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ABSTRACT

We present a Bayesian framework for inferring spatial preferences of recombination from multiple
putative recombinant nucleotide sequences. Phylogenetic recombination detection has been an active
area of research for the last 15 years. However, only recently attempts to summarize information from
several instances of recombination have been made. We propose a hierarchical model that allows for
simultaneous inference of recombination breakpoint locations and spatial variation in recombination
frequency. The dual multiple change-point model for phylogenetic recombination detection resides at
the lowest level of our hierarchy under the umbrella of a common prior on breakpoint locations. The
hierarchical prior allows for information about spatial preferences of recombination to be shared among
individual data sets. To overcome the sparseness of breakpoint data, dictated by the modest number of
available recombinant sequences, we a priori impose a biologically relevant correlation structure on re-
combination location log odds via a Gaussian Markov random field hyperprior. To examine the capabilities
of our model to recover spatial variation in recombination frequency, we simulate recombination from a
predefined distribution of breakpoint locations. We then proceed with the analysis of 42 human immuno-
deficiency virus (HIV) intersubtype gag recombinants and identify a putative recombination hotspot.

RECOMBINATION is a well-studied phenomenon
that occurs in the genomes of many organisms

through the exchange or transfer of genomic fragments
demarcated by recombination breakpoints. Although
recombination is ubiquitous, the rate of recombination
varies across species and spatially along genomes within
species. In the presence of spatial variation in recom-
bination frequencies, recombination breakpoints are
not distributed uniformly, tending to cluster in hotspots,
leaving other cold regions intact (Smith 2001; Kauppi

et al. 2004; Myers et al. 2005). Here, we consider the
problem of identifying recombination hotspots along
the human immunodeficiency virus (HIV) genome.

Rapid HIV mutation rates and infrequent recombi-
nation between genetically distinct viral genomes allow
for recombination detection from evolutionary histories
(phylogenies) of a recombinant and its putative parental
sequences (Awadalla 2003). Such phylogenetic-based
recombination detection (Hein 1990; Salminen et al.
1995; Grassly and Holmes 1997; McGuire et al. 1997;
Suchard et al. 2002; Husmeier 2005) relies on the
observation that genomic sequences experiencing in-

frequent recombination can be decomposed into break-
point delimited blocks with distinct evolutionary
histories (Li et al. 1988). We illustrate the idea behind
all phylogenetic recombination detection methods with
a simple example. Figure 1 shows a short multiple se-
quence alignment divided by recombination into two
parts, such that a different phylogeny summarizes the
sequence relationships in each part. The presence of
alignment sites informative for phylogenetic recon-
struction (shown in boldface type) is necessary for suc-
cessful phylogenetic recombination detection.

Phylogenetic recombination detection is quite differ-
ent from coalescent-based methods for analyzing re-
combination (Stumpf and McVean 2003). The latter
approaches are most successful in studying frequently
occurring recombination among closely related se-
quences randomly sampled from a neutrally evolving
population (Fearnhead et al. 2004; McVean et al. 2004).
However, as sequence diversity increases, selection,
demographic history, and population structure are
more likely to play a role in sequence evolution, making
the application of coalescent-based approaches to HIV
recombination problematic (McVean et al. 2002). This
is especially true for recombination between different
HIV subtypes as their evolutionary history reflects the
subtype geographical distribution and their adaptation
to different host populations (Robertson et al. 1995;
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Vidal et al. 2000; Rambaut et al. 2001; Choisy et al.
2004; Kalish et al. 2004). In such complicated evolu-
tionary scenarios, phylogenetic recombination detec-
tion offers an attractive alternative as it allows for
recombination inference without explicitly modeling
the details of the process.

Given the myriad phylogenetic methods for inferring
recombination events in individual HIV sequences,
mapping recombination hotspots appears to be a
straightforward task. However, recent attempts of phy-
logenetic mapping of recombination hotspots in the
HIV genome (Magiorkinis et al. 2003; Zhang et al. 2005)
run into major difficulties. First, phylogenetically infor-
mative sites are sparsely distributed, making estimation of
recombination locations somewhat imprecise. Ignoring
uncertainty about the number of recombination events
and their locations within each recombinant leads to loss
of power due to inefficient use of sequence data. Finally,
the modest number of recombination events relative to
the number of sites in individual alignments results in a
sparse breakpoint distribution that prohibits direct esti-
mation of site-specific recombination frequencies.

