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Abstract

Inference problems with incomplete observations often aim at estimating population
properties of unobserved quantities. One simple way to accomplish this estimation is to impute the
unobserved quantities of interest at the individual level and then take an empirical average of the
imputed values. We show that this simple imputation estimator can provide partial protection
against model misspecification. We illustrate imputation estimators’ robustness to model
specification on three examples: mixture model-based clustering, estimation of genotype
frequencies in population genetics, and estimation of Markovian evolutionary distances. In the
final example, using a representative model misspecification, we demonstrate that in non-
degenerate cases, the imputation estimator dominates the plug-in estimate asymptotically. We
conclude by outlining a Bayesian implementation of the imputation-based estimation.
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1 Introduction

We are interested in robustness to model misspecification in problems with incom-

plete observations. Semiparametric approaches have enjoyed a lot of success in

this area but these methods lack universality and so need to be fine-tuned for each

problem at hand (Tsiatis, 2006; Little and An, 2004; Kang and Schafer, 2007; Chen

et al., 2009). Consequently, when practitioners are faced with nonstandard prob-

lems with incomplete observations, they are often left to their own devices. As a

first step to ameliorating this deficiency, we propose a general imputation-based es-

timation method that provides partial protection against model misspecification for

incomplete data problems.

The idea of using imputation techniques to combat model misspecification

is not new. Consider the standard missing data problem of estimating population

mean µ given a sample (r1,g1r1,w1), . . . ,(rn,gnrn,wn), where gi is a response vari-

able, ri is a response indicator taking value 1 if gi is observed and 0 otherwise, and

wi is a vector of covariates. Assuming strong ignorability, meaning that gi and ri are

independent given wi, we use only those individuals for which the response variable

is available to fit a response model with mi = E(gi |wi) to obtain m̂i (Rosenbaum

and Rubin, 1983). Intuitively, we can combine the empirical estimate of the mean

of respondents with model-based predictions of missing gis for non-respondents to

arrive at µ̂ = (1/n)∑n
i:ri=1 gi + (1/n)∑n

i:ri=0 m̂i. This estimator, called an imputa-

tion estimator by Tsiatis and Davidian (2007), will be biased if the response model

is misspecified. However, the bias vanishes as the number of non-respondents de-

creases to zero. Using conditioning on the observed data, we can rewrite Tsiatis

and Davidian (2007)’s imputation estimator as µ̂ = (1/n)∑n
i=1 E(gi | ri,giri,wi). In

a completely unrelated missing data setting, O’Brien et al. (2009) also use expecta-

tions of complete data conditional on the observed data to arrive at novel estimators

of evolutionary distances. Although O’Brien et al. (2009) used imputation by con-

ditional expectations explicitly, these authors did not recognize the full generality

of their approach.

In this paper, we investigate the behavior of imputation estimators when they

are applied to general problems with incomplete observations. After formulating

the generalized imputation estimator, we consider three problems with incomplete

observations. We start with a mixture model and demonstrate that imputation is

useful for estimating densities of mixture components. Moreover, this imputation

density estimation improves accuracy of mixture model-based clustering. Next,

we turn to a statistical genetics problem of estimating genotype frequencies. To

keep the genetic-specific intricacies to a minimum, we construct an artificial but

representative example. In spite of the introduced simplification, our results are di-

rectly applicable to a topical problem of multilocus haplotype/genotype frequency
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estimation, where model misspecification occurs due to a failure to account for

population structure (Allen and Satten, 2008; Kraft et al., 2005). In our last ex-

ample, we consider imputation estimators of evolutionary distances between DNA

sequences with partially observed continuous-time Markov chains introduced in

O’Brien et al. (2009). We fill some theoretical gaps in their work. First, we iden-

tify situations where imputation estimators are not helpful. In doing so, we - for

the first time to our knowledge - use the fact that so called group-based Markov

models belong to the regular exponential family (Evans and Speed, 1993). Next,

we compute almost sure limits of imputation and plug-in estimators for a particu-

lar model misspecification. Although we make several simplifying assumptions in

this derivation, we believe that qualitatively our results are portable to more real-

istic applications considered by O’Brien et al. (2009). We conclude by outlining a

Bayesian implementation of the imputation-based estimation.

2 Generalized imputation estimators

Assume that complete data x = (x1, . . . ,xn) are independent and identically dis-

tributed with each xi distributed according to a parametric family of sampling densi-

ties pT (x;θ T ) with parameters θ T ∈ ΘT . We observe each xi through a transformed

vector yi = y(xi). We further assume that the true sampling density pT (x1;θ T ) is

unknown to us and we have to erroneously postulate a misspecified model pF(x1;θ F),
where θ F ∈ΘF with parameter spaces ΘT and ΘF of possibly different dimensions.

Despite this model misspecification, we would like to estimate µ = Eθ T
[s(x1)] =

∫

s(x1)pT (x1;θ T )dx1, where s is an arbitrary measurable function that maps com-

plete data to an m-dimensional vector of summary statistics. Assuming that θ F

is identifiable from incomplete data y = (y1, . . . ,yn), one can simply maximize the

likelihood of the observed data ∏n
i=1 pF(yi;θ F) to arrive at the maximum likelihood

estimate θ̂ F = argmaxθ F∈ΘF
pF(y;θ F). Then, ignoring model misspecification, we

use θ̂ F to get the plug-in estimate of the complete-data summaries

µ̂pi
n = E θ̂ F

[s(x1)] =
∫

s(x1)pF(x1; θ̂ F)dx1. (1)

This estimator is destined to be biased and asymptotically inconsistent in nearly all

situations due to the model misspecification.

Consider an imputation estimator

µ̂im
n =

1

n

n

∑
i=1

Eθ̂ F
[s(xi) |yi] =

1

n

n

∑
i=1

∫

s(xi)pF(xi |yi; θ̂ F)dxi. (2)

The motivation behind this new estimator is quite simple: in order to offer pro-

tection against model misspecification, we would like to use the empirical measure
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based on y1, . . . ,yn. To accomplish this, we write Eθ T
[s(x1)]= Eθ T

{Eθ T
[s(x1) |y1]}

≈ PnEθ T
[s(x1) |y1] where Pn f = 1

n ∑n
i=1 f (yi) for any measurable function f . In the

absence of a good alternative, we plug-in θ̂ F for θ T in the conditional expectations

of s(xi) to arrive at our imputation estimator, µ̂im
n .

