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Abstract Counting processes that keep track of labeled changes to discrete evolu-
tionary traits play critical roles in evolutionary hypothesis testing. If we assume that
trait evolution can be described by a continuous-time Markov chain, then it suffices
to study the process that counts labeled transitions of the chain. For a binary trait, we
demonstrate that it is possible to obtain closed-form analytic solutions for the proba-
bility mass and probability generating functions of this evolutionary counting process.
In the general, multi-state case we show how to compute moments of the counting
process using an eigen decomposition of the infinitesimal generator, provided the lat-
ter is a diagonalizable matrix. We conclude with two examples that demonstrate the
utility of our results.
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1 Introduction

Continuous-time Markov chains (CTMCs) have become standard modeling tools in
evolutionary biology. Coupled with a phylogenetic tree that defines the evolutionary
relationship among species, the Markov chain describes how a genetically inherited
trait changes state over the tree. Such probabilistic models of evolution induce a likeli-
hood of the trait values, observed at the tips of a tree. Estimation of model parameters
then proceeds using either maximum likelihood or Bayesian frameworks [7]. Nat-
urally, advances in evolutionary model parameter estimation go hand in hand with
the development of new statistically rigorous hypothesis testing procedures. These
developments often involve revisiting heuristics proposed by evolutionary biologists
and reformulating the heuristic test statistics in terms of stochastic processes induced
by Markov models of evolution [8,19,30]. One important, but insufficiently devel-
oped example is the counting process that keeps track of labeled changes in state
experienced by a trait over the course of its evolutionary history.

Counting processes associated with CTMCs receive substantial attention in math-
ematical modeling of ion channel gating behavior [2,5]. One commonly views these
processes as a particular case of a Markovian arrival process, a well studied object
from queuing theory [16,17]. However, mathematical evolutionary biologists have not
treated counting processes systematically. Analytic results are available only for lim-
ited evolutionary models or for specific counting problems [12,28,34]. Consequently,
evolutionary biologists routinely estimate properties of evolutionary counting pro-
cesses via computationally costly and often inaccurate simulation algorithms. Fore-
most among these algorithms is stochastic mapping [19]. In this paper, we show that
it is possible to recover certain useful properties of evolutionary counting processes
analytically. Although we capitalize on results derived in ion channel modeling and
the engineering literature, our objectives require additional developments since we are
interested in neither the stationary properties of the counting process nor in its long
term behavior.

We start with a CTMC model of binary trait evolution. This simple model plays
an important role in evolutionary developmental biology, where trait states often rep-
resent the presence or absence of an evolutionary interesting morphological feature
[21,22]. In this two-state case, we obtain closed-form solutions for both the probabil-
ity mass function and the probability generating function of the evolutionary counting
process. We then proceed to examine models for traits with more than two discrete
states; these models are ubiquitous in molecular sequence studies. In the general multi-
state case, closed-form expressions of the probability mass and probability generating
functions are less practical. Therefore, we focus our attention on recovering factorial
moments of the evolutionary counting processes. We show that when the generator
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Evolutionary counting processes 393

of the underlying CTMC is diagonalizable, the moments are recoverable analytically,
provided the eigensystem of the CTMC generator is known, a common situation in
evolutionary applications.

To demonstrate the utility of our results, we provide two examples. In the first
example, we consider the evolution of a binary trait along a rooted phylogenetic tree
with three tips (leaves). We show how conditioning on different observed data patterns
at the tips of the tree effects the distribution of the total number of changes experienced
by the trait. This distribution makes feasible a formal statistical test of “independent
origins” hypotheses often confronted for morphological features [21]. Next, we turn to
the analysis of DNA sequence evolution. We simulate an alignment of three sequences
and compute the mean number of mutations for each site in the alignment. This simple
site-specific summary of sequence variability conveniently detects spatial patterns of
evolutionary rate variation without the introduction of complicated statistical models
[29]. We illustrate this advantage by treating mean mutational counts as a time series
and invoking spectral analysis. Additionally, we divide all DNA mutations into two
labeled classes and perform evolutionary model diagnostics by comparing the prior
and posterior expected number of mutations in each class.

The introduction of CTMC induced counting process theory to the field of mathe-
matical evolutionary biology is an important contribution. From the theory, our analytic
results provide for algorithms that computationally are more efficient than currently
used simulation approaches. This is a very significant advance since in practice prop-
erties of the evolutionary counting process need to be evaluated an exceedingly large
number of times to account for uncertainty in estimates of evolutionary model param-
eters or examine thousands of evolutionary traits at the same time [19].

2 Background and notation

Let {Xt , t ≥ 0} be an m-state homogeneous CTMC with infinitesimal generator
� = {λi j }, i, j = 1, . . . , m and finite-time transition probability matrix P(t) = e�t

satisfying conditions �1 = 0 and P(t)1 = 1, where 0 and 1 are m-dimensional col-
umn vectors of zeros and ones respectively. We assume that {Xt } is irreducible; this
implies the existence of a unique stationary distribution π = (π1, . . . , πm) satisfy-
ing π� = 0T , where T denotes transpose. Suppose now we wish to label a subset
of all possible transitions of the chain {Xt }, where this subset has special biological
importance. We specify transitions of interest through a set of ordered index pairs R
that labels transitions from state i to state j only if (i, j) ∈ R. Since pairs of equal
indices do not define CTMC transitions, R has at most m(m − 1) index pairs. The
times of labeled transition occurrences define a point process on the positive real
line. Figure 1 illustrates how a sample path of a three-state CTMC can generate, for
example, realizations of two different point processes (black dots). In the first plot, all
possible transitions are labeled. The second plot shows a process that keeps track of
only transitions defined by set R = {(1, 3), (2, 1)}.

