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Abstract

Kingman’s coalescent process opens the door for estimation of population

genetics model parameters from molecular sequences. One paramount parame-

ter of interest is the effective population size. Temporal variation of this quan-

tity characterizes the demographic history of a population. Since researchers

are rarely able to choose a priori a deterministic model describing effective pop-

ulation size dynamics for data at hand, non-parametric curve fitting methods

based on multiple change-point (MCP) models have been developed. We pro-

pose an alternative to change-point modeling that exploits Gaussian Markov

random fields to achieve temporal smoothing of the effective population size in

a Bayesian framework. The main advantage of our approach is that, in con-

trast to MCP models, the explicit temporal smoothing does not require strong

prior decisions. To approximate the posterior distribution of the population

dynamics, we use efficient, fast mixing MCMC algorithms designed for highly

structured Gaussian models. In a simulation study, we demonstrate that the

proposed temporal smoothing method, named Bayesian skyride, successfully

recovers “true” population size trajectories in all simulation scenarios and com-

petes well with the MCP approaches without evoking strong prior assumptions.

We apply our Bayesian skyride method to two real data sets. We analyze se-

quences of hepatitis C virus contemporaneously sampled in Egypt, reproducing

all key known aspects of the viral population dynamics. Next, we estimate the

demographic histories of human influenza A hemagglutinin sequences, serially

sampled throughout three flu seasons.
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1 Introduction

Accurate estimation of population size dynamics has important implications for public

health and conservation biology (Pybus et al., 2003; Shapiro et al., 2004; Biek et al.,

2006). In this paper, we propose a statistically novel model to infer population

size dynamics from molecular sequences. We build our modeling framework upon

Kingman’s coalescent process, a powerful tool in the population genetics arsenal for

studying probabilistic properties of genealogies relating individuals randomly sampled

from a population of interest (Kingman, 1982). Since genealogical shapes leave their

imprints in the genomes of sampled individuals, the coalescent allows for the inference

of population genetics parameters, including population size dynamics, directly from

the observed genomic sequences (Hein et al., 2005).

Many coalescent-based estimation algorithms rely on simple parametric forms to

characterize the evolution of the population size dynamics over time. Advantageously,

these deterministic functions contain a relatively small number of parameters to be

estimated (Kuhner et al., 1998; Drummond et al., 2002). However, justifying strong

parametric assumptions can be difficult and may require laborious and computa-

tionally expensive testing of many candidate functional forms to find an appropriate

description of the population size trajectory. An extreme alternative to parametric

population size models is the classical skyline plot estimation proposed by Pybus

et al. (2000). This estimation procedure relies on a piecewise constant population

dynamics model. Because the number of free parameters in this model is equal to the

number of independently distributed observations, the classical skyline plot approach
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results in very noisy estimates.

To arrive at a middle ground between overly stringent parametric and noisy clas-

sical skyline plot approaches, three extensions to the classical skyline plot estimation

have been recently proposed. Strimmer and Pybus (2001) develop generalized classi-

cal skyline plot estimation. These authors employ a model selection approach, based

on the Akaike Information Criterion correction (AICc), to reduce the number of free

parameters in the classical skyline plot. Drummond et al. (2005) and Opgen-Rhein

et al. (2005) use multiple change-point (MCP) models to estimate the population

size dynamics in a Bayesian framework. These methods approximate the effective

population size trajectory with a step function, defined by estimable change-point

locations and step heights. One of the main advantages of MCP models is the ease

of incorporating them into a joint Bayesian estimation of genealogies and population

genetics parameters as demonstrated by Drummond et al. (2005). Both proposed

MCP models share the same weakness as they require fairly strong prior decisions.

Drummond et al. (2005) a priori fix the total number of change-points, a critical pa-

rameter in their model that controls the smoothness of the population size trajectory.

Opgen-Rhein et al. (2005) bypass the problem of fixing the number of change-points

through reversible jump Markov chain Monte Carlo (MCMC) sampling (Green, 1995).

However, these authors use an informative and very influential prior for the number

of change-points in their model. Therefore, in both MCP approaches choosing an

appropriate level of smoothness of population size dynamics remains problematic.

We propose to smooth population size trajectories explicitly. We choose Pybus

et al. (2000)’s piecewise constant demographic model as our point of departure. Our
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goal is to construct a smooth skyride through a rough classical skyline profile. Our

construction is accomplished by imposing a Gaussian Markov random field (GMRF)

smoothing prior on the parameters of the piecewise constant population size tra-

jectory. We make our smoothing prior “time-aware” to penalize effective population

size changes between “small” consecutive inter-coalescent intervals more than changes

between intervals of larger size. To achieve this desirable behavior of our smoothing

prior, we equip each consecutive pair of inter-coalescent intervals with an appropriate

smoothing weight. We show through a simulation study that the time-aware prior

is very effective in capturing important characteristics of “true” population size tra-

jectories and is superior to a uniform, time-ignorant GMRF prior. The extension

of Kingman’s coalescent to serially sampled (heterochronous) data by Rodrigo and

Felsenstein (1999) opens the door for coalescent-based inference for measurably evolv-

ing populations (Drummond et al., 2003). We show that the GMRF smoothing can

be easily incorporated into analyses of both isochronous (approximately contempora-

neously sampled) and heterochronous data.

Through simulation, we compare performance of the Bayesian skyride with Opgen-

Rhein’s MCP (ORMCP) model (Opgen-Rhein et al., 2005) and a Bayesian skyline

plot, a MCP model implemented in the software package BEAST (Drummond et al.,

2005). In three simulation scenarios that we consider, we find that the Bayesian

skyride performs as well or better than both MCP approaches. Although the small

number of our simulations prevent us from a detailed comparison of the methods, we

nevertheless can conclude that the Bayesian skyride is a competitive alternative to the

MCP models and requires substantially weaker prior assumptions. We demonstrate
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the utility of the proposed method by applying it to two real datasets. We analyze

isochronous sequences of hepatitis C virus (HCV) and demonstrate that the Bayesian

skyride is able to recover all previously inferred characteristics of the Egyptian HCV

population dynamics. We proceed with an investigation of intra-season population

dynamics of human influenza virus. Our analysis of heterochronous influenza data

from three seasons demonstrates that estimation of influenza population dynamics

holds promise for predicting peak infection time within a flu season.

