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Invited Discussion

Vladimir N. Minin∗, Jonathan Fintzi†, Luis J. Martinez Lomeli‡, and Jon Wakefield†,§

The authors present an elegant method for accurate prediction of influenza-like-illness
(ILI) incidence during an ongoing flu season. Their method combines ordinary differ-
ential equation-based (ODE-based) mechanistic modeling of ILI spread with flexible
modeling of discrepancies between the ODE trajectories and observed incidence. The
key idea is that these discrepancies behave similarly across flu seasons. Capturing these
similarities in a Bayesian hierarchical model, the authors arrive at a predictive semi-
parametric model of ILI spread. The authors conjecture that there is room for improving
their approach and discuss some enhancements to the nonparametric component of their
model. Below we argue that more careful handling of the parametric model component
may also be a fruitful strategy to pursue in parallel with nonparametric model enhance-
ments.

Flexible modeling and forecast sharpness

The authors motivate their discrepancy model component by correctly pointing out that
certain consistently repeated features of ILI incidence time series cannot be predicted
using deterministic mechanistic epidemic models. The authors’ results show that the new
Bayesian hierarchical model can indeed capture these features. For example, Figure 7
in the Osthus et al. manuscript shows that a consistent, but mysterious drop in ILI
incidence from week 13 to week 14 can be seen in the authors’ short term forecasts.
However, the same figure shows that using the first 4 and 8 weeks of ILI data produces
weeks 10-25 predictive intervals that are so large that they cover almost the entire
plausible range of weighted ILI (wILI) counts. This suggests that the authors’ model
may be a little too flexible. There are multiple ways to tighten the authors’ model,
but from our perspective, the most intriguing avenue to pursue is to try to improve
the parametric model component. Specifically, we first concentrate modeling efforts on
improving the mean model, to reduce bias. Second, we finesse the wILI variance model,
in particular paying attention to how the variance depends on the mean, so that we
obtain an appropriate measure of uncertainty.

SIR-only model

Incidence ODEs with unknown initial conditions To establish a baseline, we wanted
to see how SIR-only predictions compare to the authors’ much more advanced modeling.
Following the authors, we model the transmission dynamics of wILI in the population
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using a Susceptible-Infected-Recovered (SIR) model, represented as a system of ODEs.
Let X(j)(t) = (S(j)(t), I(j)(t), R(j)(t)), S(j)(t)+I(j)(t)+R(j)(t) = K, denote the vector
of compartment counts at time t in season j ∈ {1998, . . . , 2014}, where K is the popu-
lation size that we set to 3 × 108 to approximate the size of U.S. population. We also

let X(j)
0 = (S(j)

0 , I(j)
0 , R(j)

0 ) be the initial compartment counts.

The standard ODE representation of the SIR model expresses the time-evolution of
the compartment counts as the solution to the following system of ODEs:

dS(j)(t)

dt
= −βjS

(j)(t)I(j)(t),
dI(j)(t)

dt
= βjS

(j)(t)I(j)(t) − γjI
(j)(t), (1)

dR(j)(t)

dt
= γjI

(j)(t), such that, X(j)(0) = X(j)
0 ,

where βj is the per–contact infection rate in season j and γj is the recovery rate. This
is the same model that the authors use as their parametric component.

We modify the authors’ SIR model in two ways. First, we are skeptical of the authors’
claim that the initial number of susceptible individuals in each season is not identifiable.
This claim may be true if only one season/outbreak is observed, but availability of mul-
tiple season onsets can make the initial number of susceptibles identifiable. To explore
this issue, we introduce an additional parameter, Cj , for the number of susceptibles who
are effectively removed at the start of season j, e.g., due to pre–existing immunity or
geographic isolation. Second, to make the SIR model more appropriate for the incidence
data, we follow Bretó and Ionides (2011) and Ho et al. (2018) and reparameterize the

SIR ODEs in terms of cumulative incidence. Let N(j)(t) = (N (j)
SI (t), N (j)

IR (t)) denote the
cumulative numbers of infections and recoveries and N(j)(0) be the initial numbers of
these events. The SIR ODEs for cumulative incidence and recoveries are given by

dN (j)
SI (t)

dt
= βj

(
S(j)

0 − Cj − N (j)
SI (t)

)(
I(j)
0 + N (j)

SI (t) − N (j)
IR (t)

)
, (2)

dN (j)
IR (t)

dt
= γj

(
I(j)
0 + N (j)

SI (t) − N (j)
IR (t)

)
,N(j)(0) = (0, 0).

Notice that we need the initial compartment counts X(j)
0 in the above system. Techni-

cally, we do not need to have both Cj and Rj
0 in our model, because they represent the

same number of initially removed individuals. We set Rj
0 = 0 and estimate Cj due to

constraints of our pre-baked implementation of the SIR model.

We fit two versions of our modified model to 15 seasons corresponding to years
1998–2007 and 2010–2014. In the first model A we assume that Cj = C, for j, with
C being an unknown parameter that we estimate together with season-specific infec-
tion and recovery rates. We use this model primarily to test whether C is identifiable.
The second model B is more realistic and assumes that each season j can have its
own number of initially removed individuals, Cj . The model is hierarchical in that it
assumes that a priori Cj ’s are drawn independently from the same distribution. More
specifically, logit(Cj/K) ∼ N (µC ,σ2

C), with unknown parameters µC and σ2
C that we

estimate.



V. N. Minin et al. 303

Figure 1: Prior density and posterior histogram of the proportion of initially removed
individuals C/K. The prior and posterior are for the simple model in which all seasons
start with the same number of initially removed individuals.