Let Nt be the total number of labeled transitions in time interval (0, t]. In the Exam-
ples section, we show that in order to characterize the evolutionary counting process
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Fig. 1 Examples of continuous-time Markov chain (CTMC) induced counting processes. The first plot
depicts a sample path of a three-state CTMC. The counting process is formed by the total number of all
transitions of the Markov chain. The second plot shows the same three-state Markov chain path, but now
only transitions from 1 to 3 and from 2 to 1 are labeled. The number of such transitions in time interval
[0, t) forms a different counting process

Nt on a phylogenetic tree we need means to compute joint probabilities

qi j (n, t) = Pr (Nt = n, Xt = j | X0 = i) , (1)

and restricted factorial moments

m[k]
i j (t) = E

(
N [k]

t 1{Xt = j} | X0 = i
)

, (2)

where N [k] = N (N − 1) · · · (N − k + 1). Quantities in Eqs. (1) and (2) implicitly
depend on the labeling set R that together with the infinitesimal generator matrix �

define the evolutionary counting process {Nt , t ≥ 0}.

3 Two-state CTMC induced counting processes

Consider a two-state Markov chain {Xt } with generator

� =
(−λ1 λ1

λ2 −λ2,

)
(3)

where λ1, λ2 > 0, and a counting process {Nt } that labels all transitions. Specifically,
R = {(1, 2), (2, 1)}. Without loss of generality, throughout this section we assume
that X0 = 1. Then, since Xt cycles between only two states, the state of the chain at
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time t is fully determined by number of transitions Nt . In particular, if Nt is an odd
integer, then Xt must be 2. Similarly if Nt is even, Xt must occupy state 1. Therefore,
to compute the joint probabilities

q11(n, t) = Pr(N (t) = n|X0 = 1)1{n is even} and

q12(n, t) = Pr(N (t) = n|X0 = 1)1{n is odd}, (4)

where 1{·} is the indicator function, it suffices to determine marginal probabilities

qn(t) = Pr(Nt = n|X0 = 1). (5)

For a two-state system, CTMC finite-time transition probabilities satisfy pi j (�t) =
λi�t +o(�t) when i �= j and pii (�t) = 1−λi�t +o(�t) otherwise. Consequently,
the following recursive equations hold for the marginal probabilities in Eq. (5),

q2k−1(t + �t) = q2k−1(t)(1 − λ2�t) + q2k−2(t)λ1�t + o(�t), and

q2k(t + �t) = q2k(t)(1 − λ1�t) + q2k−1(t)λ2�t + o(�t),
(6)

where k = 1, 2, . . . and q0(t) = e−λ1t . Dividing both sides of Eq. (6) by �t and
sending it to 0 yields recursive differential equations

d

dt
q2k−1(t) = −λ2q2k−1(t) + λ1q2k−2(t) and

d

dt
q2k(t) = −λ1q2k(t) + λ2q2k−1(t),

(7)

subject to initial conditions qn(0) = 0 for n > 0.
Let fn(s) = L[qn(t)](s), where L is the Laplace transform. Applying L to both

sides of Eq. (7) produces the following algebraic equations

f2k−1(s) = λ1

s + λ2
f2k−2(s) and f2k(t) = λ2

s + λ1
f2k−1(s). (8)

Keeping in mind that f0(s) = L [e−λ1t
]
(s) = 1

s+λ1
, we deduce that

f2k−1(s) = λk
1λ

k−1
2

(s + λ1)k(s + λ2)k
and f2k(s) = λk

1λ
k
2

(s + λ1)k+1(s + λ2)k
. (9)

If λ1 = λ2, then fn(s) = λn
1

(s+λ1)n+1 and qn(t) = L−1[ fn(s)](t) = e−λ1 λn
1 tn

n! . There-
fore, when the rates of leaving states 1 and 2 are equal, the number of Markov chain
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transitions Nt is Poisson distributed as intuition predicts. In the case of unequal rates,
λ1 �= λ2, we expand Eq. (9) into partial fractions,

f2k−1(s) =
k∑

i=1

Ak
k−i

(s + λ1)i
+

k∑
i=1

Bk
k−i

(s + λ2)i
and

f2k(s) =
k+1∑
i=1

Ck
k−i+1

(s + λ1)i
+

k∑
i=1

Dk
k−i

(s + λ2)i

(10)

and apply the method of derivatives to determine the partial fraction coefficients

Ak
i = 1

i !
di

dsi

[
(s + λ1)

k f2k−1(s)
]

s=−λ1
,

Ck
i = 1

i !
di

dsi

[
(s + λ1)

k+1 f2k(s)
]

s=−λ1
, (11)

Bk
i = 1

i !
di

dsi

[
(s + λ2)

k f2k−1(s)
]

s=−λ2
and

Dk
i = 1

i !
di

dsi

[
(s + λ2)

k f2k(s)
]

s=−λ2
.