2 Methods

2.1 Coalescent Background

We start with a random population sample of n sequences. Coalescent theory provides

a stochastic process that produces genealogies relating these sampled sequences. The

process starts at sampling time t = 0 and proceeds backward in time as t increases,

coalescing n individuals one pair at a time until the time to the most recent common

ancestor (TMRCA) of the sample is reached (Kingman, 1982). In this work, we ignore

extensions of the coalescent that allow for modeling of the effects of selection (Krone

and Neuhauser, 1997), population structure (Notohara, 1990), and recombination

(Hudson, 1983). Instead, we focus on the coalescent with variable effective population

size.

The effective population size is an abstract quantity that brings populations with

different reproductive models to a “common denominator”, namely the Wright-Fisher
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model (Kingman, 1982). One can obtain the census population size by appropriate

scaling of the effective population size. Since the dynamics of the effective population

size plays a very important role in shaping coalescent-based genealogies, it should

be possible to solve the inverse problem and recover the effective population size

trajectories from known genealogies.

We assume for the moment that g is a known genealogy relating the n sampled

sequences. Suppose that function Ne(t) describes the time evolution of the effective

population size as we move into the past. Given Ne(t), we need to compute the

probability of observing g under the coalescent with variable population size. To

achieve this, it suffices to construct a probability density function over the inter-

coalescent times u = (u2, . . . , un) induced by g, where uk = tk − tk−1, tk is the

time of the (n − k)th coalescent event for k = 2, . . . , n, and tn = 0 is the time at

which sequences are sampled (Felsenstein, 1992; Pybus et al., 2000). Griffiths and

Tavaré (1994) show that the joint density of inter-coalescent times can be obtained

by multiplying conditional densities

Pr (uk | tk) =
k(k − 1)

2Ne(uk + tk)
exp

[
−

∫ uk+tk

tk

k(k − 1)

2Ne(t)
dt

]
, (1)

where time is measured in units of generations. Given a simple parametric form

for Ne(t), it is straightforward to estimate the parameters characterizing Ne(t) in a

likelihood-based framework, possibly integrating over genealogies using MCMC sam-

pling (Kuhner et al., 1998; Drummond et al., 2002). However, lack of prior knowledge

about the appropriate parametric form for Ne(t) stimulates the current development

of non-parametric and semi-parametric methods of estimating Ne(t) (Pybus et al.,
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2000; Drummond et al., 2005; Opgen-Rhein et al., 2005).

2.2 Piecewise Demographic Model for Isochronous Data

Let us assume that all sampled sequences were collected effectively at the same time,

meaning that differences between sampling times are negligible compared to the TM-

RCA of the sample. We start with a critical assumption that Ne(t) can change its

value only at coalescent times, Ne(t) = θk for some θk > 0 and tk < t ≤ tk−1,

k = 2, . . . , n. Informally, we can plug the piecewise constant Ne(t) into equation (1)

and arrive at

Pr (uk | θk) =
k(k − 1)

2θk
exp

[
−

k(k − 1)uk

2θk

]
. (2)

See Pybus et al. (2000) and Strimmer and Pybus (2001) for more details on the

likelihood of the piecewise demographic model. It is important to notice that since

the righthand side of equation (2) does not depend on tk, inter-coalescent intervals

u are independent of each other under the piecewise constant demographic model.

Therefore, estimating interval-specific population sizes θk is equivalent to estimating

the rate of an exponential distribution after drawing only a single realization from

this distribution. Maximizing likelihood function (2) with respect to θk yields

θ̂k =
k(k − 1)uk

2
. (3)

Such estimators of interval-specific population sizes are called classical skyline plots

(Pybus et al., 2000). Strimmer and Pybus (2001) quickly recognize that estimators

(3) have substantial variance resulting from over-fitting and introduce a generalized

skyline plot. In their new method, the authors restrict the number of different pop-
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ulation sizes across intervals. Intervals that do not exceed a predefined threshold ǫ

borrow their population sizes from the neighboring intervals. The authors choose ǫ

by maximizing a second-order extension of the Akaike Information Criterion (AICc).

The Bayesian skyline plot of Drummond et al. (2005) groups intervals using a MCP

model providing a Bayesian extension of the generalized skyline plot.

Throughout this section, we have assumed that time is measured in units of gener-

ations. When analyzing isochronous data, branches of genealogies are often estimated

in units of average number of substitutions per site. Even if we are able to estimate

branches in units of clock time, the generation time may be unknown. However,

this inability to identify time in units of generations does not limit estimation of the

dynamics of demographic histories. If estimated inter-coalescent intervals are not

measured in units of generations and are rescaled as u∗

k = cuk, then plugging u∗

ks

into the likelihood function (2), we can recover the rescaled effective population size

trajectory N∗

e (t) = cNe(t).

2.3 Piecewise Demographic Model for Heterochronous Data

We now turn to the piecewise demographic model for sequences sampled at sufficiently

different time points. As before, we assume that genealogy g relating the sampled

sequences is known and fixed. Moreover, branch lengths of g satisfy constraints

imposed by sampling times s. The sampling times divide each inter-coalescent interval

k into subintervals wk = (wk0, . . . , wkjk
), where jk ∈ {0 . . . , n − 1} is the number of

distinct sampling times occurring during interval k,
∑jk

j=0 wkj = uk, and the interval
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that ends with the (n − k)th coalescent event is always indexed by k0. To each

subinterval kj, we attach the number of lineages nkj present in the genealogy at the

beginning of this interval. See Figure 1 for an example genealogy with labeled inter-

coalescent intervals, subintervals, and numbers of lineages. For heterochronous data,

we still assume that Ne(t) = θk for some θk > 0 and tk < t ≤ tk−1 for k = 2, . . . , n.