If the family of distributions {pF(y;θ F)} satisfies usual regularity con-

ditions we have θ̂ F
a.s.
→ θ 0. For example, if our model is not misspecified, i.e.

ΘF ≡ ΘT , we would have θ 0 = θ T . Consider the family of functions F which

consists of conditional expectations: F = { f (y1;θ) = Eθ [s(x1) |y1)] ,θ ∈ Θ0} for

some bounded open neighborhood Θ0 of the limiting value θ 0. If we assume that

F has finite bracketing number N[](ε,F ,L1(P)) for each ε > 0 and is pointwise

continuous in θ , then one can show that PnEθ̂ F
[s(x1) |y1]

a.s.
→ Eθ T

{

Eθ 0
[s(x1) |y1]

}

using standard empirical processes machinery (van der Vaart and Wellner, 2000).

Assuming model misspecification almost inevitably leads to θ 0 6= θ T . Therefore,

our imputation estimator has little chance of achieving asymptotic consistency.

However, if the loss of information due to missing data is relatively small, our

new estimator can be quite close to the true value both for finite sample sizes and

asymptotically.

Assume that a misspecified complete-data sampling density belongs to the

regular exponential family so that pF(x1;θ F) = a(x1)exp
[

θT
F t(x1)

]

/b(θ F), where

t(x1) = (t1(x1), . . . , tr(x1)) is an r-dimensional vector of minimal sufficient statis-

tics and θ F = (θF1, . . . ,θFr) is a natural parameter vector of the same dimension.

Then, as noted by Sundberg (1974), the likelihood equations based on the observed

data y can be written as (1/n)∑n
i=1 Eθ F

[t(xi) |yi] = Eθ F
[t(x1)]. Therefore, if the

complete-data summary s(x1) can be expressed as a linear transformation of the suf-

ficient statistics t(x1), imposed by the falsely assumed regular exponential family

model, then the plug-in estimator (1) and imputation estimator (2) coincide exactly

regardless of the true sampling density of x1.

3 Mixture models and model-based clustering

Consider a mixture model with k components. Let h = (h1, . . . ,hn) be iid discrete

random variables taking values in {1, . . . ,k} with probabilities Pr(h1 = j) = α j,

∑k
j=1 α j = 1. Event hi = j indicates that the observed yi is sampled from the density

pF j(y;θF j). The complete-data sampling density becomes

pF(hi,yi;θ F) =
k

∏
j=1

[

α j pF j(yi;θF j)
]1{hi= j} .
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We obtain parameter estimates α̂ = (α̂1, . . . ,α̂k) and θ̂ F = (θ̂F1, . . . , θ̂Fk) by maxi-

mizing ∏n
i=1 pF(yi;θ F), where pF(yi;θ F) = ∑k

j=1 α j pF j(yi;θF j). If we further as-

sume regular exponential family sampling densities of mixture components sharing

the same normalizing constant a(y), pF j(y;θ F) = a(y)exp
[

t j(y)T θF j

]

/b j(θF j),
then the density of the ith completely observed sampling unit also belongs to the

regular exponential family,

pF(hi,yi;θ F) = a(yi)exp

{

k

∑
j=1

1{hi= j}t j(yi)
T θF j +

k

∑
j=1

1{hi= j}

[

ln
α j

b j(θF j)

]

}

.

From our discussion of regular exponential family complete-data likelihoods, it is

clear that plug-in and imputation estimators of mean complete-data summaries,

Eθ T

[

1{hi= j}t j(y1)
]

and Eθ T

[

1{hi= j}

]

, (3)

will coincide exactly regardless of the true complete-data sampling model pT (y1,h1;

θ T ). In fact, plug-in and imputation estimators of the second mean complete-data

summary, Eθ T

[

1{hi= j}

]

, will coincide even if densities pF j(yi;θ F) do not belong

to the regular exponential family. To see this, note that the plug-in estimator in this

context is α̂
pi
j = E α̂ j

[

1{hi= j}

]

= Pr(hi = j) = α̂ j. The estimated probability that

observation i belongs to component j is

ẑi j = E
(

1{hi= j} |yi

)

=
α̂ pF j(yi, θ̂F j)

∑k
j=1 α̂ pF j(yi, θ̂F j)

.

The imputation estimate of the jth mixing proportion becomes α̂im
j = (1/n)∑n

i=1

E
(

1{hi= j} |yi

)

= (1/n)∑n
i=1 ẑi j. The likelihood equations for the mixture model can

be rearranged to show that α̂
pi
j = α̂im

j (Redner and Walker, 1984). Notice that esti-

mating all of the above complete-data expectations requires unambiguously identi-

fying mixture component j, which we assume is possible by imposing constraints

on mixture component parameters θF1, . . . ,θFk.

To make our discussion of mixture models more concrete, we simulate

n = 1000 realizations from a mixture of two log-normal distributions with the log-

scale means µ1 = 1.5 and µ2 = 2.5 and standard deviations σ1 = 0.2 and σ2 = 0.25

respectively. The mixing proportion, α , was set to 0.3, completing the set of true

model parameters θ T = (µ1,µ2,σ1,σ2,α). Now, we assume a two-component nor-

mal mixture model with means ν1, ν2, possibly unequal standard deviations δ1, δ2,

and a mixing proportion β . We estimate parameters θ F = (ν1,ν2,δ1,δ2,β ) of this

misspecified model using maximum likelihood via the EM algorithm (Dempster

et al., 1977; Fraley and Raftery, 2003). We show a histogram of simulated data

with a normal mixture model fit in the left plot of Figure 1.
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Figure 1: Mixture model example. The upper left plot shows a histogram of 1000 sim-

ulated realizations of the two-component log-normal model, described in the text. The

solid line depicts the normal mixture density estimated from these simulated data. The

dashed vertical lines indicate four values of threshold c, for which we estimate µ(c) =
Eθ T

(

1{h1=1}1{y>c}

)

. Results of conventional and robust estimation of these quantities are

shown in the upper right plot of the figure. We repeat simulation and estimation 1000 times

and plot box-plots of relative errors,
µ̂ pi(c)−µ(c)