Inverse Laplace transformation of Eq. (10) and differentiation in (11) leads to a closed-
form solution to the differential Eq. (7)

q2k−1(t) =
k∑

i=1

Ak
k−i

t i−1

(i − 1)!e−λ1t +
k∑

i=1

Bk
k−i

t i−1

(i − 1)!e−λ2t and

q2k(t) =
k+1∑
i=1

Ck
k−i+1

t i−1

(i − 1)!e−λ1t +
k∑

i=1

Dk
k−i

t i−1

(i − 1)!e−λ2t ,

(12)

where

Ak
i =

(
k + i − 1

i

)
(−1)iλk

1λ
k−1
2

(λ2 − λ1)k+i
, Ck

i =
(

k + i − 1

i

)
(−1)iλk

1λ
k
2

(λ2 − λ1)k+i
,

Bk
i =

(
k + i − 1

i

)
(−1)iλk

1λ
k−1
2

(λ1 − λ2)k+i
, Dk

i =
(

k + i

i

)
(−1)iλk

1λ
k
2

(λ1 − λ2)k+i+1 .

(13)

To further explore the properties of the evolutionary counting process for two-state
Markov chains, we proceed with deriving the probability generating function of Nt ,

g(r, t) =
∞∑

n=0

rnqn(t), |r | ≤ 1. (14)
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Starting from Eq. (7), we construct a forward differential equation for the generating
function (14),

∂

∂t
g(r, t) = (r − 1)

[
λ1

∞∑
k=0

r2kq2k(t) + λ2

∞∑
k=0

r2k+1q2k+1(t)

]
. (15)

Identifying
∑∞

k=0 r2kq2k(t) = 1
2 [g(r, t) + g(−r, t)] and

∑∞
k=0 r2k+1q2k+1(t) =

1
2 [g(r, t) − g(−r, t)], we derive a forward equation for the mirror image of the gener-
ating function, g(−r, t), and combine it with (15) to arrive at a simple linear system
of ordinary differential equations

∂

∂t
g(r, t) = 1

2
(r − 1)[(λ1 + λ2)g(r, t) − (λ2 − λ1)g(−r, t)] and

∂

∂t
g(−r, t) = 1

2
(r + 1)[(λ2 − λ1)g(r, t) − (λ1 + λ2)g(−r, t)].

(16)

The solution to this system with initial conditions g(r, 0) = g(−r, 0) = 1 yields the
generating function of Nt given Xt starts in state 1,

g(r, t) = (r − 1)λ1 − α2

α1 − α2
eα1t + α1 − (r − 1)λ1

α1 − α2
eα2t , (17)

where α1,2 = 1
2

[
−λ1 − λ2 ±√(λ1 + λ2)2 + 4(r2 − 1)λ1λ2

]
. This analytic formula

for g(r, t) allows for simple derivations of factorial moments

E
(

N [k](t) | X0 = 1
)

= ∂k

∂rk
g(r, t)|r=1, (18)

bypassing the repetitive one-step calculations relied on in [34]. Since our objective
is to develop algorithms for computing factorial moments over phylogenetic trees,
we are not only interested in moments (18), but also in restricted factorial moments.
We once again exploit the even-odd symmetry of the two-state model and express the
restricted factorial moments as

m[k]
11 (t) = 1

2

∂k

∂rk
[g(r, t) + g(−r, t)]r=1 and

m[k]
12 (t) = 1

2

∂k

∂rk
[g(r, t) − g(−r, t)]r=1 .

(19)

Clearly, if X0 = 2 we can simply exchange λ1 and λ2 in the above derivations to
arrive at the formulas for q21(n, t), q22(n, t), m[k]

21 (t), and m[k]
22 (t).
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Forward transitions

Since in independent origins questions it is necessary to count only directed transitions
that represent morphological innovations over evolutionary history, we derive the joint
probabilities and restricted factorial moments for directed transitions in the two-state
model. Let X0 = 1 and N f

t be the number of forward transitions from state 1 to state
2, i.e. R = {(1, 2)}, during the time interval (0, t]. The joint probabilities for N f

t can
be recovered from the probability mass function of Nt ,

Pr
(

N f
t = k, Xt = 1 | X0 = 1

)
= q2k(t) and

Pr
(

N f
t = k, Xt = 2 | X0 = 1

)
=
{

q2k−1(t) k > 0,

0 k = 0.

(20)

We can also express the restricted mean number of forward transitions as

E
(

N f
t 1{Xt =1} | X0 = 1

)
= 1

2

∞∑
k=1

2k q2k(t) = 1

2
m[1]

11 (t) and

E
(

N f
t 1{Xt =2} | X0 = 1

)
=

∞∑
k=1

k q2k−1(t)

= 1

2

[ ∞∑
k=1

(2k − 1)q2k−1(t) +
∞∑

k=1

q2k−1(t)

]

= 1

2

[
m[1]

12 (t) + p12(t)
]
.

(21)

We obtain higher moments and formulas for backward transitions in a similar fashion.

4 Multi-state CTMC induced counting processes

General theory

Let us now turn to the general case, where {Xt } can attain m arbitrary states, and
Nt counts transitions between pairs in a predefined set R. In this first subsection, we
review previous results from theoretical developments of CTMC induced counting
processes. Since these developments are found elsewhere, we omit most of the proofs
and provide only missing relevant details [3,5,18]. We then proceed with new devel-
opments and demonstrate that reversibility, enjoyed by the majority of evolutionary
Markov models, permits one to compute the restricted factorial moments of Nt using
an eigen decomposition of the CTMC infinitesimal generator.