To address these issues, we propose a Bayesian hier-
archical model that allows integration over breakpoint
locations and stochastically interpolates site-specific
recombination probabilities with the help of a smooth-
ing prior shared by all recombinants. To specify the
distribution of breakpoint locations, conditional on se-
quence data, we begin with a dual multiple change-
point (DMCP) model (Minin et al. 2005). The DMCP
model operates on a multiple sequence alignment of a
putative recombinant and its ‘‘parental’’ strains and
models recombination as a change-point process. We
achieve information sharing among recombinants by
assuming that homologous sites of all alignments have
the same prior probability of being a recombination
breakpoint. Estimation of such site-specific recombina-
tion probabilities is the key to identifying recombina-
tion hot-/coldspots. To handle the sparse breakpoint
information, we recruit Gaussian Markov random fields
(GMRFs), a popular class of distributions used to model
temporal or spatial dependence (Besag 1974; Besag

et al. 1991; Rue and Held 2005). Normally distributed

vector x � Nðn; Q�1Þ is called a GMRF with respect to a
graph G with nodes V and edges E, provided that Qij 6¼ 0
if and only if ði; jÞ 2 E or i ¼ j. To impose a biologically
relevant correlation structure on site-specific recombi-
nation log odds (transformed probabilities), we use a
GMRF prior on a linear graph G connecting adjacent
sites in a multiple sequence alignment. Such spatial
smoothing allows sites where recombination is not ob-
served to borrow information from adjacent sites where
recombination is observed.

We approximate the posterior distribution of all model
parameters via Markov chain Monte Carlo (MCMC)
simulation. Since the number of change points in in-
dividual DMCP models is random, we use reversible-
jump MCMC sampling to move between spaces with
different dimensions (Green 1995). On the population
level, we explore a high-dimensional (of the order 103–
104) space of recombination log odds via a block up-
dating scheme using Metropolis–Hastings transition
kernels with multivariate Gaussian proposals as imple-
mented in the freely distributed GMRFLib library (Rue

2001; Rue et al. 2004). In contrast to typical spatial
applications of GMRFs (Elliott et al. 2000), we apply
smoothing to probabilities of recombination break-
points that themselves are random rather than directly
observed as data. To our knowledge, this is the first use of
GMRF priors in a random environment. We demon-
strate the need for a nonlinear constraint on the GMRF
to control the total number of breakpoints and provide
a computationally efficient implementation of such a
constraint.

We test our model through a simulation study, where
recombination events are generated by permuting se-
quences in an alignment of primate mitochondrial DNA
genes. The ability of the model to reconstruct several
‘‘true’’ recombination probability profiles is examined
under different simulation conditions. Next, we apply
our hierarchical model to 42 publicly available putative
recombinants between HIV subtypes A and G that span
the gag coding region of the viral genome. We find
strong evidence for an �300-nucleotide recombination
hotspot in the Capsid gene. In the discussion, we sum-
marize our findings and propose further extensions to
the smoothing prior on recombination locations.

METHODS

Synchronizing recombinant and parental sequences:
We begin with a master alignment of K putative recom-
binants and P candidate parental sequences. Repre-
sented by a matrix Y ¼ {Yns}, n ¼ 1; . . . ; ðK 1 PÞ,
s ¼ 1; . . . ; S , the alignment is composed of nucleotide
base names (A, adenine; G, guanine; T, thymine; C,
cytosine) and gap characters (-). To eliminate unneces-
sary information in Y, we consider only columns where
at least one of the recombinants possesses a nucleo-
tide base. For each k ¼ 1; . . . ; K , we create individual,

Figure 1.—Illustration of phylogenetic recombination de-
tection. A multiple sequence alignment is divided into two
parts by a recombination breakpoint (dashed line). These
two parts support distinct phylogenies, shown on either side
of the alignment. Sites that provide information about the to-
pology of a phylogenetic tree are shown in boldface type.
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recombinant-specific alignments Y(k) by preserving the
rows of Y that correspond to recombinant k and its N(k)�
1 candidate parental sequences (possibly different for
each recombinant) and removing the other rows. Sites
where the recombinant sequence has a gap are not
informative for recombination detection via the DMCP
model and are removed from the individual alignments
Y(k). Such gap removal establishes an identity between
the lengths of putative recombinants and the number
of sites in the individual alignments, S ð1Þ; . . . ; S ðK Þ, and
simplifies information sharing among individual data
sets. We map individual alignments onto the master
alignment with functions

fk : f1; . . . ; S ðkÞg/f1; . . . ; Sg; ð1Þ

where fk(i) identifies the site in the master alignment Y
that contains the ith nucleotide of recombinant k. Since
fk is a ‘‘one-to-one’’ mapping, fk(i) 6¼ fk(j) for any i 6¼ j, the
inverse fk