Rodrigo and Felsenstein (1999) extend the coalescent likelihood to incorporate het-

erochronous data. The authors distinguish between coalescent and sampling events.

In our notation, subintervals labeled as k0 end with a coalescent event. Each such

subinterval contributes an exponential density to the coalescent likelihood, where the

exponential rate depends on the number of lineages present and the effective popu-

lation size in the interval. Subintervals ending with a sampling event contribute to

the likelihood the probability of no coalescence, or equivalently the probability that

an exponentially distributed coalescence time is greater than the subinterval length.

Since in our notation only subintervals with indices k0 end with a coalescence event,

the likelihood of observing subintervals wk comprising inter-coalescent interval k is

Pr (wk | θk) =
nk0(nk0 − 1)

2θk

exp

[
−

∑jk

j=0 nkj(nkj − 1)wkj

2θk

]
. (4)

The maximum likelihood estimate of the piecewise constant effective population size

is

θ̂k =

∑jk

j=0 nkj(nkj − 1)wkj

2
. (5)

By analogy with the likelihood for isochronous data, Pybus and Rambaut (2002) call

estimates (5) a classical skyline plot. The authors group inter-coalescent intervals us-

ing the same AIC-based algorithm as in the isochronous case to arrive at a generalized
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skyline plot.

Working with heterochronous data has two major advantages. First, such data al-

low one to estimate branch lengths of genealogies in units of time and simultaneously

estimate the mutation rate (Drummond et al., 2002, 2003). Secondly, the sampling

times provide additional information for the effective population size estimation. Al-

though the sampling subintervals do not allow one to observe more coalescence events,

these subintervals serve as censored time-to-event data. Unfortunately, since there are

at most n distinct sampling times, the improvement in the information content may

not be dramatic. Therefore, estimation of inter-coalescent interval-specific effective

population sizes remains problematic without further modifications.

2.4 Temporally Smoothed Piecewise Demographic Model

Since the heterochronous likelihood (4) reduces to the isochronous likelihood (2) when

jk = 0 for all k = 2, . . . , n, from now on we assume that that observed data come in

the form of inter-coalescent subintervals w = (w2, . . . ,wn). We first transform the

inter-coalescent interval-specific effective population sizes onto the whole real line via

γk = log θk, k = 2, . . . , n, (6)

and following equation (4), consider the likelihood

Pr (w |γ) =

n∏

k=2

Pr (wk | γk) , (7)

where γ = (γ2, . . . , γn).

We invoke a common assumption stating that the effective population size changes

continuously through time. To infuse this minimal prior knowledge into our Bayesian
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model, we devise a GMRF prior distribution for the vector γ. This prior penalizes

the differences between components of γ as

Pr (γ | τ) ∝ τ (n−2)/2 exp

[
−

τ

2

n−1∑

k=2

(γk+1 − γk)
2

δk

]
, (8)

where τ is the overall precision of the GMRF and δk is the distance between sites

k + 1 and k on the one dimensional lattice {2, . . . , n}. A uniform GMRF smoothing

with equal distances δ2 = · · · = δn−1 = 1 is often assumed for temporal and spatial

smoothing. However, in the piecewise demographic model, the penalty for the dissim-

ilarity between adjacent inter-coalescent, interval-specific, effective population sizes

should depend on the interval sizes. Therefore, we construct a time-aware GMRF

prior based on midpoint distances between inter-coalescent intervals,

δk =
uk + uk+1

2
. (9)

Midpoint distances have been successfully used before in molecular evolution by

Thorne et al. (1998) to construct an autocorrelated prior for evolutionary rates on

genealogy branches. The midpoint distances’ 2D analogs, the distances between cen-

troids of two dimensional areas, are widely used in spatial statistics (Elliott et al.,

2000).

We conclude our prior specification by assigning a gamma prior to the GMRF

precision parameter τ ,

Pr (τ) ∝ τα−1e−βτ . (10)

Bernardinelli et al. (1995) highlight the importance of priors for the GMRF precision

parameter and advise against diffuse priors. However, a researcher normally has no
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knowledge about the smoothness of the effective population size trajectory a priori.

Therefore, in our examples, we choose α = β = 0.001 making prior (10) relatively

uninformative, with expectation 1 and variance 1000.

We estimate γ and τ by MCMC sampling from the posterior distribution of these

parameters. Moreover, we implement our Bayesian skyride method in the software

package BEAST to estimate effective population size trajectories and genealogies

simultaneously. The details of our MCMC algorithm can be found in Appendix 1.

Appendix 2 contains instructions on using the Bayesian skyride in BEAST.

2.5 Testing Significance of the Effective Population Size Changes

It is common to assess significance of effective population size changes by visually

inspecting quantiles of the marginal posterior distributions of effective population

sizes. Such an informal approach can be deceptive. In using it, one attempts to draw

conclusions about the difference of two possibly highly correlated random variables

based on their marginal distributions. Moreover, the correlation between values of the

effective population size can not be ignored if we indeed believe that Ne(t) changes

continuously through time. As an alternative, we propose to use Bayes factors to

formally test the significance of effective population size changes when g is assumed

to be known.

We start with a one-sided hypothesis test. Suppose that we a priori fix two inter-

coalescent intervals i < j that correspond to some historical events of interest. Then,

we may be interested in testing hypotheses H0 : γi < γj vs. H1 : γi ≥ γj. The Bayes
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factor

B01 =
Pr (w |H0)

Pr (w |H1)
=

Pr (H0 |w) /Pr (H0)

Pr (H1 |w) /Pr (H1)
. (11)

allows one to quantify the evidence in favor of the null hypothesis H0 and against

the alternative H1 (Kass and Raftery, 1995). Through the ergodic theorem, we ap-

proximate the posterior probability Pr (H0 |w) with a fraction of MCMC samples

satisfying γi < γj. The GMRF prior (8) implies that γi − γj | τ ∼ N
(
0,

Pj−1

k=i
δk

τ

)
.

Therefore, Pr (H0) = Pr (H1) = 0.5 regardless of the prior choice for τ as long as the

prior is proper.

