈ E ,

(32)

where ei(h, t) =
∑m

j=1 eij(h, t) is the marginal local expectation of the mapping summary.

Identity P(t)1 = 1 allows us to eliminate summation over some internal node states in

formula (32) and consider only those internal nodes that lie on the path connecting the root

of τ and c(b∗). If π is the stationary distribution of {Xt}, then formula (32) together with

identities π
TP(t) = π

T and P(t)1 = 1 simplifies prior local expectations even further,

E [h({Xb∗t})] =
∑

i

∑

j

πieij(h, tb∗) = π
TE(h, tb∗)1 =























π
TΛL1tb∗ if h = NL

∑m
i=1 πiwitb∗ if h = Rw.

(33)

The fact that prior local expectations at stationarity compute with virtually no ad-

ditional burden has immediate practical implications. In the context of the posterior

predictive model checking, researchers often need to simulate L independent and identi-

cally distributed (iid) realizations D1, . . . ,DL of data at the tips of τ and then calculate
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the summary-based discrepancy measure 1
L

∑L
l=1 E [h({Xt}) |Dl] (Nielsen, 2002). Since we

know the “true” model under simulation, we can approximate this discrepancy measure

with the prior expectation

1

L

L
∑

l=1

E [h({Xt}) |Dl] ≈
∑

D∗

E [h({Xt}) |D
∗] Pr (D∗) = E [{Xt}] , (34)

where D∗ ranges over all possible trait values at the tips of τ . In molecular evolution

applications, L is on the order of 103−105, and hence approximation (34) should work well.

Higher Moments and Variance of Mapping Summaries

So far we discuss calculations only for the first moments of additive mapping summaries.

Higher moments are instrumental in some applications (Zheng, 2001; Nielsen, 2002). We

first point out that local, one-branch calculations (8) and (16) extend easily to higher

moments

ek
ij(h, t) = E

[

hk({Xt})1{Xt=j} |X0 = i
]

. (35)

Minin and Suchard (2008) explain how to perform such computations for counting processes.

One-branch calculations of higher moments of reward processes are analogous.

To calculate higher moments of additive mappings summarizes over τ , we need expec-

tations of mixed product terms. For example, expectations of the form

E
[

h({Xb∗t})h({Xb
′
t})1D

]

(36)

should be computed for some or all possible branch pairs (b∗, b
′

) in order to obtain the

second moment of the summary. Performing a derivation parallel to (21), we can show

that calculating mixed product expectations (36) requires replacing finite-time transition

probabilities pip(b∗)ic(b∗)
(tb∗) and pi

p(b
′
)
i
c(b

′
)
(tb′ ) with the first moments eip(b∗)ic(b∗)

(h, tb∗) and
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ei
p(b

′
)
i
c(b

′
)
(h, tb′ ) respectively. Unfortunately, caching partial likelihoods for repeated calcu-

lations becomes less practical in this case, because one needs to calculate partial likelihoods

for each node pair in τ . Clearly, such calculations result in an algorithm with running time

growing as O(n2), where n is the number of tips.

Alternatively, we propose combining our analytic one-branch calculations with internal

node state simulations to calculate the conditional variance of additive mapping summaries.

Using the law of total variance, we decompose the posterior mapping variance as

Var [H(Mθ) |D] = E {Var [H(Mθ) | i,D]} + Var {E [H(Mθ) | i,D]} . (37)

Since Xt evolves independently on each branch conditional on internal node states i and

D, Var [H(Mθ) | i,D] and E [H(Mθ) | i,D] can be calculated using one-branch calculations.

Using Monte Carlo integration, we are able compute the expectation of the conditional

variance and the variance of the conditional expectation by simulating internal node states

from their posterior distribution Pr (i |D).

Comparison with Simulation-Based Stochastic Mapping

We comment earlier that the Monte Carlo algorithm for stochastic mapping is an alternative

and very popular way to compute expectations of mapping summaries. This algorithm

consists of two major steps. In the first step, the tree is traversed once to compute Fu for

each node. In the second step, internal node states i are simulated conditional on D (Pagel,

1999). Then, conditional on i, one simulates CTMC trajectories on each branch of the

tree and computes summaries of interest. This second step is repeated N times producing a

Monte Carlo sample of mapping summaries whose averages approximate the branch-specific

expectations.