µ(c) and
µ̂ im(c)−µ(c)

µ(c) , for c = 5.0,5.5,6.0,6.5. The

bottom row shows results of mixture component density estimation and classification errors

during model based clustering.
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To avoid the label switching problem, we define mixture component labels

by the inequality ν1 < ν2. Equation (3) says that if we try to estimate Eθ T

(

1{h1=1}y1

)

,

Eθ T

(

1{h1=1}y2
1

)

or Eθ T

(

1{h1=1}

)

, it does not matter whether we use the plug-in

or imputation approach. Instead, we choose to estimate the proportion of sam-

ples from the first mixture component that fall to the right of some threshold c,

µ(c) = Eθ T

(

1{h1=1}1{y1>c}

)

. The plug-in estimate of this quantity is

µ̂pi(c) = E θ̂ F

(

1{h1=1}1{y1>c}

)

=

[

1−Φ

(

c− ν̂1

δ̂1

)]

β̂ , (4)

where Φ is the standard normal cdf. Our imputation estimator becomes

µ̂im(c) =
1

n

n

∑
i=1

Eθ̂ F

(

1{hi=1}1{yi>c} |yi

)

=
1

n

n

∑
i=1

ẑi j1{yi>c}.

Since tails of mixture components can be estimated via imputation, it should be pos-

sible to devise an imputation estimator of mixture components’ densities. Indeed,

if we use a nonparametric kernel density estimator, where each observed point i is

weighted by zi j, we arrive at an imputation estimate of the jth component density.

This is potentially useful, because more accurate estimation of component densities

may lead to more accurate model-based clustering (Fraley and Raftery, 2002).

The right plot of Figure 1 demonstrates results of estimating µ(c) for thresh-

old values c = 5.0,5.5,6.0,6.5, depicted in the left plot of the figure by the dashed

vertical lines. We consider these values of c, because they fall into the region where

sampled points cannot be easily assigned to either of the two mixture components.

We simulate 1000 test data sets using already described settings. For each of the

simulated data set, we compute plug-in estimates of µ(c) using the fitted correct

log-normal and the misspecified normal model and the imputation under the mis-

specified normal model. We show box plots of the corresponding relative errors

in the upper right plot of Figure 1. Although, the performance of the plug-in and

imputation estimators under model misspecification is disappointingly similar, im-

putation density estimates, plotted in the bottom row, look more promising. We

used plug-in density estimates under the correct and misspecified model and impu-

tation density estimates to assign simulated points to two clusters. We then com-

puted clustering classification error using R package MCLUST (Fraley and Raftery,

2003). As shown in the lower bottom plot, clustering accuracy improves signifi-

cantly under imputation estimates of mixture component densities and approaches

the accuracy of clustering under the correct mixture model.
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4 Estimating genotype frequencies

Here, we turn to a classical problem in statistical genetics: estimating allele and

genotype frequencies from incomplete observations (Ceppelini et al., 1955). Sup-

pose that we measure some observable characteristic, called a phenotype, in n in-

dividuals and record them in a vector y = (y1, . . . ,yn), where each yi takes one of

M possible values in C = {c1, . . . ,cM}. We further assume that each individual i

has an unobserved genotype xi = (xi1,xi2), defined as an unordered pair of gene

variants, called alleles, on two paired chromosomes of this individual. Suppose

there are R possible alleles, G = (g1, . . . ,gR). Genotypes are assumed to deter-

mine observed phenotypes via a deterministic function h : G ×G → C such that

h(gk,gl) = h(gl,gk). Making certain population genetics assumptions allows us to

assume that unobserved genotypes are iid with

pT ((gk,gl);p, f ) =

{

p2
k(1− f )+ f pk if k = l

2pk pl(1− f ) if k 6= l,
(5)

where p = (p1, . . . , pR) are population allele frequencies and f is called an inbreed-

ing coefficient. We erroneously assume that f = 0, reducing the model for genotype

probabilities to the celebrated Hardy-Weinberg equilibrium (Hardy, 1908; Wein-

berg, 1908). The falsely misspecified complete-data likelihood for datum 1 be-

comes

pF(x1;p) = ∏
k>l

(2pk pl)
1{x1=(gk ,gl )}

R

∏
k=1

(pi)
2×1{x1=(gk ,gk)} ∝

R

∏
k=1

p
tk
k ,

where tk = 2 × 1{x1=(gk,gk)} + ∑R
l=1 1{x1=(gk,gl)}. The misspecified observed-data

likelihood for datum 1 is pF(y1;p) = ∑x1:h(x1)=y1
pF(x1;p).

Since the complete-data likelihood is in the regular exponential family with

sufficient statistics (t1, . . . , tR), the plug-in and imputation estimates of E(∑R
i=1 citi)

will coincide exactly. Suppose our objective is to estimate genotype frequencies

µkl = E
(

1{x1=(gk,gl)}

)

= Pr(x1 = (gk,gl)). The complete-data summary 1{x1=(gk,gl)}

can not be expressed as a linear combination of the sufficient statistics, so plug-in

and imputation estimation will not necessarily produce identical results. After ob-

taining maximum likelihood estimates of allele frequencies, p̂, the plug-in approach

yields

µ̂
pi

kl
= p̂2

i 1{k=l} +2 p̂k p̂l1{k 6=l}.

The imputation estimator becomes

µ̂im
kl =

1

n

n

∑
i=1

Pr
(

xi = (gk,gl) |yi = c j

)

1{yi=c j} =
n j p̂

2
k1{k=l}

npF(c j; p̂)
+

n j2 p̂k p̂l1{k 6=l}

npF(c j; p̂)
,

where h(gk,gl) = c j and n j = ∑n
i=1 1{yi=c j}.

7

Minin et al.: Imputation Estimators

Brought to you by | University of Washington Libraries
Authenticated

Download Date | 3/18/16 12:31 AM



Table 1: Mappings of complete to observed data during genotype frequencies esti-

mation. Ambiguous phenotypes are highlighted in bold.