Clearly, this one-sided test is impractical if the direction of the effective population

size change is irrelevant or if one is interested in testing effective population size

differences among multiple inter-coalescent intervals. Therefore, we also consider the

hypothesis H0 : γi1 = · · · = γij , where {i1, . . . , ij} is a subset of {2, . . . , n}. The

alternative hypothesis H1 states that not all γi1, . . . , γij are equal. To estimate the

Bayes factor in (11), we calculate two marginal likelihoods, Pr (w |H0) and Pr (w |H1),

from the MCMC output using the harmonic mean estimator (Newton and Raftery,

1994). This Bayes factor estimation procedure requires sampling from the posterior

distribution of (τ, γ) under j − 1 linear constraints on γ imposed by hypothesis

H0. Fortunately, sampling from GMRFs under linear constraints adds very little

computational cost to the unconstrained sampling algorithm (Rue and Held, 2005).

Since the harmonic mean estimator of the marginal likelihood is not the most efficient,

one could also use the method of Chib and Jeliazkov (2001). Alternatively, it may be

possible to adapt the generalized Savage-Dickey ratio of Verdinelli and Wasserman
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(1995) to test the sharp hypothesis H0.

3 Results

3.1 Simulated Genealogies

We examine the ability of the Bayesian skyride to recover effective population size dy-

namics in a simulation study. Since the number of individuals in a population at time

t = 0 effects only the time measurement units, we always start with N(0) = 1.0 in our

simulations. First, we simulate a genealogy assuming the constant population size.

Next, we use the molecular sequence evolution simulator of Rambaut and Grassly

(1997) to generate sequence data on the tips of the simulated genealogy. We assume

a molecular clock and use the HKY model with a transition/transversion ratio fixed to

2.5 (Hasegawa et al., 1985). In this and subsequent simulations, we choose mutation

rates such that the root heights of simulated genealogies, measured in expected num-

ber of substitutions per site, vary between 0.15 and 0.4. Such mutation rates produce

sequences with realistic levels of divergence seen in genomic data of rapidly evolving

pathogens. We choose this parameter regime, because both of our real data examples

concern viral evolution. We summarize our posterior inference results in Figure 2. In

the top left plot of this figure, we show the classical skyline plot based on the simu-

lated genealogy. The rest of the plots in Figure 2 demonstrate results of estimating

the effective population size trajectory using the ORMCP and Bayesian skyline plot

models, fixed-tree time-aware and uniform Bayesian skyrides, and BEAST Bayesian
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skyride with the time-aware weighting scheme. The posterior medians (solid black

lines) obtained using the fixed-tree time-aware and the BEAST Bayesian skyrides

nearly perfectly match the “true” effective population size (dashed line in all six

plots). The 95% Bayesian credible intervals (BCIs), shown as grey shaded areas, be-

come wider near the TMRCA. This behavior is natural because under the constant

population size model the relatively long time to coalescence of the last two lineages

leaves very little information for effective population size estimation near the root of

the genealogy. Posterior medians of Ne(t), obtained under the ORMCP and Bayesian

skyline plot models, as well as under the uniform Bayesian skyride, underestimate the

effective population size. It is clear that small inter-coalescent intervals, relative to

the TMRCA, near the root of the genealogy mislead these methods. We investigate

the effect of this bias on the frequentist coverage properties of the methods’ 95%

BCIs via a simulation study. After simulating 1000 genealogies under the constant

population size coalescent model, we analyze these genealogies using the ORMCP

model, fixed-tree uniform, and time-aware Bayesian skyrides. We then calculate the

percentage of time each method’s BCIs fully cover the true population size trajectory.

The ORMCP model, uniform, and time-aware Bayesian skyride coverages amount to

61.8%, 89.9%, and 94.1% respectively. These numbers clearly illustrate the frequentist

coverage advantages of the time-aware Bayesian skyride.

Next, we simulate a genealogy assuming that Ne(t) = e−500t. Since we proceed in

time from present to past in our simulations, the negative growth constant implies

an exponentially growing population. This exponential growth is shown on the log

scale as a straight dashed line in all plots of Figure 3. All models perform reasonably
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well in this simulation. Here, as in the constant population size case, inter-coalescent

intervals near the root of the genealogy cause estimation problems. One “unusually”

large inter-coalescent interval in this region provokes the uniform Bayesian skyride, the

ORMCP model, and the Bayesian skyline plot model into overestimating the effective

population size in the proximity of this interval. However, the fixed-tree and BEAST

time-aware Bayesian skyride methods are less prone to such overestimation. We

believe that this desirable behavior results from our weighting scheme that prohibits

rapid changes of the effective population size during short time periods.

Finally, we generate a genealogy from a coalescent process assuming that a pop-

ulation experiences a bottleneck during the population’s evolutionary history. More

specifically, we set

Ne(t) =






e−10t 0 ≤ t < 0.04,

e25t 0.04 ≤ t < 0.1, and

e−50t t ≥ 0.1.

(12)

According to the piecewise exponential function (12), exponential growth of a popu-

lation is followed by exponential decay, and then subsequent exponential re-growth.

We illustrate this demographic history on the log scale with a dashed piecewise linear

curve in all four plots of Figure 4. Looking at the classical skyline plot in the top

left corner of Figure 4, it is clear that the simulated inter-coalescent intervals do not

permit an accurate and detailed reconstruction of the population dynamics. However,

both the fixed-tree and BEAST time-aware Bayesian skyrides capture all important

features of the true trajectory, some better than the others. For example, the initial

exponential growth is estimated very well by this model. The time-aware Bayesian
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skyride detects the subsequent decay in the effective population size, but does not fully

recover the exponential nature of this decline. The second exponential growth phase

is not recovered well. However, the posterior distribution of the effective population

size under the time-aware Bayesian skyride suggests that the population bottleneck is

indeed followed by an increase of the effective population size. The uniform Bayesian

skyride performs slightly worse than its time-aware analog. The Bayesian skyline plot

model also performs well. However, this method misses the decay phase of the popu-

lation dynamics and instead predicts a constant population size for this time period.