The running time of the algorithm depends on N and the computational efficiency of
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generating CTMC trajectories. The number of samples N , required for accurate estimation,

varies with Λ and T. Unfortunately, this aspect of stochastic mapping is largely ignored

in the literature and by practitioners. Although more than one way exists to simulate

trajectories conditional on starting and ending states (Rodrigue et al., 2008), rejection

sampling is the most common (Nielsen, 2002). Assessing the efficiency of rejection sampling

is complicated, because the efficiency depends not only on the choice of CTMC parameters,

but also on the observed data patterns D. We illustrate these difficulties using a CTMC

on a state space of 64 codon triplets. We take two sites from an alignment of 129 HIV

sequences that we discuss later in one of our examples. We call the first site slow evolving

as it obtains only 3 different codons. The second, fast evolving site emits 9 different codons.

We take one parameter slice of our Markov chain Monte Carlo (MCMC) sample and run

rejection sampling to estimate the expected number of mutations for all branches of τ . For

each trial, we record the total number of rejections on all branches of τ and the absolute

errors of the estimated mean number of synonymous mutations summed over all branches.

We summarize the results of this experiment in Table 1. We see a 400× increase in the

number of rejections required to simulate trajectories conditional on the fast site compared

to equivalent simulations based on the slow site. The Monte Carlo error decreases as the

number of Monte Carlo iterations increases, but not as fast as one would hope.

In summary, simulation-based stochastic mapping requires simulation of CTMC tra-

jectories; this is not a trivial computational task. Assessing accuracy of methods is cum-

bersome and difficult to automate. Our Algorithm 1 replaces both simulation components

from stochastic mapping calculations and therefore should be a preferred way of calculating

expectations of mapping summaries. For the variance of mapping summaries, despite the

added simulation component, our proposed procedure should still be more efficient than
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current approaches, because we employ exact one-branch calculations to remove one of the

two simulation layers.

Examples

Detecting Co-Evolution via Dwelling Times

In this section, we reformulate a previously developed simulation-based method for detection

of correlated evolution (Huelsenbeck et al., 2003) in terms of a Markov reward process. We

consider two primate evolutionary traits, estrus advertisement (EA) and multimale mating

system (MS), analyzed by Pagel and Meade (2006). These authors first use cytochrome-b

molecular sequences to estimate the posterior distribution of the phylogenetic relationship

among 60 Old World monkeys and ape species. Using 500 MCMC samples from the pos-

terior distribution of phylogenetic trees, Pagel and Meade run another MCMC chain, this

time with a reversible jump component, that explores a number of CTMC models involving

EA and MS traits and assess the models’ posterior probabilities to learn about EA/MS

co-evolution. The authors find support in favor of a hypothesis stating that EA presence

correlates with MS presence. The trait data are shown in Figure 3 together with a phylo-

genetic tree, randomly chosen from the posterior sample. While not the case for Pagel and

Meade (2006), reversible jump MCMC for model selection can be difficult to implement, es-

pecially as the number of trait states grows. Methods that simply require data fitting under

the null model are warranted. Consequentially, we revisit this dataset and apply posterior

predictive model diagnostics to test the hypothesis of independent evolution between EA

and MS traits.

Our null model assumes that EA and MS evolve independently as two 2-state Markov
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chains X
(1)
t , X

(2)
t ∈ {0, 1}, where 0 and 1 respectively stand for trait absence and presence.

Let the infinitesimal generators of the EA and MS CTMCs be

ΛEA =









−α0 α0

α1 −α1









and ΛMS =









−β0 β0

β1 −β1









. (38)

We form a product Markov chain Yt =
(

X
(1)
t ,X

(2)
t

)

on the state space {(0, 0), (0, 1), (1, 0), (1, 1)}

that keeps track of presence/absence of the two traits simultaneously assuming that they

evolve independently. The generator of the product chain is obtained via the Kronecker

sum (⊕)

Φ = ΛMS ⊕ ΛEA =

























−(α0 + β0) β0 α0 0

β1 −(α0 + β1) 0 α0

α1 0 −(α1 + β0) β0

0 α1 β1 −(α1 + β1)

























. (39)

The Kronecker sum representation extends to general finite state-space Markov chains and

to an arbitrary number of independently evolving traits (Neuts, 1995). Computationally,

this representation is advantageous, because eigenvalues and eigenvectors of a potentially

high-dimensional product chain generator derive analytically from eigenvalues and eigen-

vectors of low-dimensional individual generators (Laub, 2004).