(gk,gl) (A,A) (A,B) (A,C) (A,D) (B,B) (B,C) (B,D) (C,C) (C,D) (D,D)
h1(gk,gl) aa ab ac ad bb bdc bdc cc cd dd

h2(gk,gl) aa ab ac ad bd bdc bdc cc cd bd

Consider a particular case of the above model with four alleles: G = {A,B,C,
D}. Table 1 defines two mappings from genotypes to phenotypes, h1 : G ×G → C1

and h2 : G × G → C2, where C1 = {aa,ab,ac,ad,bb,bdc,cc,cd,dd} and C2 =
{aa,ab,ac,ad,bd,bdc,cc,cd}. Notice that C1 has 9 phenotypes and C2 has 8 phe-

notypes. Therefore, the loss of information due to missing data is larger under map-

ping h2 than under h1. We simulate 1000 observed phenotypes under both mappings

using complete-data model (5) with pA = 0.3, pB = 0.2, pC = 0.2, pD = 0.3 and

f = 0, 0.125, 0.25, 0.375, 0.5. For each of these 10 simulated data sets, we estimate

allele frequencies p̂A, p̂B, p̂C, and p̂D using the EM algorithm and assuming that

f = 0.

For phenotypes that unambiguously correspond to exactly one genotype,

the empirical phenotype frequency can be used to estimate the corresponding geno-

type frequency. Therefore, it only makes sense to compare plug-in and imputa-

tion estimation for genotypes that correspond to ambiguously defined phenotypes.

For example, under both h1 and h2 genotypes (B,C) and (B,D) correspond to

the phenotype bcd. Suppose our goal is to estimate these genotype frequencies:

µBC = Pr(x1 = (B,C)) and µBD = Pr(x1 = (B,D)). Plug-in estimates of these

population-level quantities are

µ̂
pi
BC = 2 p̂B p̂C and µ̂

pi
BD = 2 p̂B p̂D.

Imputation estimates are obtained as

µ̂im
BC =

nbcd

n

p̂B p̂C

p̂B p̂C + p̂B p̂D
and µ̂im

BD =
nbcd

n

p̂B p̂D

p̂B p̂C + p̂B p̂D
,

where nbcd = ∑n
i=1 1{yi=bcd} and n = 1000. Figure 2 shows box plots of relative er-

rors of plug-in and imputation estimators, obtained by repeating the above simula-

tion and estimation steps 1000 times. In the case of 9 phenotypes, corresponding to

h1 mapping, the imputation estimation offers remarkable protection against model

misspecification. Decreasing the number of observed phenotypes from 9 to 8 results

in the imputation estimators outperforming the plug-in one only for f = 0.125 and

f = 0.25. For the rest of inbreeding coefficient values, plug-in estimation produces

better estimates of µBC, while imputation estimation offers better estimates of µBD.

However, overall imputation relative errors are still smaller than plug-in errors.
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Figure 2: Genotype frequency estimation. We plot box plots of relative errors, of

plug-in and imputation estimates of genotype frequencies (µBC and µBD) for two

incomplete data mappings, with 9 and 8 observed phenotypes. Each pair of white

and grey box plots corresponds to an inbreeding coefficient that ranges from 0 to

0.5.
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5 Labeled evolutionary distances

Imputation estimation was proposed by O’Brien et al. (2009) in the context of es-

timation of evolutionary distances between molecular sequences, a standard prob-

lem in molecular evolutionary biology (Gu and Li, 1998; Yang, 2006). Consider

a 2× n matrix y = {yi j}, where each yi j takes values in the S = {1, . . . ,s}. We

assume that all columns in y are independently generated by the same reversible

and irreducible continuous-time Markov chain (CTMC) {Xt}, defined on the finite

state-space S by infinitesimal generator Λ(θ T ). This Markov process models the

evolution of DNA sequences so that the state space S usually consists of 4 nu-

cleotide bases, however, a couple of alternative state-spaces are also often used.

Each column yi in y is produced by first drawing y1i from the stationary distri-

bution of {Xt}, π(θ T ) = (π1(θ T ), . . .πs(θ T )), running the chain for an unknown

time t and setting y2i = Xt . For each realization i, we observe only the starting

and ending states of the Markov chain on the time interval [0, t]. Here, model mis-

specification usually manifests itself through an incorrect parameterization of the

infinitesimal generator, Λ(θ F). The misspecified likelihood of the observed data

is pF(y;θ F) = ∏n
i=1 πy1i

(θ T )py1iy2i
(θ F , t), where P(θ F , t) = eΛ(θ F )t = {pi j(θ F , t)}

and pi j(θ F , t) = Pr(Xt = j |X0 = i) are finite-time transition probabilities of {Xt}.

Notice that transition probabilities depend on Λ and t only through their product.

Therefore, we require the identifiability constraint t = 1.

In this example, complete data consist of the full Markov chain trajectory

xi = {Xri : 0 < r < t}. A complete-data summary of scientific interest is s(x1) = NL ,

the number of transitions of Xt during the time interval [0,1], labeled by the set

of ordered state pairs L . In the absence of complete Markov trajectories, we are

interested in the mean number of labeled transitions of the stationary Markov chain,

available analytically via

µ = Eθ T
[s(x1)] = Eθ T

(NL ) = π(θ T )T ΛL (θ T )1, (6)

where 1 is an s-dimensional column vectors of 1s and ΛL = {λuv × 1{(u,v)∈L }}.

In molecular evolution, this expected number of labeled Markov transitions trans-

lates into mean number of labeled substitutions, allowing evolutionary biologists to

measure molecular sequence similarity in a flexible manner (O’Brien et al., 2009).

The plug-in approach for estimating µ proceeds by first fitting a possibly

misspecified Markov model, Λ(θ F) and then using the resulting parameter esti-

mates to compute complete-data summary expectations. More specifically, we ob-

tain θ̂ F = argmaxθ F
p(y;θ F) and obtaining plug-in and imputation estimators

µ̂pi = π(θ̂ F)T Λ(θ̂ F)1 and µ̂im =
1

n

n

∑
i=1

Eθ̂ F

[

NL
1 |X0 = y1i,X1 = y2i

]

.
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O’Brien et al. (2009) execute two extensive simulation studies that demonstrate that

the imputation estimator offers remarkable protection against misspecification of a

Markovian substitution model.