As in the two-state case, we start with a forward equation for the joint probabili-
ties qi j (n, t). During infinitesimal time period �t , the number of labeled transitions
Nt does not change if an unlabeled transition into state j is made. Alternatively, Nt
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increases by one if a labeled transition into state j occurs. This intuitive reasoning
translates into the following relationship

qi j (n, t + �t) =
∑

k:(k, j)/∈R

qik(n, t)λk j +
∑

k:(i, j)∈R

qik(n − 1, t)λk j + o(�t), (22)

where i, j = 1, . . . , m, n ≥ 1, and qi j (n, t) is the probability of Xt changing its state
from i to j in time t with n labeled transitions. Dividing Eq. (22) by �t , sending it
to 0, and introducing matrices Q(n, t) = {qi j (n, t)}, �R = {λi j × 1{(i, j)∈R}}, and
�R = {λi j × 1{(i, j)/∈R}}, we arrive at the matrix differential equation

d

dt
Q(n, t) = Q(n, t)�R + Q(n − 1, t)�R . (23)

Starting with Q(0, t) = e�Rt and the Laplace transform of Eq. (23), we obtain that
for n ≥ 1,

F(n, s) = F(n − 1, s)�R
(
s I − �R

)−1
, (24)

where F(n, s) = L [Q(n, t)] (s), defined on its region of convergence Re(s) > 0,
and I is an m × m identity matrix. Since L[Q(0, t)] = L[e�Rt ] = (sI − �R)−1, the
solution of the recursive Eq. (24) is

F(n, s) = (s I − �R

)−1
[
�R
(
s I − �R

)−1
]n

. (25)

Recalling that Re(s) > 0 and λi i = −∑ j �=i λi j implies that |s − λi i | ≥ |Re(s) +∑
j �=i λi j | ≥ ∑ j �=i λi j ≥ ∑ j �=i λi j × 1{(i, j)/∈R} for i = 1, . . . , m. Therefore, matrix

sI − �R is strictly diagonally dominant and invertible. When � and �R commute,

Eq. (25) simplifies to F(n, s) = �n
R

(
s I − �R

)−n−1, making it possible to obtain the

inverse Laplace transform of F(s, n) analytically, Q(n, t) = (�Rt)n

n! e�Rt . If � and �R

do not commute, a closed form solution for Q(n, t) does not seem feasible. However,
in many evolutionary applications, probabilities Q(n, t) are needed only for small n.
In such cases, formulas (23) and ( 25) remain useful and practical. For example, if we
decide to label all possible transitions, then

qi j (0, t) =
{

eλi i t i = j,
0 i �= j

(26)

and the inverse Laplace transform of F(1, s) yields

qi j (1, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λi j
λi i −λ j j

(
eλi i t − eλ j j t

)
i �= j and λi i �= λ j j ,

λi j teλ j j t i �= j and λi i = λ j j ,

0, i = j.

(27)
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400 V. N. Minin, M. A. Suchard

Alternatively, Siepel et al. [28] propose to use an embedded discrete-time Markov
chain to arrive at a recursive algorithm for computing Q(n, t) when R = {(i, j) :
i, j = 1, . . . , m, i �= j}.

Similarly to the two-state case, we proceed with the matrix probability generating
function of Nt ,

G(r, t) =
∞∑

n=0

rnQ(n, t). (28)

Using matrix differential Eq. (23), we arrive at the forward differential equation for
G(r, t),

∂

∂t
G(r, t) = G(r, t)

(
�R + r�R

)
, (29)

subject to initial condition G(r, 0) = I. Since the righthand side of this equation
depends on t only through G(r, t), we immediately recognize that the solution of this
equation is the matrix exponential

G(r, t) = e(�R+r�R)t . (30)

We would like to highlight that in contrast with engineering and ion channel appli-
cations, the relatively small size of the state space in evolutionary Markov models
does not prohibit numerical estimation of the matrix exponential (30). However,
it is still desirable to avoid this computationally intensive calculations whenever
possible.

Factorial moments

We now turn to the problem of calculating restricted factorial moments M[k](t). In
principle, the restricted factorial moments can be recovered by differentiating the
matrix probability generating function,

M[k](t) = ∂k

∂rk
G(r, t)

∣∣∣
r=1

. (31)

However, as with the inverse Laplace transform of (25), such differentiation is only
possible analytically when matrices � and �R commute. In this situation M[k](t) =
(�Rt)ke�t . Ball and Mine justly point out that formulas (30) and (31) are not very
practical for numerical calculation of the restricted factorial moments as matrices �R

and � usually do not commute [3]. Therefore, we follow the authors’ suggestion and
use an integral representation of the restricted factorial moments. We start by differ-
entiating Eq. (29) k times with respect to r and evaluating both sides of the equation at
r = 1. This produces the following recursive differential equations for the restricted
factorial moments,

∂

∂t
M[k](t) = M[k](t)� + kM[k−1](t)�R, (32)

123



Evolutionary counting processes 401

where M[0](t) = P(t) = e�t is the finite-time transition probability matrix. Multiply-
ing both sides of Eq. (32) by integrating factor e−�t and integrating with respect to t ,
we obtain a recursive integral formula for the restricted factorial moments,

M[k](t) = k

t∫

0

M[k−1](θ)�Re�(t−θ)dθ. (33)

To make further progress for evolutionary models, we assume that � is diagonal-
izable with eigen decomposition � = UHU−1, where H is a diagonal matrix with the
real eigenvalues h1, . . . , hm of � along its diagonal and eigenvectors of � forming
the columns of U. Then, transition probability matrix P(t) = e�t = UeHt U−1, where
eHt is a diagonal matrix composed of elements eh1t , . . . , ehm t . With this eigen decom-
position of the transition probability matrix, we arrive at its spectral representation

e�t =
m∑

i=1

Bi e
hi t , (34)

where Bi = UEi U−1 and Ei is a matrix with zero entries everywhere, except at the
i i-th entry, which is one. Almost all evolutionary models derive reversible CTMCs.
Reversibility implies that the infinitesimal generator is similar to a symmetric matrix
and hence is diagonalizable with real eigenvalues [9]. Therefore our seemingly strong
diagonalizability assumption does in fact hold for the majority of evolutionary appli-
cations.