To test the independent evolution model fit via posterior predictive diagnostics, we need

a discrepancy measure (Meng, 1994). Following Huelsenbeck et al. (2003), we employ mean

dwelling times to form a discrepancy measure. Let Z =
∑B

b=1 tb be the tree length of τ .

We define the mean dwelling times Z
(1)
i and Z

(2)
i of traits X

(1)
t and X

(2)
t in state i, and the

mean dwelling time Zij of the product chain Yt in state (i, j) for i, j = 0, 1. More formally,

we set

Z
(1)
i = E

[

Rwi
|D(1)

]

, Z
(2)
i = E

[

Rwi
|D(2)

]

, and Zij = E
[

Rwij
|D(1),D(2)

]

, (40)
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where w1 = (1, 0), w2 = (0, 1), w00 = (1, 0, 0, 0), w01 = (0, 1, 0, 0), w10 = (0, 0, 1, 0),

w11 = (0, 0, 0, 1), and D(1), D(2) are observations of the two traits on the tips of τ .

Using the dwelling times, we define “expected” εij and “observed” ηij fractions of time

the two traits spend in states i and j

εij =
Z

(1)
i

Z
×

Z
(2)
j

Z
and ηij =

Zij

Z
. (41)

We use quotation marks because both quantities are not observed. Under the null hypothesis

of independence, εij = ηij for all i, j = 0, 1. To quantify the deviation from the null seen in

the data, we introduce the discrepancy measure

∆ (ΛEA,ΛMS,D) =

1
∑

i=0

1
∑

j=0

(εij − ηij)
2. (42)

This measure implicitly depends on τ and branch lengths T. We account for this dependence

and phylogenetic uncertainty by averaging our results over a finite sample from the posterior

distribution of τ and T, obtained from the molecular sequence data.

We use the software package BayesTraits to accomplish this averaging and to produce

a MCMC sample from the posterior distribution of ΛEA and ΛMS assuming the null model

of independent evolution of the two traits (Pagel et al., 2004). Each iteration sample from

the output of BayesTraits consists of (τ,T, α0, α1, β0, β1) drawn from their posterior dis-

tribution. Given these model parameters, we generate a new dataset Drep and compute

the observed ∆ (ΛEA,ΛMS,D) and predicted ∆ (ΛEA,ΛMS,D
rep) discrepancies for each

iteration. We then compare their marginal distributions by plotting their corresponding

histograms (Figure 2). In this figure, we also plot the observed against predicted dis-

crepancies to display the correlation between these two random variables. The apparent

disagreement between observed and predicted discrepancies is a manifestation of poor fit

of the independent model of evolution. The observed discrepancy consistently exceeds the
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predicted quantity. To illustrate the performance of predictive diagnostics when the inde-

pendent model fits data well, we simulate trait data under this model along one of the 500

a posteriori supported phylogenetic trees. The second row of Figure 2 depicts the result of

the posterior model diagnostics applied to the simulated data. In contrast to the observed

primate data, the simulated data do not exhibit disagreement between the observed and

predicted discrepancies.

Disagreement between the observed and predicted discrepancies can be quantified using

a tail probability, called a posterior predictive p-value,

ppp = Pr (∆ (ΛEA,ΛMS,D
rep) > ∆ (ΛEA,ΛMS,D) |D,H0) , (43)

where the tail probability is taken over the posterior distribution of the independent model.