The ORMCP model clearly over-smoothes the effective population size trajectory.

This model suggests that the population has been increasing during its entire history

and completely misses the bottleneck component of the demographic history. It is

possible to improve the performance of the ORMCP model by substantially increasing

the prior mean number of change-points in the model (data not shown). However, it

is not clear how to choose an appropriate value of this prior parameter a priori and

post hoc adjustments invalidate inference by employing the data more than once.

To provide a comparative summary of the performance of the Bayesian skyride

and MCP models, we report the percent error (PE) for all simulation scenarios. We

define this percent error as

PE =

∫ TMRCA

0

|N̂e(t) − Ne(t)|

Ne(t)
dt × 100, (13)

where N̂e(t) is the estimated posterior median of a population size trajectory and

Ne(t) is a “true” population size trajectory. Table 1 reports percent errors for the six

methods and three simulation scenarios. It is only fair to compare the fixed-tree and
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BEAST methods with each other, but not across these two method groups. Among

the fixed-tree methods, the time-aware Bayesian skyride is a clear leader according

to Table 1. The BEAST Bayesian skyride performs better than the Bayesian skyline

plot for the constant and exponential growth models. Despite a mild over-smoothing

effect, produced by the Bayesian skyline plot model in the bottleneck analysis, this

method produces percent error smaller than the BEAST Bayesian skyride method in

the last simulation scenario.

Since running BEAST is time consuming even under a simple parametric demo-

graphic model, we use our simulation study to investigate the computational cost of

incorporating the Bayesian skyride into BEAST. On a dual-processor Pentium 3.4

Ghz with 4 GB of RAM, the Bayesian skyride analysis took 2.75, 2.30, and 2.21

hours for the constant, exponential growth, and bottleneck simulated datasets re-

spectively. The corresponding running times for the Bayesian skyline plot with 10

change-points are 1.70, 1.81, and 1.58 hours, indicating that the Bayesian skyride

method is only slightly slower than the Bayesian skyline plot. We expect to further

optimize our BEAST implementation and improve computational efficiency of the

Bayesian skyride.

3.2 Population Dynamics of Egyptian HCV

We analyze 63 HCV sequences, sampled in 1993 in Egypt. Pybus et al. (2003) use this

dataset to study the population dynamics of Egyptian HCV. The analyzed sequences

are derived from the HCV E1 genomic region. Pybus et al. (2003) argue that the
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approximately random sequence sampling, no sign of population sub-structure, and

other properties of these HCV sequences make them very suitable for the coalescent

analysis.

We perform a phylogenetic analysis of the HCV sequences using the BEAST

software package (Drummond and Rambaut, 2007). Following Pybus et al. (2003) we

use a strict molecular clock and the HKY substitution model (Hasegawa et al., 1985).

We put a coalescent prior with constant population size on genealogies. However,

the wide uniform prior over interval [0, 1000] (measured in years) on the TMRCA

together with the abundant phylogenetic information in the HCV sequences should

limit the coalescent prior influence on estimated genealogies. To estimate branches in

units of years, we use a previously estimated mutation rate in the HCV E1 genomic

region, 7.9 × 10−4 substitutions/site/year (Pybus et al., 2001). For estimation of

the population dynamics with the fixed-tree Bayesian skyride, we use the summary,

majority clade support genealogy with median node heights depicted in the top left

plot of Figure 5. We also use the BEAST Bayesian skyride to estimate the effective

population size trajectory and the HCV genealogy simultaneously.

The top right and bottom left plots of Figure 5 show the posterior medians and

95% BCIs of Ne(t) under the time-aware BEAST and fixed-tree Bayesian skyride

models. The similarity between the BEAST and fixed-tree Bayesian skyride results

indicates that tree uncertainty does not play a significant role in the estimation of the

Egyptian HCV population dynamics. Since time is measured in years, we estimate

the effective population size scaled by the generation length per year. These scaled

estimates are often interpreted as effective numbers of infections (Pybus et al., 2001).
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Welch et al. (2005) provide a theoretical justification of such an interpretation.

The exponential growth of HCV infections in the 20th century is the most re-

markable aspect of the HCV evolution in Egypt. Pybus et al. (2003) argue that

the exponential growth of HCV infections is a result of intravenously administered

parenteral antischistosomal therapy (PAT), practiced in Egypt from the 1920s to

the 1980s. Our temporal smoothing procedure successfully recovers this exponential

growth. However, the effective population size reconstruction is noisier in the time pe-

riods preceding the exponential growth phase due to lack of coalescent events. Pybus

et al. (2003) hypothesize that the effective number of HCV infections was constant

before the start of the exponential growth phase. We test this hypothesis using the

fixed-tree Bayesian skyride by constraining inter-coalescent effective population sizes

to be equal from the TMRCA to the year 1920. In terms of our model parameters,

this hypothesis translates to H0 : γ2 = · · · = γ13. The Bayes factor of 12,880 in favor

of H0 decisively supports Pybus and colleagues’ constant population size hypothesis.

The posterior summary of the effective population size trajectory under the con-

strained Bayesian skyride is shown in the bottom right plot of Figure 5. Enforcing

a constant population size prior to the 1920s generates long range effects on the es-

timation of more recent population sizes due to the increase in the GMRF precision.

Under the unconstrained Bayesian skyride, the effective population size trajectory

shows a slight decrease in the period 1970 − 1993. However, the constrained model

predicts a constant population size during these years. A gradual transition from

the intravenous to oral administration of the PAT started in the 1970s (Frank et al.,

2000). We would like to test whether this transition caused a significant decrease in
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the effective number of HCV infections, seen in the estimates under the unconstrained

Bayesian skyride. Our null hypothesis H0 : γ62 < γ46, where index 46 corresponds to

time period 1960 − 1977 and index 62 corresponds to time period 1992 − 1993. The

Bayes factor of only 3 in favor of H0 suggests that the decay of the HCV effective

population size in the 1970 − 1993 period is not statistically significant.