From Eq. (33) we obtain

M[1](t) =
t∫

0

e�θ�Re�(t−θ)dθ (35)

for the first moment. Then using spectral representation (34) we arrive at the following
convenient to evaluate expression

M[1](t) =
m∑

i=1

m∑
j=1

Bi�RB j Ii j (t), (36)

where

Ii j (t) =

⎧
⎪⎨
⎪⎩

tehi t if hi = h j ,

ehi t − eh j t

hi − h j
if hi �= h j .

(37)

Continuing the application of spectral decomposition and integration yields the fol-
lowing expression for restricted factorial moments

M[k](t) = k!
m∑

i1=1

· · ·
m∑

ik+1=1

Bi1

(
k+1∏
l=2

�RBil

)
Ii1,...,ik+1(t), (38)
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402 V. N. Minin, M. A. Suchard

for k = 2, . . . , where

Ii1,...,ik+1(t) =
t∫

0

tk∫

0

. . .

t2∫

0

ehi1 t1+∑k
l=2 hil (tl−tl−1)+hik+1 (t−tk)dt1 · · · dtk (39)

For example, the second factorial moment, often sought for statistical testing, is

M[2](t) =
m∑

i=1

m∑
j=1

m∑
k=1

Bi�RB j�RBk Ii jk(t), (40)

where

Ii jk(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t2

2
ehi t hi = h j = hk,

teh j t

h j − hk
− eh j t − ehk t

(h j − hk)2 hi = h j , h j �= hk,

1

hi − h j

(
tehi t − eh j t − ehk t

h j − hk

)
hi �= h j , hi = hk,

1

hi − h j

(
ehi t − ehk t

hi − hk
− teh j t

)
hi �= h j , h j = hk,

1

hi − h j

(
ehi t − ehk t

hi − hk
− eh j t − ehk t

h j − hk

)
otherwise.

(41)

These derivations generalize the work of Hobolth et al. [12]. These authors use an
eigen decomposition of the infinitesimal generator and expressions (37) and (41) to
compute the mean and the variance of the number of mutations between a fixed pair of
states. In other words, they consider a particular counting process with set R consisting
of exactly one pair of indices. As illustrated in the Examples section, such a labeling
scheme is not applicable to many evolutionary applications, where R consists of more
than one pair.

In deriving restricted factorial moments M[k], we replace differentiation in (31)
with integral Eq. (33). An alternative approach to computing derivatives of a matrix
exponential also with the help of integration is described in [26]. These authors rely
on an eigen decomposition of the infinitesimal generator. The decomposition coupled
with the Cauchy integral formula helps the authors reduce differentiation of a matrix
exponential to evaluating one dimensional complex variable integrals. Although com-
putationally these two approaches are equivalent, our method is more accessible as
it does not require any knowledge of complex analysis. Further, Narayana and Neuts
show how to calculate the first two restricted factorial moments without an eigen
decomposition of the CTMC infinitesimal generator [15]. These authors employ series
expansions based on the uniformization method. Uniformization can become highly
inefficient when the rates of CTMC transitions vary considerably. In evolutionary
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applications, this variation arises most often in the context of amino acid evolution,
where selection imposes strong constraints on the fixation of mutations [1,11].

When information about the trait value is missing at some tips of a phylogenetic
tree, marginal factorial moments of the evolutionary counting process,

µ
[k]
i (t) = E

(
N [k]

t | X0 = i
)

, i = 1, . . . , m, (42)

are needed for computations. For an irreducible CTMC, Ball and Mine derive a
closed-form expression for marginal first factorial moment vector µ[1](t) =(
µ

[1]
1 (t), . . . , µ[1]

m (t)
)T

, using properties of the CTMC fundamental matrix [3]. In

general, marginal factorial moments can be recovered from the restricted factorial
moments developed here as

µ[k](t) = M[k](t)1. (43)

5 Examples

Markov models and phylogenies

We first describe how a CTMC model together with a phylogenetic tree structure
defines a probabilistic model for discrete trait evolution [7]. Consider a rooted binary
tree τ with internal nodes labeled as 1, . . . , k − 1 starting with the root and ter-
minal nodes (tips) labeled as k, . . . , 2k − 1. We observe evolutionary trait values,
d = (dk, . . . , d2k−1), only at the tips. All edges, commonly called branches, of the tree
have weights/lengths that denote evolutionary times between the bifurcation events.
We label this collection of weights as t. To define the likelihood of observed data d, we
first augment d with missing trait values, b = (b1, . . . , bk−1), at the internal nodes of
the tree τ . We then assume that given the state at a parent node, its children trait values
evolve independently along the two descending branches according to a CTMC with
infinitesimal generator �. Therefore, setting an initial distribution ν = (ν1, . . . , νm)

for root trait values b1, the likelihood of the augmented data is

Pr(d, b|�, t, ν, τ ) = νb1

∏
(i, j)

pbi b j (ti j )
∏
(k,l)

pbk dl (tkl), (44)

where (i, j) spans all internal node parent-child pairs, (k, l) ranges over all parent-
child pairs, where the child is a tip of the tree. Parameters ti j and tkl are lengths of
branches connecting children with their parents, and pi j (t) = {e�t