In practice, given N MCMC iterations, one estimates posterior predictive p-values via

ppp ≈
1

N

N
∑

g=1

1n

∆
“

Λ
(g)
EA,Λ

(g)
MS,Drep,g

”

>∆
“

Λ
(g)
EA,Λ

(g)
MS,D

”o, (44)

where Λ
(g)
EA,Λ

(g)
MS are parameter values, realized at iteration g, and Drep,g is a data set,

simulated using these parameter values. Following this recipe, we estimate ppp for the pri-

mate data and the artificial data. The discrepancy between the “observed” and “predicted”

discrepancies is reflected in a low ppp = 0.0128. In contrast, the ppp = 0.3139, for the sim-

ulated data, supporting agreement between the “observed” and “predicted” distributions

of ∆.

Mapping Synonymous and Non-Synonymous Mutations

In this section, we consider the important task of mapping synonymous and non-synonymous

mutations onto branches of a phylogenetic tree. Our point of departure is a recent ambitious

analysis of HIV intrahost evolution by Lemey et al. (2007), who use sequence data originally
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reported by Shankarappa et al. (1999). The authors attempt to estimate branch-specific

synonymous and nonsynonymous mutation rates and then project these measurements onto

a time axis. This projection enables them to relate the time evolution of selection processes

with clinical covariates. Lemey et al. (2007) find fitting codon models computationally

prohibitive in this case. Instead, they first fit a DNA model to the intrahost HIV sequences,

obtain a posterior sample of phylogenies with branch lengths, and then use these phylogenies

to fit a codon model to the same DNA sequence alignment. Instead of fitting two different

models to the data, we propose to use just a DNA model and exploit mapping summaries

to predict synonymous and nonsynonymous mutation rates.

Suppose we observe a multiple DNA sequence alignment D = (D1, . . . ,DL) of a protein-

coding region with L sites and that all C = L/3 codons are aligned to each other such that

the coding region starts at site 1 of D (in other words, there is no frame-shift). We assume

that sites corresponding to all first codon positions, D1,D4, . . . ,DL−2, evolve according to a

standard HKY model with generator ΛHKY(κ1,π1) where κ1 is the transition-transversion

ratio and π1 is the stationary distribution, both just for the first codon position appropri-

ately constrained. Similarly, we define CTMC generators ΛHKY(κ2,π2) and ΛHKY(κ3,π3)

for the other two codon positions with independent parameters. Assuming that all L nu-

cleotide sites in D evolve independently together with the 3 codon position HKY models

induces a product Markov chain model on the space of codons (AAA,AAG, . . . , TTT ),

where codons are arranged in lexicographic order with respect to our nucleotide order

A < G < C < T . The generator of this product CTMC is

Λcodon = ΛHKY(κ1, π1) ⊕ ΛHKY(κ2, π2) ⊕ ΛHKY(κ3, π3). (45)

With this Markov chain on the codon space, we define a labeling L(s) that contains

all possible pairs of codons that translate into the same amino acid. All other codon pairs
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are collected into a labeling set L(n). Clearly, transitions between elements of L(s) consti-

tute synonymous mutations and nonsynonymous mutations are represented by transitions

between elements of L(n). In this manner, counting processes map synonymous and nonsyn-

onymous mutations onto specific branches of τ . We consider HIV sequences from patient 1

of Shankarappa et al. (1999) and approximate the posterior distribution of our DNA model

parameters Pr (Λcodon, τ,T |D) using MCMC sampling implemented in the software pack-

age BEAST (Drummond and Rambaut, 2007). The serially sampled HIV sequences permit

us to estimate the branch lengths T in units of clock time, months in this case. For each

saved MCMC sample, we compute branch-specific rates of synonymous and nonsynonymous

mutations,

rb(s) =
1
C

∑C
c=1 E

[

NL(s)(tb) |Dc:c+2

]

tb
and rb(n) =

1
C

∑C
c=1 E

[

NL(n)(tb) |Dc:c+2

]

tb
, (46)

where we denote data at codon site c by Dc:c+2. We also record the fraction rb(n)
rb(s)+rb(n)

of nonsynonymous mutations. Similar to Lemey et al. (2007), we summarize these mea-

surements by projecting them on the time axis. To this end, we form a finite time grid

and produce a density profile of the synonymous and nonsynonymous rates, and of the

nonsynonymous mutation fractions for each time interval between grid points (Figure 5).