5.1 Complete-data likelihood

After falsely assuming a misspecified model parameterization Λ(θ F) (and π(θ F) as

a result) we condition on the initial Markov chain states and write the misspecified

conditional complete-data likelihood

pF(X[0,1];θ F) ∝

[

∏
u6=v

λnuv
uv (θ F)

]

× e∑s
u=1 Tuλuu(θ F ), (7)

where nuv is the number of times Xt instantaneously jumped from u to v and Tu is

the total time Xt spent in state u during the time interval [0,1], both summed over all

n realizations of the Markov chain (Guttorp, 1995). The complete-data likelihood

belongs to the curved exponential family with sufficient statistics n = {nuv}u6=v and

T = (T1, . . . ,Ts).
Nearly all Markov infinitesimal generators used in molecular evolutionary

biology fall into the set A = {Λ = {λuv} : λuv = πvαuv for u 6= v}, where α = {αuv}
is a symmetric matrix. Such parameterization ensures reversibility of the Markov

chain, a common assumption in the field of molecular evolution (Yang, 2006).

5.2 Group-based models

Notice that the likelihood (7) simplifies significantly if we assume a reversible

model with equal diagonal entries of Λ:

pF(X[0,1];α) ∝ ∏
u<v

αnuv+nvu
uv , (8)

because ∑s
u=1 Tu = 1 is the length of the observational time interval. It turns out

that in molecular evolution, only so called group-based models satisfy this property

(Evans and Speed, 1993). Group-based Markov evolutionary models can be defined

as continuous-time random walks on Abelian groups. If we define an Abelian group

on a Markov chain state space S with algebraic operation “+”, then entries of the

corresponding group-based CTMC generator Λ must satisfy λuv = g(u−v) for some
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function g : S → [0,∞). For example, the most general group-based model on the

state space of DNA bases {A,G,C,T} is a Kimura three-parameter model with

ΛK3P(α,β ,γ) =







− α β γ
α − γ β
β γ − α
γ β α −







, (9)

corresponding to the Klein group Z2 ⊕Z2 (Evans and Speed, 1993).

Group-based models, constructed with algebraic symmetry in mind, find ex-

tensive use in statistical phylogenetics (Sturmfels and Sullivant, 2005; Steel et al.,

1998). For us, these models are appealing because they turn the completed-data

CTMC likelihood into the regular exponential family form. If we break all pos-

sible DNA substitutions into three classes and define their corresponding counts

NAG,CT = nAG +nGA +nCT +nTC, NAC,GT = nAC +nCA +nGT +nT G, and NAT,GC =
nAT +nTA+nGC +nCG, then these counts form the sufficient statistics for the Kimura

three-parameter model. From our discussion of the regular exponential family it fol-

lows that plug-in and imputation estimates of Eα ,β ,γ

(

c1NAG,CT + c2NAC,GT + c3NAT,GC

)

will coincide exactly regardless of the true sampling model and of the choice of con-

stants c1, c2, and c3. This fact was not noticed by O’Brien et al. (2009), because the

authors did not consider group-based models explicitly in their work.

5.3 A closer look at observed data likelihood equations

Instead of invoking properties of the regular exponential family, one can find more

general conditions under which imputation and plug-in estimates of labeled evolu-

tionary distances coincide, as demonstrated by the theorem below.

Theorem 1. Let y = {yi j}, i = 1,2, j = 1, . . . ,n, be a pairwise sequence alignment

generated by a CTMC with an unknown infinitesimal generator Λ(θ T ) as described

at the beginning of this section. We take Λ(θ F) to be a misspecified model and θ̂ F =
(θ̂F1, . . . , θ̂Fr) to be the corresponding maximum likelihood estimator obtained from

the observed data y. If

ΛL (θ̂ F)−I×πT (θ̂ F)ΛL (θ̂ F)1 ∈

〈

∂Λ(θ F)

∂θF1

∣∣∣

∣

θ F=θ̂ F

, . . . ,
∂Λ(θ F)

∂θFd

∣∣∣

∣

θ F=θ̂ F

〉

, (10)

where L ⊂ S2 \ {(i, i) : i ∈ S} is a set of ordered Markov state pairs and ΛL =
{λuv ×1{(u,v)∈L }}, then

Eθ̂ F
(NL ) =

1

n

n

∑
i=1

Eθ̂ F
(NL |X0 = y1i,X1 = y2i) ,
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where NL is the unobserved number of Markov chain transitions labeled by the set

L .

To illustrate the above theorem, consider a Kimura two-parameter model

ΛK2P(α,β ) = ΛK3P(α,β ,β ), obtained by setting γ = β in matrix (9) (Kimura,

1980). For both of these models, the stationary distribution is πT =(0.25,0.25,0.25,
0.25). Let

L1 = {(A,G),(G,A),(C,T ),(T,C)} and (11)

L2 = {(A,C),(C,A),(A,T ),(T,A),(C,G),(G,C),(T,G),(G,T )} (12)

be two substitutional classes of interest. The partial derivatives of the Kimura two-

parameter generator,

∂

∂α
ΛK2P(α,β ) =

1

α

[

ΛL1
− I×πtΛL1

1
]

and

∂

∂β
ΛK2P(α,β ) =

1

β

[

ΛL1
− I×πtΛL2

1
]

,

satisfy condition (10). Therefore, Theorem 1 says that plug-in and imputation es-

timators of Eα ,β

(

NL1

)

and Eα ,β

(

NL2

)

coincide exactly. Of course this example

reiterates the fact that complete-data likelihood of the Kimura two-parameter model

belongs to the regular exponential family with sufficient statistics NL1
and NL2

.

5.4 Misspecified Kimura model: asymptotic behavior

Studying asymptotic properties of our imputation estimator is challenging in gen-

eral even for the specific problem of the evolutionary distance estimation. There-

fore, we turn to an elementary example to obtain some basic asymptotic results.

First, we introduce the simplest group-based model on the nucleotide state space,

known as the Jukes-Cantor model. The infinitesimal generator of this Markov

chain is obtained by setting α = β in the Kimura two-parameter model, ΛJC(γ) =
ΛK2P(γ,γ) (Jukes and Cantor, 1969).