�1 is defined on the range of fk that represents
the set of sites in the master alignment where the kth
recombinant has no deletions.

Dual multiple change-point model: We assume that
conditional on model parameters F(k), each alignment
Y(k) is drawn independently from a DMCP model, i.e.,

PrðYð1Þ; . . . ; YðK Þ jFð1Þ; . . . ; FðK ÞÞ ¼
YK
k¼1

PrðYðkÞ jFðkÞÞ:

ð2Þ

We first describe the model for evolution of individual
alignment sites and then define the model structure
across sites.

Columns YðkÞs ¼ ðY
ðkÞ
1s ; . . . ; Y ðkÞN ðkÞsÞ

t of each individual
alignment Y(k) are assumed to evolve independently as a
continuous-time Markov chain on the state space {A, G,
C, T } (Felsenstein 2004). For each site s ¼ 1; . . . ; S ðkÞ,
we parameterize the infinitesimal rate matrix LðkÞs of
the Markovian substitution process in terms of its
stationary distribution pðkÞs ¼ ðp

ðkÞ
sA ; p

ðkÞ
sG ; p

ðkÞ
sC ; p

ðkÞ
sT Þ and

a transition/transversion rate ratio kðkÞs 2 ½0; ‘� fol-
lowing Hasegawa et al. (1985). To reduce the num-
ber of nuisance parameters in the model, we fix all
pðkÞs ; s ¼ 1; . . . ; S ðkÞ to the overall observed nucleotide
frequencies in Y(k) (Li et al. 2000). This leaves us with one
free parameter kðkÞs defining the substitution matrix LðkÞs ¼
LðkðkÞs Þ. To complete the phylogenetic model specifi-
cation, we need a bifurcating tree topology tðkÞs describ-
ing the historical relationships among nucleotides, with
branch lengths BðkÞs ¼ ðb

ðkÞ
1;s ; . . . ; bðkÞ2N ðkÞ�3;sÞ representing

the expected number of substitutions between the bifur-
cation events. We further reduce the number of free
parameters in the model by integrating B

ðkÞ

s out of the
likelihood through assuming an exponential prior on
each branch length pðbðkÞi;s Þ} expð�bðkÞi;s =mðkÞs Þ for all
i ¼ 1; . . . ; 2N ðkÞ � 3. Therefore, the likelihood of site s
in recombinant k is a function of three phylogenetic pa-
rameters ðtðkÞs ; kðkÞs ; mðkÞs Þ.

To model variation of the phylogenetic parameters
along the columns of Y(k), we assume that the parameters
are piecewise constant in s with jumps occurring at un-
known change points. We first introduce a set of topology
breakpoints 1¼u

ðkÞ
0 , u

ðkÞ
1 , ... , u

ðkÞ
M ðkÞ , u

ðkÞ
M ðkÞ11¼S ðkÞ1

1, where M(k) is the unknown number of recombina-
tion breakpoints for recombinant k, and tðkÞs ¼ tðkÞm , for all
s2 ½uðkÞm�1; u

ðkÞ
m Þ. Since topologies can attain only a finite

set of values we require that tðkÞm 6¼ t
ðkÞ
m11, for all m2f1; . . . ;

M ðkÞg. Similarly we introduce a set of change points
1¼r

ðkÞ
0 ,r

ðkÞ
1 , . . . , r

ðkÞ
J ðkÞ , r

ðkÞ
J ðkÞ11¼SðkÞ11 for substitu-

tion process parameters and assume that mðkÞs and kðkÞs are
constant between change points. In summary, our
DMCP model for each recombinant k is defined by a
set of parameters F(k) ¼ (t(k), u(k), m(k), k(k), r(k)),
where tðkÞ¼ ðtðkÞ1 ; ...;t