Both synonymous and nonsynonymous rate density profiles are consistently bimodal across

time. Interestingly, the modes also stay appreciably constant. The density profile of the

nonsynonymous mutation fractions is multimodal and fairly complex. There is a consider-

able number of branches that exhibit strong negative
(

rb(n)
rb(s)+rb(n) ∼ 0

)

and
(

rb(n)
rb(s)+rb(n) ∼ 1

)

positive selection. For the vast majority of branches, the nonsynonymous mutation fraction

has first a modest upward trend through time and then descends to lower values, consistent

with other patterns of evolutionary diversity reported by Shankarappa et al. (1999).

Intrigued by the multimodality observed in Figure 5, we investigate this issue further.
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Lemey et al. (2007) consider several branch categories in their analysis, e.g. internal and

terminal. We decide to test whether differences exist between selection forces acting on

internal and terminal branches of τ . We define the fractions of nonsynonymous mutations

on internal and terminal branches as

ρE (Λcodon, τ,T,D) =

∑

b∈E

∑C
c=1 E

[

NL(n)(tb) |Dc:c+2

]

∑

b∈E

∑C
c=1

{

E
[

NL(s)(tb) |Dc:c+2

]

+ E
[

NL(n)(tb) |Dc:c+2

]} (47)

and

ρI (Λcodon, τ,T,D) =

∑

b∈I

∑C
c=1 E

[

NL(n)(tb) |Dc:c+2

]

∑

b∈I

∑C
c=1

{

E
[

NL(s)(tb) |Dc:c+2

]

+ E
[

NL(n)(tb) |Dc:c+2

]} . (48)

We plot their posterior histograms in Figure 4. These histograms do not overlap, suggesting

different fractions of nonsynonymous mutations for internal and external branches. To test

this hypothesis more formally, we form a discrepancy measure

∆ (Λcodon, τ,T,D) = ρE (Λcodon, τ,T,D) − ρI (Λcodon, τ,T,D) . (49)

As in our previous example, we compare the “observed” discrepancy ∆ (Λcodon, τ,T,D)

with the “expected” discrepancy ∆ (Λcodon, τ,T,Drep), where Drep is a multiple sequence

alignment simulated under the codon partitioning model with parameters Λcodon,τ and T.

Evoking approximation (34) and recalling that our model assumes the same substitution

rates for each branch of τ , we deduce that

∆ (Λcodon, τ,T,Drep) ≈ 0 (50)

for all parameter values Λcodon,T,and τ and replicated data Drep. Plugging in our new

discrepancy measures into equation (44), we find that ppp < 0.001. Therefore, our posterior

predictive test suggests that there is significant heterogeneity of mutation rates among the

branches of τ .
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Discussion

In this paper, we develop a computationally efficient framework for mapping evolutionary

trajectories onto phylogenies. Although we aim to keep this mathematical framework fairly

general, our main interest with evolutionary mappings lies in computing the mean number

of labeled trait transitions and the mean evolutionary reward that depends linearly on

the time a trait occupies each of its states. These two mapping summaries have been the

most promising building blocks for constructing statistical tests. Incidentally, the transition

counts and occupancy times also form the minimal sufficient statistics of partially observed

CTMCs (Guttorp, 1995).

We build upon our earlier work involving single branch calculations for Markov-induced

counting processes (Minin and Suchard, 2008). In our extension, we introduce single branch

calculations for evolutionary reward processes and devise algorithms to extend single branch

calculations to mapping expectations of counting and reward processes onto branches across

an entire phylogeny. Our main result generalizes Felsenstein’s pruning algorithm that forms

the work-horse of modern phylogenetic computation. The generalized pruning algorithm

warrants two comments about its efficiency for performing simulation-free stochastic map-

ping. A traditionally slow component of phylogenetic inference is the eigen-decomposition of

the infinitesimal rate matrix. Fortunately, this decomposition finds immediate re-use in our

algorithm to calculate posterior expectations of mappings. Second, the algorithm requires

only two traversals of the phylogenetic tree, and is therefore at most 2 times slower than the

standard likelihood algorithm. In practice, we find our algorithm is about 1.5 slower than

the likelihood calculation. We achieve this advantage because during the second traversal