Data model Let P (j)
SI (t) = N (j)

SI (t)/K be the attack rate (% of the population infected)

up to time t in season j. Let ∆P (j)
SI (tℓ) = P (j)

SI (tℓ) − P (j)
SI (tℓ−1 ) denote the attack rate

in week ℓ. We model the observed wILI in week ℓ of season j, denoted Y (j)
ℓ , as

logit
(
Y (j)
ℓ

)
∼ N

⎛

⎜⎝ logit
(
∆P (j)

SI (tℓ)
)

,
ω0 + ω1 ∆P (j)

SI (tℓ)

∆P (j)
SI (tℓ)

(
1 −∆P (j)

SI (tℓ)
)2

⎞

⎟⎠ , (3)

where ω0 and ω1 control the variance of the emission distribution. This measurement
model derives from an application of the delta method to a normal approximation of an
overdispersed binomial distribution for detected wILI cases under the assumption that
the rate of patient visits is not changing across time. The main motivation for this fairly
complicated data model is our desire to model the dependence of wILI count variance
on the latent/unobserved population incidence.

Priors and posterior inference We assign informative, scientifically meaningful pri-
ors, detailed in Table 1, for the parameters of models A and B. Note that we assign
Dirichlet-Multinomial prior to the initial state X0 in such a way that there are no re-
moved individuals at time 0, because we have a separate parameter to the number of
initially removed individuals, Cj . For model A, where all parameters but the number
of removed individuals C, are decoupled across all the seasons, we used our custom
Markov chain Monte Carlo (MCMC) algorithm to approximate the posterior distribu-
tion of (βj , γj , I

j
0 , Sj

0 ,ω0 ,ω1 ) for each season j and C that is common to all seasons.
We show the prior and posterior distributions of the number of removed individuals
C in Figure 1. The apparent differences between the prior and posterior distributions
suggests that parameter C is identifiable. Moreover, our proportion of initially removed
individuals C/K is much lower than 0.1 — the number used by Osthus et al. In Model B,
we used MCMC to target the posterior distribution of (βj , γj , I

j
0 , Sj

0 , Cj ,ω0 ,ω1 ) for each
season j and (µC ,σC). We found that the season-specific Cj ’s and their overall prior
mean µC and standard deviation σC were also identifiable. We omit most of posterior
summaries for the sake of brevity.
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Figure 2: Forecasts for 2015 season under models A and B. The left six plots show
forecasts produced by model A, where all seasons share the same number of initially
removed individuals. The right six plots show forecasts produced by model B, where
this number of initially removed individuals is season-specific. Each plot has the first
z weeks/points used as training data, with the rest of the data being withheld during
model fitting. This number z is shown above each plot (e.g., z = 4 in the top left
plot). The solid red lines show the medians of the predictive distributions on which the
forecasts are based. The shaded areas designate 95% predictive intervals.

SIR-only predictions

Now we use our SIR models A and B to make predictions about wILI incidence in sea-
son 2015. During this forecasting exercise, we use the estimated posterior distributions
of SIR model parameters for seasons 1998–2007 and 2010–2014 in the following way.
We pool MCMC samples of season-specific parameters and fit a multivariate Gaussian
mixture model to these samples. For model A, separately from the mixture model fit-
ting, we approximate the posterior distribution of initially removed individuals C with a
univariate log-normal distribution. We use these approximations to the posterior model
parameters as priors in our analysis of partial data from the 2015 season. As in the
authors’ paper, we fit our SIR model A to the first z weeks of data and use this model
to predict the rest of the season for z = 4, 8, 12, 16, 20, 24. Prediction results are shown
in Figure 2. Both sets of priors result in reasonable short term forecasts in weeks 4,
8, 12, and 24, but the timing of the epidemic peak is not predicted well. We see that
a mixture model-based prior distribution of the initial number of removed individuals,
obtained from the posterior samples under model B, produces better forecasts than
predictions based on a prior distribution obtained from the posterior of model A. How-
ever, similarly to the Osthus et al. hierarchical model, this improvement comes at the
expense of wider predictive intervals. Still, our experiments with the initial states of
flu seasons demonstrate that careful modeling of initially removed individuals may be
a fruitful forecasting strategy, at least in the context of time homogeneous infectious
disease dynamics.
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Speculative remarks

Although our SIR-only predictions are not competitive with the state-of-the-art ILI
forecasting methods, they establish a parametric modeling starting point, which is dif-
ferent from the starting point of Osthus et al. Combining parametric modeling similar to
ours with the authors’ hierarchical discrepancy model may improve ILI forecasting even
further. More specifically, it would be interesting to see if including the initial number
of removed individuals as a free parameter and/or a data model with a mean/variance
relationship into Osthus et al. model would lead to better forecasts.

Another way to improve SIR-only predictions is to use stochastic SIR modeling and
to move to a nonparametric modeling of the infection rate, as was recently proposed by
Xu et al. (2016) in a wider context of stochastic epidemic modeling. For example, we
can assume that for season each j the time-varying infection rate has the form βj(t) =
αj × β(t), where αj ’s are season-specific multipliers and β(t) captures commonalties in
infection rate changes across seasons. A priori modeling of β(t) as a Gaussian process
or another suitable functional prior would result in nonparametric estimation of β(t).
In summary, we are excited about the successes of Osthus et al. forecasting method
based on semi-parametric modeling of infectious disease dynamics and looking forward
to future modeling and forecasting improvements in this area.
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