}
i j are the CTMC

finite-time transition probabilities. We find the phylogenetic likelihood of the observed
data by summing over values of the missing data

Pr(d|�, t, ν, τ ) =
∑

b

νb1

∏
(i, j)

pbi b j (ti j )
∏
(k,l)

pbk dl (tkl). (45)
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Fig. 2 Phylogenetic tree
describing the evolutionary
relationship among three
organisms with observed trait
states d3, d4, and d5. Internal
node variables b1 and b2
represent unknown states of the
trait at times when ancestral
organisms split into different
lineages

t4

t1

t3

d4

d53d

b2

1b

2t

This summation proceeds over all possible trait values at the internal nodes of τ . For
example, the likelihood of the tip data on the tree depicted in Fig. 2 is

Pr(d | �, t, ν, τ ) =
m∑

b1=1

m∑
b2=1

νb1 pb1d3(t1)pb1b2(t4)pb2d4(t2)pb2d5(t3). (46)

We view (45) as an integrated likelihood, where
∏

(k,l) pbk dl (tkl) is integrated over
a prior distribution on b

Pr(b) = νb1

∏
(i, j)

pbi b j (ti j ). (47)

To ease further presentation we omit implicit conditioning on �, t, ν, and τ in (47)
and hereafter as we assume that these model parameters are fixed. It is also possible
to compute the posterior distribution of the internal nodes

Pr(b | d) = Pr(b1 | d)
∏
(i, j)

Pr(b j | bi , d), (48)

where Pr(b1 | d) and Pr(b j | bi , d) are functions of the transition probabilities P(t) =
{pi j (t)} [19,23]. The conditional independence reflected in expressions (45), (47),
and (48) allows for efficient computation of the phylogenetic likelihood and related
quantities through the specialized sum-product algorithm, also known as the pruning
algorithm [6,7].

Prior and posterior distributions of the number of evolutionary changes

We start with a hypothetical example that resembles a typical problem from evolution-
ary developmental biology. Consider the tree in Fig. 2 and suppose that we observe
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a binary trait at the tips of this tree. Let Nτ be the total number of times the trait
changes its state during its evolution over tree τ . We would like to know the proba-
bility mass function of Nτ with and without conditioning on the observed data. If we
define conditional probabilities

q̂i j (n, t) = qi j (n, t)/pi j (t) = Pr(Nt = n, | X0 = i, Xt = j), (49)

then

Pr(Nτ = n) =
∑

n1+···+n4=n

m∑
b1=1

m∑
b2=1

qb1(n1, t1)q̂b1b2(n4, t4)

× qb2(n2, t2)qb2(n3, t3)Pr(b1, b2), (50)

where qi (n, t) = Pr(Nt = n | X0 = i) and vector (n1, . . . , n4) ranges over all possi-
ble ways n transitions can be distributed among the branches of τ . Such distribution
can be accomplished by generating all possible integer partitions of n into 4 parts,
permuting these partitions, and keeping only unique vectors (n1, . . . , n4). When there
is no data present at the tips, the probabilities of the terminal branches in (50) do not
involve conditioning on the Markov chain end state. Similar to the above derivations,
through conditioning on the internal node states, we arrive at the posterior probability
mass function of Nτ ,

Pr(Nτ = n | d) =
∑

n1+···+n4=n

m∑
b1=1

m∑
b2=1

q̂b1d3(n1, t1)q̂b1b2(n4, t4)

×q̂b2d4(n2, t2)q̂b2d5(n3, t3)Pr(b1, b2 | d). (51)

Introduction of conditional probabilities q̂i j (t) serves only for notational convenience,
since transition probabilities in (49) cancel out in (50) and (51) during multiplication
by the prior and posterior probabilities of internal node states. Moreover, it is easy to
see that while calculating Pr(Nτ = n) and Pr(Nτ = n | d), we can efficiently distribute
multiplication along the phylogenetic tree similar to the pruning algorithm mentioned
above.

We now consider a numerical example, where we set branch lengths for the tree
in Fig. 2 to t1 = 0.3, t2 = 0.2, t3 = 0.1, and t4 = 0.1. We also assume λ1 = 1
and λ2 = 2 using parameterization (3) of the two-state CTMC generator and the sta-
tionary distribution of the chain at the root of τ . Given such model parameters, we
compute prior probabilities Pr(Nτ = n) and posterior probabilities Pr(Nτ = n | d1)

and Pr(Nτ = n | d2) for n = 0, . . . , 5 under two different data patterns d1 = (1, 2, 2)

and d2 = (2, 2, 1). Plots in the bottom row of Fig. 3 show the first six entries of the
probability mass function of Nτ (vertical bars). Without observing any data at the tips
(the first column of Fig. 3) the probability mass function of Nτ exhibits Poisson-like
shape with high probability of zero changes reflecting the short branch lengths of tree
τ . The first data pattern strongly supports one change in the evolutionary history of
the trait (the second column), while under the second data pattern probabilities of one
and two total number of changes are approximately equal (the third column).
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Fig. 3 Effect of observed data on distribution of the number of changes in the evolutionary history of a
binary trait. The top plots show the same phylogenetic tree with no observed data at its tips (left) and two
different observed data patterns at the tips (middle and right). The bottom plots depict probabilities of 0–5
changes (vertical bars) for each data pattern in the top plots

In evolutionary developmental biology, researchers are often interested in how
many times a trait changed its state during an evolutionary history. For example, one
common hypothesis may postulate that a trait changed its state no more than one time
in its evolutionary history. The alternative to this hypothesis implies multiple inde-
pendent origins of a new trait state. We can envision formally testing these hypotheses
statistically in a Bayesian framework. Since we now know how to compute quantities
Pr(Nτ ≤ 1) and Pr(Nτ ≤ 1 | d), it is straightforward to integrate them over the prior
and posterior distribution of model parameters respectively and set up a Bayes factor
test [13].