n terminal branches are not visited. Finally, the Felsenstein’s algorithm analogy yields a

pulley principle for stochastic mapping and reduction in computation for prior expectations.
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Our examples demonstrate how our novel algorithm facilitates phylogenetic exploratory

analysis and hypothesis testing. First, we use simulation-free stochastic mapping of occu-

pancy times to re-implement Huelsenbeck et al. (2003)’s posterior predictive test of inde-

pendent evolution. In our second example, we attempt to recover synonymous and nonsyn-

onymous mutation rates without resorting to codon models and instead use an independent

codon partitioning model. We overcome this gross model misspecification with stochastic

mapping, find intriguing multi-modality of synonymous and nonsynonymous rates, and use

a posterior predictive model check to test differences in selection pressures between terminal

and internal branches. We stress that our predictions are only as good as the model we

use. For example, the terminal/internal branch differences may be due a general bad fit of

our purposely misspecified model to the intrahost HIV data. However, we find this scenario

unlikely in light of the recent demonstration of excellent performance of codon partitioning

models during analyses of protein coding regions (Shapiro et al., 2006).

Our examples illustrate importance of hypothesis testing in statistical phylogenetics. In

recent years, it has become clear that an evolutionary analysis almost never ends with tree

estimation. Importantly, phylogenetic inference enables evolutionary biologists to tackle

scientific hypotheses, appropriately accounting for ancestry-induced correlation in observed

trait values (Huelsenbeck et al., 2000; Pagel and Lutzoni, 2002). Several authors demon-

strate that mapping evolutionary histories onto inferred phylogenies provides a convenient

and probabilistically grounded basis for designing statistically rigorous tests of evolutionary

hypotheses (Nielsen, 2002; Huelsenbeck et al., 2003; Dimmic et al., 2005). Unfortunately,

this important statistical technique has been hampered by the high computational cost of

stochastic mapping. Our general mathematical framework and fast algorithms should secure

a central place for stochastic mapping in the statistical toolbox of evolutionary biologists.

26



Acknowledgments

We would like to thank Philippe Lemey for sharing his HIV codon alignments. We are also

grateful to Andrew Meade for his help on using the BayesTraits software. MAS is sup-

ported by an Alfred P. Sloan Research Fellowship and a John Simon Guggenheim Memorial

Fellowship.

References

Ball, F. and R. Milne. 2005. Simple derivations of properties of counting processes

associated with Markov renewal processes. Journal of Applied Probability 42:1031–1043.

Cannings, C., E. Thompson, and M. Skolnick. 1980. Current Developments in Anthro-

pological Genetics, chapter Pedigree analysis of complex models, pages 251–298. Plenum

Press, New York.

Dimmic, M., M. Hubisz, C. Bustamante, and R. Nielsen. 2005. Detecting coevolving

amino acid sites using Bayesian mutational mapping. Bioinformatics 21:i126–i135.

Drummond, A. and A. Rambaut. 2007. BEAST: Bayesian evolutionary analysis by

sampling trees. BMC Evolutionary Biology 7:214.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood

approach. Journal of Molecular Evolution 13:93–104.

Felsenstein, J. 2004. Inferring Phylogenies. Sinauer Associates, Inc., Sunderland, MA.

Gelman, A., X. Meng, and H. Stern. 1996. Posterior predictive assessment of model

fitness via realized discrepancies. Statistica Sinica 6:733–807.

27



Guttorp, P. 1995. Stochastic Modeling of Scientific Data. Chapman & Hall, Suffolk, Great

Britain.

Huelsenbeck, J., R. Nielsen, and J. Bollback. 2003. Stochastic mapping of morpho-

logical characters. Systematic Biology 52:131–158.

Huelsenbeck, J., B. Rannala, and J. Masly. 2000. Accommodating phylogenetic

uncertainty in evolutionary studies. Science 288:2349–2350.

Lange, K. 2004. Applied Probability . Springer-Verlag, New York.

Laub, A. 2004. Matrix Analysis for Scientists and Engineers. SIAM, Philadelphia, PA.