Theorem 2. Assume that observed sequence data y was generated from the Kimura

two-parameter model with generator ΛK2P(α,β ). Let γ̂ be the maximum likelihood
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Figure 3: Estimator limits in the Kimura model. In both panels of the figure we plot the

true value of the mean number of labeled substitutions µ = E(NL ) (solid line), the a.s.

limits of the plug-in (dotted line) and imputation (dashed line) estimators.

estimate, obtained by fitting a Jukes-Cantor model with generator ΛJC(γ) to y. Then

as the number of columns in y, n, approaches infinity,

Eγ̂

(

NL1

) a.s.
→ β −

1

4
ln

1+2e2(β−α)

3

)

1

n

n

∑
i=1

Eγ̂

(

NL1
|X0 = y1i,X1 = y2i

) a.s.
→

[

β −
1

4
ln

1+2e2(β−α)

3

)]

×

[

1+
4(e−4β +2e−2(α+β ))(e−4β − e−2(α+β ))

3(3− e−4β − e−2(α+β ))

]

,

where L1 is defined by equation (11).

Corollary 1. Under the conditions of Theorem 2, define

µ = Eα ,β

(

NL1

)

,µpi
∞ = lim

n→∞
Eγ̂

(

NL1

)

,µim
∞ = lim

n→∞

1

n

n

∑
i=1

Eγ̂

(

NL1
|X0 = y1i,X1 = y2i

)

.

Then |µim
∞ −µ| < |µpi

∞ −µ| when α 6= β . In other words, the imputation estimator

asymptotically is always better than the plug-in one.
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To illustrate the above theorem and its corollary we plot the true value (µ)

and a.s. limits of the plug-in (µ
pi
∞ ) and imputation (µim

∞ ) estimators as function of

β in Figure 3. We fix α = 0.01 in the left panel and α = 0.1 in the right panel.

Roughly speaking, the left panel shows the behavior of the estimators when the

overall substitution rate is low, while the right panel corresponds to a high sub-

stitution rate scenario. The lower the substitution rate, the better our imputation

estimator behaves asymptotically. This property of the imputation estimation is

expected, because low substitution rate translates into smaller loss of information

due to missing data, which in turn makes the imputation estimation more power-

ful. We have already seen this behavior of the imputation estimator in the previous

examples.

6 Bayesian implementation

6.1 General recipe

Although all examples so far were analyzed from the maximum likelihood perspec-

tive, one can easily perform imputation-based estimation in a Bayesian framework.

To accomplish this, we first need to assign a prior distribution p(θ F) to the param-

eters of our misspecified model pF(y;θ F). We assume that it is possible to obtain

either the posterior distribution pF(θ F |y) or the augmented posterior pF(θ F ,x |y),
possibly approximating these distributions via Markov chain Monte Carlo (MCMC)

(Tanner and Wong, 1987). Using these posterior distributions, we define plug-in and

two imputation predictive distributions

p
(

Eθ F
[s(x1)]

∣∣∣

y
)

, p
1

n

n

∑
i=1

s(xi)
∣∣∣

∣
y

)

, and p
1

n

n

∑
i=1

Eθ F
[s(xi) |yi]

∣∣∣

∣
y

)

.

As before, we hope that the latter two will provide us some protection against model

misspecification. These last two predictive distributions have the same mean, but

conditioning reduces the variance of the third distribution. This is similar to Rao-

Blackwellization in Monte Carlo sampling (Casella and Robert, 1996), but since

we are working under the assumption of model misspecification, smaller variance

is not necessarily a desirable property of a predictive distribution.

6.2 Bayesian estimation of genotype frequencies

To illustrate the Bayesian implementation of our procedure, we revisit the geno-

type frequency estimation example. We generate 10 phenotype samples using the
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two genotype-to-phenotype mappings defined in Table 1 and setting the inbreeding

coefficient f and true allele frequencies to the values we used in the original exam-

ple. We place Dirichlet(1,1,1,1) prior on allele frequencies and approximate the

posterior distribution of complete data (genotype counts) and allele frequencies via

Gibbs sampling.

Recall that our goal is to estimate genotype frequency µk,l = Pr(x1 = (gk,gl)).
For (gk,gl) = (B,C) and (gk,gl) = (B,D), we report posterior distributions of

2pk pl,
1

n

n

∑
i=1

1{xi=(gk,gl)} =
mkl

n
, and

1

n

n

∑
i=1

E(xi = (gk,gl) |yi)=
n j2pk pl

n(2pB pC +2pB pD)
,

where mkl = ∑n
i=1 1{xi=(gk,gl)} and n j = ∑n

i=1 1{yi=BCD}. We report box plots of these

posterior distributions in Figure 4. These box plots are not directly comparable to

results in Figure 2, because our Bayesian analysis is based only on ten data sets,

while the maximum likelihood analysis was done on 10,000 simulated data sets,

one thousand for each value of f and for each genotype-to-phenotype mapping. To

make these analyses comparable, one can study frequentist properties of Bayesian

plug-in and imputation estimators based, for example, on the posterior median-

based estimators of allele frequencies and genotype counts. Our Bayesian results

are nonetheless consistent with the maximum likelihood analysis: imputation esti-

mators outperform the plug-in estimate in the case of nine phenotypes, none of the

estimators have a uniform advantage across all values of the inbreeding coefficient

in the eight phenotype case.

We end our discussion of the Bayesian implementation of our imputation

estimation by pointing out that this inferential framework is already being used

in evolutionary biology, albeit somewhat informally (Zhai et al., 2007; Minin and

Suchard, 2008b). These methods extend the idea of imputation evolutionary dis-

tance estimation to multiple sequences.

7 Discussion

We generalize the notion of imputation estimators and demonstrate that such esti-

mators can be useful in a variety of incomplete data problems under model mis-

specification. We use simulations as our main tool in the first two examples and

provide some simple asymptotic results in our last example. So far, our experience

suggests that imputation estimators perform very well under mild model misspeci-

fication and when the loss of information due to missing data is reasonably small.