Counting mutations in DNA sequences

We now demonstrate that counting mutations in DNA sequences provides an effective
data exploratory and model diagnostic tool. We start with a multiple sequence align-
ment of N DNA sequences Y = {Ynl}, n = 1, . . . , N , l = 1 . . . , L . The L columns
of the alignment, called sites, are observations generated by the CTMC evolutionary
process. To simplify mathematics involved in probabilistic and statistical treatment
of DNA evolution, it is often assumed that sites Y1, . . . , YL are independent and
identically distributed (iid). Since both of these assumptions are very unlikely to hold
in nature, relaxing them remains an active area of research in the theory of molecu-
lar evolution [24,32,33]. A common approach to assigning nonidentical distributions
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to different sites is to divide them into a small number of classes and allow model
parameters to vary among but not within the classes [31]. We describe one such site
partitioning that plays an important role in protein coding regions.

In protein coding regions, 61 out of 64 possible triplets of DNA, called codons,
are translated into 20 amino acids. Therefore, different codons may encode the same
amino acid. Such redundancy in the genetic code allows the three codon positions
to mutate at different rates. The third codon position experiences mutations more
frequently than the other two positions, since a change in this position does not
generally lead to a change at the amino acid level. Differences between mutation
rates of the first and the second positions are less pronounced with the first posi-
tion changing slightly faster. We design a simulation study that demonstrates how
mean mutational counts help detect heterogeneity of the evolutionary rate among
codon positions without having to explicitly model the heterogeneity first. We also
use mutational counts to check the adequacy of the nucleotide model that we use in our
calculations.

Using the method of Rambaut and Grassly [25] we simulate two different nucle-
otide alignments of three sequences assuming the evolutionary relationship among
them described by the tree in Fig. 2. Branch lengths are the same as in the first exam-
ple. Both data sets are simulated using an HKY parameterization [10] of the CTMC
infinitesimal generator,

� =

⎛
⎜⎜⎜⎝

− απG βπC βπT

απA − βπC βπT

βπA βπG − απT

βπA βπG απC −

⎞
⎟⎟⎟⎠ , (52)

where π = (πA, πG , πC , πT ) is the stationary distribution of the chain, α is called
a “transition” rate, and β is called a “transversion” rate. Nucleotides divide into two
classes: purines {A, G} and pirimidines {C, T }. Mutations are called “transitions” if
they do not change the class assignment of a nucleotide and “transversions” otherwise.
We rescale matrix � such that

∑
u λuuπu = −1, a common procedure often needed

for identifiability in statistical phylogenetics [7]. The rescaling leads to a decrease in
number of free model parameters and allows the reparameterization of � in terms of
its stationary distribution π and “transition/transversion” rate ratio κ = α/β. In both
simulations we set all stationary probabilities to 0.25 and κ = 4.0.

Sites in the first alignment are simulated under a model with iid sites. The sec-
ond data set is simulated using a codon partitioning (CP) model. In this model three
CTMC generators are used for independently (but not identically) distributed sites in
each of the three codon positions, �c = rc�, c = 1, 2, 3. Scaling factors are set to
r1 = 1.5, r2 = 1.0, and r3 = 3.0. Before examining the simulated datasets, we assume
no knowledge of possible heterogeneity and perform calculations under the simpler
model that assumes iid alignment sites.

We compute the mean number of mutations at each site in both alignments. For
each site l we condition on nucleotides Yl observed at the site,
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Fig. 4 Spectral analysis of site-specific mutational counts. The top two plots depict posterior mean number
of mutations for each site in the simulated alignments (vertical bars). The bottom plots show smoothed
spectrums of the mutational counts accompanied by the spectrum of white noise (dashed lines) and its 95%
confidence bounds (dotted lines). In the bottom right plot an arrow marks the spectrum peak corresponding
to a period of three sites

E(Nτ | Yl) =
s∑

b1=1

s∑
b2=1

[
m̂[1]

b1Y1l
(t1) + m̂[1]

b2Y2l
(t2)

+ m̂[1]
b2Y3l

(t3) + m̂[1]
b1b2

(t4)
]

Pr(b1, b2 | Yl), (53)

where

m̂[1]
i j (t) = m[1]

i j (t)/pi j (t) = E(Nt | X0 = i, Xt = j). (54)

For a general tree, formula (53) suggests that computing the mean number of labeled
transition reduces to

∑
b

m̂[1]
bi b j

(ti j )Pr(b | d), (55)

where i and j are nodes of the tree connected by a branch with length ti j . We accom-
plish computations of these quantities by bookkeeping of local calculations on the tree
similar to an algorithm by Schadt et al. [27] for calculating phylogenetic likelihood
derivatives.