Lemey, P., S. K. Pond, A. Drummond, O. Pybus, B. Shapiro, H. Barroso,

N. Taveira, and A. Rambaut. 2007. Synonymous substitution rates predict HIV dis-

ease progression as a result of underlying replication dynamics. PLoS Computational

Biology 3:e29.

Leschen, R. and T. Buckley. 2007. Multistate characters and diet shifts: Evolution of

erotylidae (coleoptera). Systematic Biology 56:97–112.

Meng, X. 1994. Posterior predictive p-values. Annals of Statistics 22:1142–1160.

Minin, V. and M. Suchard. 2008. Counting labeled transitions in continuous-time

Markov models of evolution. Journal of Mathematical Biology 56:391–412.

Neuts, M. 1995. Algorithmic Probability: a Collection of Problems. Chapman and Hall,

London.

Nielsen, R. 2002. Mapping mutations on phylogenies. Systematic Biology 51:729–739.

28



Pagel, M. 1999. The maximum likelihood approach to reconstructing ancestral character

states of discrete characters on phylogenies. Systematic Biology 48:612–622.

Pagel, M. and F. Lutzoni. 2002. Biological Evolution and Statistical Physics, chapter

Accounting for phylogenetic uncertainty in comparative studies of evolution and adapta-

tion, pages 148–161. Springer-Verlag, Berlin.

Pagel, M. and A. Meade. 2006. Bayesian analysis of correlated evolution of discrete

characters by reversible−jump Markov chain Monte Carlo. American Naturalist 167:808–

825.

Pagel, M., A. Meade, and D. Barker. 2004. Bayesian estimation of ancestral character

states on phylogenies. Systematic Biology 53:673–684.

Rodrigue, N., H. Philippe, and N. Lartillot. 2008. Uniformization for sampling

realizations of Markov processes: applications to Bayesian implementations of codon

substitution models. Bioinformatics 24:56–62.

Schadt, E., J. Sinsheimer, and K. Lange. 1998. Computational advances in maximum

likelihood methods for molecular phylogeny. Genome Research 8:222–233.

Shankarappa, R., J. Margolick, S. Gange, A. Rodrigo, D. Upchurch,

H. Farzadegan, P. Gupta, C. Rinaldo, G. Learn, X. He, X. Huang, and

J. Mullins. 1999. Consistent viral evolutionary changes associated with the progression

of human immunodeficiency virus type 1 infection. Journal of Virology 73:10489–10502.

Shapiro, B., A. Rambaut, and A. Drummond. 2006. Choosing appropriate substitution

models for the phylogenetic analysis of protein-coding sequences. Molecular Biology and

Evolution 23:7–9.

29



Zheng, Q. 2001. On the dispersion index of a Markovian molecular clock. Mathematical

Biosciences 172:115–128.

30



2

A A

j
T

A A

T G
G

1

2

3

4

1

3

3 3

G
G

4

b.a.

i

b′

b′

F4j

eij(h, tb∗)
b∗

b∗

Sb′i

G3i

E[h({Xb∗t})1D] =
m
∑

i=1

m
∑

j=1

G3iSb′ieij(h, tb∗)F4j

Figure 1: Sandwich formula illustration. In part (a), we plot an example phylogenetic tree

in which we label internal nodes numerically and two branches b∗ and b′. We break this

tree at nodes 3 and 4 into the subtrees shown in part (b). Assuming that trait states are i

and j at nodes 3 and 4 respectively, we mark each subtree by the corresponding quantity

needed for calculating the posterior expectation of a mapping summary on branch b∗.
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Homo sapiens   0      0
Pan paniscus   1      1

Pan troglodytes   1      1
Gorilla gorilla   0      0

Pongo pygmaeus   0      0
Pongo pygmaeus abelii   0      0

Hylobates leucogenys   0      0
Hylobates gabriellae   0      0

Hylobates concolor   0      0
Hylobates hoolock   0      0

Hylobates syndactylus   0      0
Hylobates lar   0      0

Hylobates muelleri   0      0
Hylobates agilis   0      0

Hylobates moloch   0      0
Hylobates pileatus   0      0

Hylobates klossii   0      0
Macaca arctoides   0      1
Macaca cyclopis   0      1
Macaca mulatta   −      −