Intuitively, it is clear that imputation estimators should be more successful as the

amount of missing data decreases, because in the absence of missing information
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Figure 4: Genotype frequency estimation. We plot box plots of relative errors of

plug-in, imputation, and Rao-Blackwellized imputation estimates of genotype fre-

quencies (µBC and µBD) for two incomplete data mappings, with 9 and 8 observed

phenotypes. Each trio of white, dark grey, and light grey box plots corresponds to

an inbreeding coefficient that ranges from 0 to 0.5.

these estimators turn into sample means, which are model-free and consistent es-

timates of appropriate population-level quantities. However, to make this intuition

useful, we need to connect formally efficiency of imputation estimators with the

amount of missing data and degree of model misspecification. We hope to be able

to make these connections in our future work.

Studying sampling properties of imputation estimators proved to be difficult
in general, especially since in practice the true sampling density of the observed data
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is unknown. In fact, in all our examples, we do not discuss how to compute the vari-

ance of the maximum likelihood-based imputation estimators. We recommend to

use nonparametric bootstrap to explore sampling properties of imputation estima-

tors. However, one should interpret bootstrap results with care, because imputation

estimators remain biased even asymptotically. Similar care needs to be applied to

the interpretation of predictive distributions in the Bayesian context.

Although we have not emphasized this throughout the paper, imputation es-

timators are usually easy to compute, which makes them particularly useful when a

compromise between model complexity and computational efficiency results in an

intentionally misspecified model. In our examples of model misspecification, we

considered Gaussian mixture components, Hardy-Weinberg genotype frequencies,

and parametric Markov models of DNA substitution. All these highly popular mod-

els owe a large portion of their success to their computational tractability. We argue

that imputation estimators can take these and many other simple and computation-

ally efficient models one step further outside of their usual domain of application.

Determining the most general conditions under which imputation estimators

are guaranteed to improve upon plug-in estimators remains an open problem even

when the sample size approaches infinity. In our experience, in the worst case sce-

nario imputation and plug-in estimators essentially coincide, so the risk of replacing

a plug-in estimator with its imputation counterpart is minimal. On the other hand,

a discrepancy between the imputation and plug-in estimators indicates model mis-

specification. Sundberg (1974) used this observation to construct goodness-of-fit

test statistics based on the differences between imputation and plug-in estimators.

Sundberg (1974)’s constructions, underutilized in general, can be especially useful

in the field of statistical phylogenetics, where goodness-of-fit tests are nonexistent.

As we previously argued, in some cases one intentionally misspecifies the model

to achieve computational tractability. We believe that imputation estimation is a

promising remedy for such intentional model violations. We hope that our general

imputation estimation framework and worked out examples in this paper will help

researchers recognize missing data problems in which imputation estimation leads

to robustness to model misspecification.

Appendix

Proof of Theorem 1. Defining mkl = ∑n
i=1 1{y1i=k,y2i=l}, the misspecified complete-

data log-likelihood takes the following form:

l(y,θ F) = ∑
k∈S

∑
l∈S

mkl ln pkl(θ F ,1), (A-1)
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where pkl(θ F ,1) is the probability of X1 = l conditional on starting X0 = k. Recall

that P(θ F ,1) = eΛ(θ F ) = {pi j(θ F ,1)}. Differentiating (A-1) with respect model

parameters, we arrive at the likelihood equations

∑
k∈E

∑
l∈E

mkl

pkl(θ F ,1)

∂ pkl(θ F ,1)

∂θF j
= 0, j = 1, . . . ,r. (A-2)

From the backward Kolmogorov equation
dP(θ F ,t)

dt
= Λ(θ F)P(θ F , t) with initial

condition P(θ F ,0) = I, we derive the following integral expression for the partial

derivatives of transition probabilities:

∂

∂θF j

P(θF ,1) =

1
∫

0

eΛ(θ F )τ ∂

∂θF j

Λ(θF)eΛ(θ F )(1−τ)dτ.

Next, we write the imputation estimator in terms of mkl ,

1

n

n

∑
i=1

Eθ̂ F
(NL |X0 = y1i,X1 = y2i) =

1

n
∑
k∈S

∑
l∈S

mkl

pkl(θ̂ F ,1)
Eθ̂ F

(

NL 1{X1=l} |X0 = k
)

,

where

Eθ̂ F

(

NL 1{X1=l} |X0 = k
)

=







1
∫

0

eΛ(θ̂ F )τ ΛL (θ̂ F)eΛ(θ̂ F )(1−τ)dτ







kl

. (A-3)

Derivation of the formula (A-3) can be found in (Ball and Milne, 2005) or (Minin

and Suchard, 2008a). Condition (10) says that there exist real constants c1, . . . ,cr

such that

ΛL (θ̂ F)− I×πT (θ̂ F)ΛL (θ̂ F)1 =
r

∑
i=1

ci

∂Λ(θ F)

∂θFi

∣∣∣

∣

θ F=θ̂ F

.

Therefore, the difference between the plug-in and imputation estimators becomes

1

n

n

∑
i=1

Eθ̂ F
(NL |X0 = y1i,X1 = y2i)−Eθ̂ F

(NL ) =

1

n
∑
k∈S

∑
l∈S

mkl

pkl(θ̂ F ,1)







1
∫

0

eΛ(θ̂ F )[ΛL (θ̂ F)− I×πT (θ̂ F)ΛL (θ̂ F)1]eΛ(θ̂ F )(1−τ)dτ







kl

=

1

n

r

∑
i=1

ci ∑
k∈S

∑
l∈S

mkl

pkl(θ̂ F ,1)







1
∫

0

eΛ(θ̂ F ) ∂Λ(θ F)

∂θFi

∣∣∣

∣

θ F=θ̂ F

eΛ(θ̂ F )(1−τ)dτ







kl

=

1

n

r

∑
i=1

ci ∑
k∈S

∑
l∈S

mkl

pkl(θ̂ F ,1)

∂ pkl (θ F ,1)

∂θFi

∣∣∣

∣

θ F=θ̂ F

= 0,

because θ̂ F satisfies likelihood equations (A-2).
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Proof of Theorem 2. As before, let mkl = ∑n
i=1 1{y1i=k,y2i=l}. Using these site counts,

define

mL1
= ∑

(k,l)∈L1

mkl, mL2
= ∑

(k,l)∈L2

mkl, mD = ∑
k=l

mkl,

fL1
=

mL1

n
, fL2

=
mL2

n
, fD =

mD

n
,

where L2 is defined by equation (12). Transition probabilities of the Kimura two-

parameter model are obtained as

pkl(α,β , t) =











1
4
+ 1

4
e−4β t − 1

2
e−2(α+β )t if (k, l) ∈ L1,

1
4
− 1

4
e−4β t if (k, l) ∈ L2,

1
4
+ 1

4
e−4β t + 1

2
e−2(α+β )t if k = l.