3.3 Intra-Season Population Dynamics of Human Influenza

To study intra-season population dynamics of human influenza, we compile three

datasets from sequences reported by Ghedin et al. (2005) that correspond to the

three flu seasons: 1999-2000, 2001-2002, and 2003-2004. The datasets consist of 48,

59, and 72 hemagglutinin sequences respectively. All sequences derive from H3N2 iso-

lates. Sequence sampling was restricted to New York State. This should diminish the

effects of geographical population structure on estimated genealogies. Recombination

also should not play a part in shaping intra-genic influenza genealogies, because ho-

mologous intra-genic recombination is very rare in influenza viruses (Steinhauer and

Skehel, 2002). Since sampling dates for all analyzed sequences are available, all three

flu season datasets are heterochronous.

Similarly to the Egyptian HCV analysis, we obtain a posterior sample of genealo-

gies using the BEAST constant population size model and Bayesian skyride. In the

latter analysis, we estimate influenza effective population size trajectory simultane-

ously with the viral genealogy. Our model specification of nucleotide evolution is

nearly identical to the HCV analysis. We test the molecular clock assumption using
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Bayes factors (Suchard et al., 2003). After analyzing the intra-season datasets with

a log-normal relaxed clock model, proposed by Drummond et al. (2006), we compute

the Bayes factors in favor of the molecular clock hypothesis using a harmonic mean

estimator. The estimated Bayes factors (season 1999-2000: 111000, 2001-2002: 19,

2003-2004: 16) strongly support the molecular clock hypothesis in all three datasets.

Although the molecular clock together with the heterochronous nature of the datasets

in principle allow us to estimate the mutation rates simultaneously with other model

parameters, we find that these intrahost influenza data have little information about

mutation rates. Therefore, for the mutation rate, we use informative log-normal

prior, comensurate with previously obtained estimates of mutation rate in influenza

hemagglutinin genes (Fitch et al., 1997; Yang et al., 2007).

From posterior samples of all model parameters in the intra-season datasets, we

obtain maximum clade support genealogies with median node heights. We feed these

genealogies, shown in the left column of Figure 6, into our fixed-tree Bayesian skyride

procedure. Branch lengths are measured in units of weeks since these units of time

are commonly used for intra-season surveillance of flu epidemics. The middle column

of Figure 6 shows the fixed-tree Bayesian skyride estimates of Ne(t). Results of the

BEAST Bayesian skyride, depicted in the right column of Figure 6, signficantly differ

from the fixed-tree inference. Such discrepancy is a clear indication that genealogical

uncertainty can not be ignored during inference of influenza intra-season polulation

dynamics. Interestingly, applying the fixed-tree Bayesian skyride to a random subset

of genealogies, sampled under the constant population size model, does not reveal

significant variation of the effective population size trajectory estimates (results not

23



shown). This observation suggests that joint inference of genealogies and Ne(t) should

be preferred even when the effect of ignoring genealogical uncertainty is not apparent.

Exponentially growing influenza populations suggest that the viral diversity was

increasing before the start of all three flu seasons. The posterior medians of the

influenza effective population size trajectories exhibit piecewise exponential shapes.

However, the wide BCIs of Ne(t) prevent us from studying local features of these

curves. These wide BCIs of the effective population size trajectories appropriately

reflect the lack of information about influenza genealogies in the sampled sequences.

We only point out that the BEAST Bayesian skyride results suggest that the influenza

effective population size was growing slower in 2001-2002 than in 1999-2000 and 2003-

2004. This is consistent with the Centers for Disease Control and Prevention (CDC)

surveillance data (http://www.cdc.gov/flu/) reporting a significant delay of flu

activity during the 2001-2002 season.

3.4 Prior Sensitivity

In Bayesian modeling, it is important to investigate sensitivity of results to the prior

assumptions of the model. We place a GMRF smoothing prior on log effective pop-

ulation sizes γ. This prior informs our model only about the smoothness of the

population size trajectory, leaving the task of determining an overall level of γ to the

likelihood. The GMRF precision parameter τ regulates this degree of smoothness;

unfortunately, expert knowledge of τ is rarely known a priori. Using the Egyptian

HCV data, we illustrate the prior and posterior distributions of log τ in the left plot of
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Figure 7. We use the log transformation to mitigate boundary effects near 0, facilitat-

ing interpretability of distributional summaries. The dramatic difference between the

flat and diffuse prior density and highly peaked posterior histogram of log τ suggests

that our data alone contain more than sufficient information to estimate τ .

Recall that in all our analyses we set α = β = 0.001 in τ ’s prior density (10).

To investigate the sensitivity of our results to these hyperprior parameter choices, we

re-analyze the Egyptian HCV data using five different values of α: 0.001, 0.002, 0.005,

0.01, and 0.1, leaving β unchanged. For these values of α, the prior mean of τ grows

from 1, 2, 4, 10 to 100 respectively. We summarize posterior distributions of log τ in

the five box-plots on the right side of Figure 7. These box-plots demonstrate that the

posterior distribution of log τ hardly changes when we alter the hyperprior parameter

α. We conjecture that this remarkable robustness indicates that our Bayesian tem-

poral smoothing model is very well suited for estimating population size dynamics.

4 Discussion

We present the Bayesian skyride, a novel coalescent-based, statistical approach for

estimating effective population size dynamics. In contrast to previously proposed

methods, we explicitly incorporate smoothing into our Bayesian model via a GMRF

prior. This strategy allows us to regularize the noisy skyline plot estimates of piece-

wise constant effective population size trajectories. We make our Bayesian skyride

time-aware using a weighting scheme based on the sizes of inter-coalescent intervals.

As with many other smoothing techniques, our GMRF prior has a precision parame-
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ter τ that controls the strength of smoothness. Estimating this parameter from data

alone can be challenging and often requires injection of prior knowledge (Bernardinelli

et al., 1995). However, we find that in all our examples the inter-coalescent inter-

vals contain sufficient information about the GMRF precision τ , eliminating the need

of informative priors. Therefore, our method, in contrast to competitors, does not

require subjective decisions from the user. The independence of inter-coalescent in-

tervals permits us to use very efficient, GMRF-tailored algorithms for sampling from

the posterior distribution of the model parameters. This computational efficiency be-

comes even more critical for integration of the Bayesian skyride into a joint Bayesian

estimation of genealogies and population genetics parameters.