In our calculations of the mean mutational counts, we deliberately further mis-
specify the evolutionary model by setting “transition/transversion” rate ratio κ =
1.0 and branch lengths t = (0.28, 0.21, 0.12, 0.09) instead of values 4.0 and
(0.3, 0.2, 0.1, 0.1) used in the simulation. In the top plot of Fig. 4, we indicate the
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Table 1 Mean number of “transitions” and “transversions”. The prior and posterior (Post.) expectations
are calculated for the number of “transitions” and “transversions” in the two alignments simulated under
the independent and identically distributed sites (iid) and codon partitioning (CP) models

κ “Transitions” “Transversions”

Prior iid Post. CP Post. Prior iid Post. CP Post.

1.0 233.3 333.7 313.0 466.7 342.3 316.4

2.0 350.0 395.6 373.6 350.0 281.1 257.3

4.0 466.7 455.4 433.0 233.3 244.8 221.4

mean number of mutations for each site (vertical bars) in the simulated alignments. Ini-
tially the site-specific mean mutational counts of the iid and CP data show no obvious
differences in their patterns of variation. We estimate spectral densities (spectrums)
of site-specific mutational counts treating the latter as time series. The bottom two
plots of Fig. 4 show mutational count spectrums, smoothed with a Danniel window
filter for both simulated alignments [4]. The smoothed spectrum for the iid align-
ment sites demonstrates no sign of periodicity as all amplitudes fall between the 95%
bounds for white noise (dotted lines). The spectrum of the CP sites has a strong
peak at frequency 1

3 that corresponds to a period of three sites, the size of a codon.
Therefore, despite the crude misspecification of the substitution model, site-specific
mutational counts enable us to detect a repeated pattern of variation among codon
positions.

Next, we examine whether discrepancies between the prior and posterior expected
number of “transitions” and “transversions” can help us illuminate the deliberate
misspecification of the “transition/transversion” rate ratio κ . We first define “tran-
sition”, R1 = {(1, 2), (2, 1), (3, 4), (4, 3)}, and “transverstion”, R2 = {(i, j) : i, j =
1, . . . , 4, i �= j} \ R1, labeling sets. Then, we calculate the mean number of “tran-
sitions” and “transversions” for κ = 1, 2, 4 and t = (0.28, 0.21, 0.12, 0.09) without
conditioning on the data and conditioning on the alignment sites simulated under
the iid and CP models (see Table 1). A priori we expect κ/2 times as many “transi-
tions” than “transversions”, because there are eight possible “transversions” and only
four possible “transitions”. Table 1 reveals that only for the “true” value of κ = 4
the prior and posterior expectations agree for both mutational classes and for both
simulation conditions. On the contrary, when we set κ to 1 or 2, the observed data
“surprise” us by too many “transitions” and too few “transversions” relative to our
prior expectations. Therefore, mutational counts can serve as diagnostic tools to mea-
sure discrepancy between data and a model chosen for analyzing these data. Prior or
posterior predictive model checks offer a formal statistical framework for quantifying
such discrepancies [14].

6 Conclusion

In this paper, we study properties of counting processes induced by CTMC mod-
els for discrete trait evolution. A two-state CTMC is an important model often used
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in evolutionary developmental biology. For this model we derive closed-form
expressions for the probability mass and probability generating functions. In the multi-
state generalization we show that, when the CTMC generator is diagonalizable, it is
possible to obtain closed-form solutions at least for the first couple of moments of
the counting process. Similarity of the generator to a symmetric and, hence, diagonal-
izable matrix is not a very restrictive assumption since the majority of evolutionary
models are reversible.

In our derivations we allow for an arbitrary labeling of Markov chain transitions that
the evolutionary counting process registers. This flexibility is important as evolution-
ary biologists often divide mutations into classes and search for over-representation
of mutations that belong to a certain class. For example, excessive number of nucle-
otide mutations that do not result in a change at the amino acid level (synonymous
mutations) indicates natural selection [20]. Instead of fitting molecular data to com-
plicated models of evolution with different rates of synonymous and nonsynonymous
changes, we can use simpler models and compute the mean number of mutations
in each mutational class a posteriori as Nielsen proposes [19]. However, this author
relies upon simulations to compute the mean mutational counts raising concerns about
computational efficiency.

Current simulation approaches estimate properties of evolutionary counting pro-
cesses with very inefficient rejection sampling algorithms [19]. Although these meth-
ods can often provide sufficient approximations of the desired quantities for small
state-space CTMCs and datasets, the computational time needed for analysis of large
datasets grows prohibitive. Our analytic results open the door for fast computations
of important properties of evolutionary counting processes. In our derivations we
essentially consider a counting process on one branch of a phylogenetic tree. From
these derivations, it is straightforward to develop efficient recursive algorithms, similar
to Felsenstein’s [6] pruning that combine local, one-branch calculations and com-
pute properties of evolutionary counting processes along the whole phylogenetic
tree.

In our examples we provide applications of counting processes to evolutionary
biology problems. We first consider binary trait evolution along a phylogenetic tree.
We compute the truncated probability mass function of the number of changes that
occurred during the evolutionary history with and without trait values observed at the
tips of the tree. In the second example we show that a spectral analysis of site-specific
mean mutational counts can be used as a simple and effective method of detecting
hidden patterns of variation in DNA sequence evolution. We also demonstrate that
dividing mutations into classes via labeling of CTMC transitions allows for easy
checks of evolutionary model adequacy. We believe that counting processes will see
many interesting applications in evolutionary biology and hope that results presented
in this paper will make using evolutionary counting processes more practical for ana-
lyzing large datasets and testing complex evolutionary hypotheses.
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