Macaca fascicularis   −      −
Macaca silenus   1      1

Macaca sylvanus   1      1
Macaca nemestrina   1      1

Macaca tonkeana   1      1
Macaca maura   1      1
Macaca hecki   1      1
Macaca nigra   1      1

Macaca nigriscens   1      1
Macaca brunnescens   1      1

Macaca ochreata   1      1
Cercocebus torquatus   1      1

Mandrillus sphinx   1      1
Mandrillus leucophaeus   1      1

Papio anubis   1      1
Papio cynocephalus   1      1

Papio hamadryas   1      1
Cercopithecus aethiops   0      1

Cercopithecus mona   0      0
Cercopithecus nictitans   0      0

Pygathrix roxellana   0      1
Rhinopithecus bieti   0      1

Rhinopithecus avunculus   0      1
Nasalis larvatus   0      0

Pygathrix nemaeus   0      1
Presbytis senex   0      0

Trachypithecus vetulus   0      0
Semnopithecus entellus   0      1

Trachypithecus johnii   0      0
Trachypithecus geei   0      0

Trachypithecus pileatus   0      0
Trachypithecus francoisi   0      0

Presbytis francoisi   0      0
Presbytis phayrei   0      0

Trachypithecus phayrei   −      −
Trachypithecus cristatus   0      0

Colobus guereza   0      0
Colobus polykomos   0      1
Colobus angolensis   0      1
Procolobus badius   1      1

EA MS

EA = Estrus Advertisement

MS = Mating System

Figure 2: Primate trait data. We plot a phylogenetic tree, randomly chosen from the
posterior sample, of 60 primate species. Branches of the tree are not drawn to scale. Taxa
names and trait values (“0” - absence, “1” - presence, “-” - missing) for estrus advertisement
(EA) and multi-male mating system (MS) are depicted at the tips of the tree.
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Analysis of Observed Data
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Analysis of Simulated Data
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Figure 3: Testing co-evolution. The plots in the left column depict observed and predicted
distributions of the discrepancy measure for the primate data (top) and simulated data
(bottom). The right column shows the scatter plots of these distributions.
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Predicted Fraction of Nonsynonymous Mutations
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Figure 4: Bimodality of the fraction of nonsynonymous mutations. We plot the predicted
fraction of nonsynonymous mutations computed for terminal (grey) and internal (white)
branches.
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Figure 5: Time evolution of synonymous and nonsynonymous rates. At the top of the
figure, we show a representative phylogeny of 129 intrahost HIV sequences. The three heat
maps depict the marginal posterior densities of the synonymous and nonsynonymous rates,
and the proportion of nonsynonymous mutations over time.
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Algorithm 1 Calculating Posterior Expectations E [H(Mθ) |D]

1: Obtain an eigen-decomposition of the infinitesimal generator Λ

2: Use this decomposition to compute P(tb) for each branch b of τ

3: Employing the same eigen-decomposition, compute E(h, tb∗) for each branch b∗ in the

set of interest Ω using either equation (8) or equation (16)

4: Traverse τ once and use recursions (22) and (23) to calculate Fu and Sb for each node

u and each branch b. Compute data likelihood Pr (D) as the dot product of Froot and

root distribution π.

5: Traverse τ the second time and calculate backward likelihoods Gu for all nodes u via

recursion equation (24)

6: For each b∗ ∈ Ω, apply equation (26) to obtain E [h({Xb∗t})1D]

7: return E [H(Mθ) |D] = 1
Pr(D)

∑

b∗∈Ω E [h({Xb∗t})1D]
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Table 1: Efficiency and accuracy of stochastic mapping. For each number of iterations, we

report the median number of rejected CTMC trajectories over the entire phylogenetic tree

per iteration and the sum of absolute errors (SAE) of simulation-based estimates of the

mean number of synonymous mutations along branches of the phylogenetic tree.

Iterations
Slow Evolving Site Fast Evolving Site

Rejections/Iteration SAE Rejections/Iteration SAE

100 100 0.0598 38845 0.4624

500 105 0.0255 39247 0.3319

1000 102 0.0259 42075 0.2905

10000 106 0.0205 40805 0.2809
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