We demonstrate that the Bayesian skyride can successfully reconstruct effective

population size trajectories under the three simulated demographic scenarios. During

our simulations, we find that our time-aware Bayesian skyride is superior to the uni-

form GMRF prior. Therefore, we use the former during our analyses of real datasets.

The temporally smoothed scaled effective population size trajectory of the Egyptian

HCV demographic history agrees with previous estimates of Ne(t) remarkably well

(Pybus et al., 2003; Drummond et al., 2005). Using this example, we illustrate how

to formally test one- and two-sided hypotheses in our Bayesian skyride framework.

Next, we analyze the intra-season population dynamics of human influenza. We find

that fixing a genealogy, estimated under the constant population size demographic

model, leads to inadequate estimation of Ne(t). The striking difference between our

fixed-tree and BEAST Bayesian skyride methods highlights the importance of joint

estimation of the effective population size and the genealogy of sampled sequences.
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Other building blocks of the coalescent model may also be needed to accurately de-

termine influenza intra-season population dynamics. Although all influenza sequences

were sampled in the same geographical location, the periodic migrational patterns of

the virus may have a significant effect on shaping genealogies relating the sampled

sequences. Omitting selection in our coalescent model can also lead to inaccurate

estimation of population dynamics. A more detailed coalescent analysis of intra-host

influenza evolution should resolve these difficulties.

The influenza example motivates the need for new statistical tools for quantifying

commonalities in multiply observed demographic histories. Similar repeated evolu-

tionary patterns occur during intra-host HIV evolution and have important medical

implications (Shankarappa et al., 1999). We envision analyzing such repeated pat-

terns using a Bayesian hierarchical framework (Kitchen et al., 2004). Such an ap-

proach will require an accurate alignment of observed time intervals and inclusion

of external factors that may effect demographic dynamics. The Bayesian skyride is

perfectly suitable for the inclusion of such external information as covariates in a

generalized linear model framework (MacNab, 2003). This proposed methodology

will enable statistical testing of environmental effects on demographic histories of

populations.

5 Acknowledgments

We would like to thank John O’Brien for helpful discussions and his advice on the

analysis of influenza evolution. We are grateful to Oliver Pybus and another anony-

27



mous reviwer for their constructive comments that greatly improved our manuscript.

VNM was supported by a Dissertation Year Fellowship from the UCLA Graduate

Division. EWB is supported by NIH grant AI07370. MAS is an Alfred P. Sloan

Research Fellow.

References

Bernardinelli L, Clayton D, Montomoli C. 1995. Bayesian estimates of disease maps:

how important are priors? Statistics in Medicine 14:2411–2431.

Biek R, Drummond A, Poss M. 2006. A virus reveals population structure and recent

demographic history of its carnivore host. Science 311:538–541.

Chib S, Jeliazkov I. 2001. Marginal likelihood from the Metropolis-Hastings output.

Journal of the American Statistical Association 96:270–281.

Drummond A, Ho S, Phillips M, Rambaut A. 2006. Relaxed phylogenetics and dating

with confidence. PLoS Biology 4:e88.

Drummond A, Nicholls G, Rodrigo A, Solomon W. 2002. Estimating mutation pa-

rameters, population history and genealogy simultaneously from temporally spaced

sequence data. Genetics 161:1307–1320.

Drummond A, Pybus O, Rambaut A, Forsberg R, Rodrigo A. 2003. Measurably

evolving populations. Trends in Ecology and Evolution 18:481–488.

28



Drummond A, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sam-

pling trees. BMC Evolutionary Biology 7:214.

Drummond A, Rambaut A, Shapiro B, Pybus O. 2005. Bayesian coalescent infer-

ence of past population dynamics from molecular sequences. Molecular Biology

and Evolution 22:1185–1192.

Elliott P, Wakefield J, Best N, Briggs D, editors. 2000. Spatial Epidemiology: methods

and applications. Oxford University Press.

Felsenstein J. 1992. Estimating effective population size from samples of sequences:

inefficiency of pairwise and segregating sites as compared to phylogenetic estimates.

Genetical Research 59:139–147.

Fitch W, Bush R, Bender C, Cox N. 1997. Long term trends in the evolution of H(3)

HA1 human influenza type A. Proceedings of the National Academy of Sciences,

USA 94:7712–7718.

Frank C, Mohamed M, Strickland G, et al. 2000. The role of parenteral antischisto-

somal therapy in the spread of hepatitis C virus in Egypt. Lancet 355:887–891.

Ghedin E, Sengamalay N, Shumway M, et al. 2005. Large-scale sequencing of human

influenza reveals the dynamic nature of viral genome evolution. Nature 437:1162–

1166.

Green P. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination. Biometrika 82:711–732.

29
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Appendix 1: MCMC Sampling Scheme

Fixed Genealogy

We first describe a sampling scheme for the fixed genealogy case. Here, we represent

genealogy g through its vector of inter-coalescent and sampling intervals w. To

approximate the posterior

Pr (γ, τ |w) ∝ Pr (w |γ) Pr (γ | τ) Pr (τ) , (A-1)

we parallel the block-updating MCMC scheme of Knorr-Held and Rue (2002). Given

current parameter values (τ, γ), we first generate a candidate value for the GMRF

precision, τ ∗ = τf , where f is drawn from a symmetric proposal distribution with

density Pr (f) ∝ f + 1/f defined on the interval [1/F, F ]. The tuning constant F

controls the distance between the proposed and current values of the GMRF precision.