(A-4)

Since the stationary distribution of the Kimura two-parameter model is uniform,

(mL1
,mL2

,mD) ∼ Multinomial(pL1
, pL2

, pD), where

pL1
= ∑

(k,l)∈L1

1

4
pkl(α,β ,1) =

1

4
+

1

4
e−4β −

1

2
e−2(α+β ),

pL2
= ∑

(k,l)∈L2

1

4
pkl(α,β ,1) =

1

2
−

1

2
e−4β ,

pD = ∑
k=l

1

4
pkl(α,β ,1) =

1

4
+

1

4
e−4β +

1

2
e−2(α+β ).

Therefore,

fL1

a.s.
→ pL1

, fL2

a.s.
→ pL2

, and fD
a.s.
→ pD (A-5)

by the strong law of large numbers. We will need these a.s. limits when we express

both plug-in and imputation estimators in terms of fL1
, fL2

, and fD.

The maximum likelihood estimator of γ , γ̂ = −1
4

ln
[

1− 4
3
(1− fD)

]

, exists

only if 1− fD < 3/4. Since we know that 1− fD
a.s.
→ 3

4
− 1

4
e−4β − 1

2
e−2(α+β ) < 3

4
, we

can safely assume that γ̂ is well defined for large enough n. The plug-in estimator

Eγ̂(NL1
)= γ̂

a.s.
→

1

4
ln

[

1−
4

3

3− e−4β −2e−2(α+β )

4

)]

= β −
1

4
ln

1+2e2(β−α)

3

)

.

To derive the limit of the imputation estimator we start with

1

n

n

∑
i=1

Eγ̂

(

NL1
|X0 = y1i,X1 = y2i

)

= ∑
k∈S

∑
l∈S

fkl

pkl(γ̂,1)
Eγ̂

(

NL1
1{X1=l} |X0 = k

)

.

(A-6)
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Setting α = β in (A-4), we obtain transition probabilities for the Jukes-Cantor

model:

pkl(γ, t) =

(

1

4
−

1

4
e−4γ

)

1{k 6=l} +

(

1

4
+

3

4
e−4γ

)

1{k=l}. (A-7)

To get the functional form Eγ̂

(

NL1
1{X1=l} |X0 = k

)

, we first notice that ΛJC and

ΛJC
L1

commute, leading to

1
∫

0

eΛJC(γ)τ ΛJC
L1

(γ)eΛJC(γ)(1−τ)dτ = ΛJC
L1

(γ)eΛJC(γ)

1
∫

0

dτ = ΛJC
L1

(γ)eΛJC(γ).

Hence,

Eγ̂

(

NL1
1{X1=l} |X0 = k

)

= γ̂

(

1

4
+

3

4
e−4γ̂

)

1{(k,l)∈L1}+ γ̂

(

1

4
−

1

4
e−4γ̂

)

1{(k,l)/∈L1}.

(A-8)

Plugging (A-7) and (A-8) to (A-6), we arrive at

1

n

n

∑
i=1

Eγ̂

(

NL1
|X0 = y1i,X1 = y2i

)

= γ̂

[

1+4e−4γ̂

(

fL1

1− e−4γ̂
−

fD

1+3e−4γ̂

)]

= −
1

4
ln

[

1−
4

3
(1− fD)

]

×

[

1+

(

1−
4

3
(1− fD)

)(

3 fL1

1− fD
−1

)]

.

Plugging in limits (A-5) in the above formula produces the desired result.

Proof of Corollary 1. Defining A = (e−4β + 2e−2(α+β ))/3, we write the limiting

difference of the imputation and plug-in estimates as

µim
∞ −µpi

∞ = −
A lnA

3(1−A)
e−4β (1− e−2(α−β )). (A-9)

Since 0 < A ≤ 1, µim
∞ −µ

pi
∞ and α −β always have the same sign. Moreover, using

ex ≥ 1+ x, we can show that

0 < −
A lnA

1−A
=

ln(1/A)

1/A−1
< 1, (A-10)

when α 6= β . Recall that µ = πT ΛK2P(α,β )1 = α . leading to

µpi
∞ −µ = β −

1

4
ln

1+2e2(β−α)

3

)

−α = −
1

4
ln

e4(α−β ) +2e2(α−β )

3

)

.

Hence, µ
pi
∞ −µ and α −β always have opposite signs.
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Case 1: α > β . We have 0 < e−4β (1− e−2(α−β )) < 2(α − β ), which together

with A-10 imply 0 < µim
∞ − µ

pi
∞ < 2

3
(α −β ). Next, we use concavity of logarithm

and arrive at µ
pi
∞ −µ < (α −β )/3. Combining these last two inequalities, we have

µim
∞ −µ < 0. Therefore,

µpi
∞ −µ = µpi

∞ −µim
∞ + µim

∞ −µ < µim
∞ −µ < 0,

which proves the desired inequality.

Case 2: α < β . Recall that µ
pi
∞ > µ . Plugging in 0 > e−4β

(

1− e−2(α−β )
)

=

e−2(α+β )
(

e2(α−β )−1
)

> e2(α−β ) − 1 to (A-9) we arrive at 1
3

(

e2(α−β )−1
)

<

µim
∞ −µ

p
∞ < 0. So

µim
∞ −µ = µim

∞ −µpi
∞ + µpi

∞ −µ >
1

3

(

e2(α−β )−1
)

−
1

4
ln

e4(α−β ) +2e2(α−β )

3

)

.

Defining the function on the right-hand side of the above inequality as w(α −β ),
we show that w(0) = 0 and

w′(δ ) =
2

3
e2δ −

3
(

e2δ +1
)

e2δ +2
=

(

e2δ −1
)(

2e2δ +3
)

3
(

e2δ +2
) < 0

for δ < 0. Therefore, we have µim
∞ −µ > w(α −β ) > 0 and

µpi
∞ −µ = µpi

∞ −µim
∞ + µim

∞ −µ > µim
∞ −µ > 0.
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