Conditional on τ ∗, we propose a new state γ
∗ for the vector of log effective population

sizes using a Gaussian approximation to the full conditional density

Pr (γ | τ ∗,w) ∝ Pr (w |γ) Pr (γ | τ ∗) . (A-2)

Density (A-2) is called a hidden Markov random field, because conditional on the

Markov field γ, the observed wks are distributed independently of each other (Rue

et al., 2004). Such a special form of density (A-2) allows one to generate samples

from its Gaussian approximation using computationally efficient algorithms for sparse

matrix computations (Rue, 2001). After obtaining a new candidate state (τ ∗, γ∗), we

accept or reject it in a Metropolis-Hastings step (Metropolis et al., 1953; Hastings,

1970).
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Incorporating Genealogical Uncertainty

So far, we have assumed that the genealogy g is known and fixed. However, we do

not observe genealogies relating individuals randomly sampled from a population.

Instead, we observe molecular sequence data for each individual on the tips of an un-

known genealogy. Sequence data and genealogies are connected through the standard

assumption that sequence characters are generated by a mutational process that acts

along a hidden genealogy. Therefore, the complete likelihood of observing sequence

data D is Pr (D | g,Q), where Q is a vector of mutational process model parame-

ters. A priori, we assume that Q and g are independent. Probability distribution

Pr (Q) depends on the parameterization of the mutational process model. We use

the coalescent as a prior for g so that

Pr (g |γ) ∝ Pr (w |γ) , (A-3)

where Pr (w |γ) is defined by equation (7). The posterior distribution of all model

parameters becomes

Pr (g,Q, γ |D) ∝ Pr (D | g,Q)Pr (Q) Pr (g |γ) Pr (γ) . (A-4)

To approximate this posterior distribution, we equip the software package BEAST

(Drummond and Rambaut, 2007) with our GMRF MCMC updating scheme. We

then merge our fixed-tree analysis with BEAST MCMC kernels for updating Q and

g to jointly estimate genealogies and population size trajectories.
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Appendix 2: BEAST Implementation

We have implemented the time-aware Bayesian skyride in the BEAST software pack-

age (Drummond and Rambaut, 2007). Users may employ the Bayesian skyride both

while assuming a fixed evolutionary tree and while integrating over all possible trees

given molecular sequence data and a mutational model. Example BEAST XML input

blocks that allow users to place the GMRF prior on effective population size dynamics

and update the field parameters are provided below:
� �

< !−− Define f i e l d −−>

<gmr fSkyr ideL ike l ihood id=” coa l e s c en t ”>
<populat ionTree>

<treeModel i d r e f=” treeModel ”/>
</ populat ionTree>

<popu l a t i onS i z e s>
<parameter id=” skyr id e . logPopSize ” dimension=”62”/>

</ popu l a t i onS i z e s>
<prec i s ionParamete r>

<parameter id=” skyr id e . p r e c i s i o n ” dimension=”1”/>
</ prec i s ionParamete r>

</ gmr fSkyr ideL ike l ihood>

< !−− Update f i e l d parameters −−>

<gmrfBlockUpdateOperator weight=”3” s ca l eFac to r=” 10.0 ”
autoOptimize=” true ” maxIterat ions=”200”
stopValue=” 0.01 ”>

<gmr fSkyr ideL ike l ihood i d r e f=” coa l e s c en t ”/>
</gmrfBlockUpdateOperator>
� �
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Number of Lineages:

41 w51w50 w52

u3 u4 u5

w30 w40

u2

w20

343432 1

w

Figure 1: Example of a genealogy with inter-coalescent interval notation. Times of

coalescence and sampling events are depicted as vertical dashed lines with numbers of

lineages present at these times shown above the lines. Below the genealogy, we mark

the boundaries of inter-coalescent intervals together with their lengths (u2, . . . , u5).

We show how sampling events interrupt the inter-coalescent intervals and produce

subintervals with lengths (w20, . . . , w52) at the bottom of the figure.
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Figure 2: Constant population size simulation. We present a classical skyline plot

(solid black line) in the top left part of the figure. The other five plots show posterior

median (solid black line) and 95% BCIs (grey shading) of the effective population size

under the Opgen-Rhein multiple change-point (ORMCP) model, Bayesian skyline

plot, time-aware and uniform Bayesian skyrides with a fixed genealogy, and BEAST

Bayesian skyride method. In all six plots, the dashed lines represent the “true”

population size trajectory that was used for simulations. Here and in all subsequent

plots of effective population sizes, we use the log transformation of the population

size-axis.
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Figure 3: Exponential growth simulation. See Figure 2 for the legend explanation.
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Figure 4: Simulated bottleneck. See Figure 2 for the legend explanation.
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Figure 5: Egyptian hepatitis C virus (HCV). In the top left corner, we show the

estimated genealogy of the HCV sequences. The rest of the plots demonstrate pos-

terior medians (solid lines) and 95% BCIs (shaded grey areas) of the scaled effective

population size trajectories under the BEAST Bayesian skyride (top right), uncon-

strained (bottom left), and constrained (bottom right) fixed-tree time-aware Bayesian

skyride analyses. In the constrained model the effective population size is forced to

be constant prior to the 1920s.
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Figure 6: Intra-season dynamics of human influenza. For each season, we plot the

estimated genealogy (left), the fixed-tree time-aware (middle) and BEAST (right)

Bayesian skyride estimates. The vertical dashed lines in the middle and right columns

mark October 1 in all three seasons.
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Figure 7: Prior sensitivity. In the left plot, we depict the prior density (dashed

line) and posterior histogram (vertical bars) of the log-transformed GMRF precision

τ . The right plot demonstrates five box-plots of the posterior distributions of log τ

corresponding to five different prior means of τ . In both plots, we use the Egyptian

hepatitis virus C data.
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Table 1: Percent error in simulations. We compare percent errors, defined in equa-

tion (13), for the Opgen-Rhein multiple change-point (ORMCP) model, uniform and

time-aware fixed-tree Bayesian skyrides, Bayesian skyline plot, and BEAST Bayesian

skyride.

Model Constant Exponential Bottleneck

ORMCP 14.0 1.7 7.4

Uniform Bayesian skyride 32.8 1.5 5.9

Time-Aware Bayesian skyride 2.8 1.2 4.8

Bayesian skyline plot 38.2 1.6 5.2

BEAST Bayesian skyride 1.7 1.0 5.4
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