ðkÞ
M ðkÞ11Þ, uðkÞ¼ðuðkÞ1 ; ...;u

ðkÞ
M ðkÞ Þ,

kðkÞ¼ðkðkÞ1 ; ...; kðkÞ
J ðkÞ11

Þ, mðkÞ¼ðmðkÞ1 ; ...;m
ðkÞ
J ðkÞ11Þ, and

rðkÞ¼ðrðkÞ1 ; ...; r
ðkÞ
J ðkÞ Þ, and the varying dimensionality of

the parameter space is determined by M(k) and J (k).
Priors for nuisance parameters: Since our interest in

this article is the recombination breakpoints u(k), we
collect all other parameters for each recombinant into
a vector C(k) ¼ (t(k), m(k), k(k), r(k)) and refer to them
as nuisance parameters. We define a prior distribution
for nuisance parameters by assuming substantial prior
independence, specifically PrðCðkÞÞ ¼ PrðtðkÞÞPrðrðkÞÞQJ ðkÞ

j¼1 PrðmðkÞj ÞPrðkðkÞj Þ. We assume a noninformative
prior for tðkÞm over E(k) possible tree topologies, relating
recombinant k with its potential ‘‘parents.’’ The space
of topologies permissible under the DMCP model is
formed as described in Minin et al. (2005). Constraints
on adjacent topologies are incorporated using a simple
Markovian structure

PrðtðkÞÞ ¼ PrðtðkÞ1 Þ
YM ðkÞ1 1

m¼2

PrðtðkÞm j t
ðkÞ
m�1Þ

¼ 1

E ðkÞ
1

E ðkÞ � 1

� �M ðkÞ

: ð3Þ

The prior distribution for r(k) is specified by first
assuming that J(k) follows a truncated Poisson distribu-
tion with a predefined, constant intensity l and then
giving equal prior probabilities to all possible draws of
J(k) integers from the set f2; . . . ; S ðkÞg,

PrðrðkÞÞ} lJ ðkÞ

J ðkÞ!
1f J ðkÞ, S ðkÞgðS

ðkÞ � J ðkÞ � 1Þ!
ðS ðkÞ � 1Þ!

: ð4Þ

We use one value of l for all individual alignments as
putative recombinant sequences are derived from the
same genomic region and therefore should have an
approximately equal number of changes in evolutionary
pressure. Substitution parameters are a priori log-
normally distributed, ln k

ðkÞ
j � Nðnk; s2

kÞ, ln m
ðkÞ
j �

Nðnm; s2
mÞ, where nk, sk, nm, and sm are either estimated

in a hierarchical framework or fixed according to our
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prior knowledge about sequence variability in the ge-
nomic region under study. For more details on specify-
ing the prior distribution for nuisance parameters C(k)

see Minin et al. (2005).
Spatially smoothed prior for recombination locations:

To specify prior probabilities for recombination break-
point locations, we first switch from their point-process
representation to site-specific recombination indicators
RðkÞ ¼ ðR ðkÞ1 ; . . . ; R ðkÞSðkÞ Þ, where R ðkÞs ¼ 1fs 2 fuðkÞ1 ; . . . ;
u
ðkÞ
M ðkÞgg, k ¼ 1; . . . ; K , s ¼ 1; . . . ; S ðkÞ, and 1{�} is the in-

dicator function. For clarity of presentation we ignore
the fact that the first site of an alignment cannot be a
topology breakpoint according to our definition. Such
reparameterization allows us to introduce recombina-
tion probabilities p ¼ ðp1; . . . ; pSÞ on the master align-
ment and then map them onto individual recombinants
using functions (1) to define a prior distribution for
breakpoint locations,

PrðR ðkÞs ¼ r jpÞ ¼ pr
fkðsÞð1� pfkðsÞÞ1�r ; for r ¼ f0; 1g:

ð5Þ

In other words, we determine the prior probability of a
site being a recombination breakpoint by finding its
position in the master alignment and retrieving the
corresponding component from the vector of common
recombination probabilities p. Conditional on recom-
bination probabilities p, we assume that breakpoint
locations are independent within and between recom-
binants, so

PrðRð1Þ; . . . ; RðK Þ jpÞ}
YK
k¼1

YS ðkÞ
s¼1

pR
ðkÞ
s

fkðsÞð1� pfkðsÞÞ1�R
ðkÞ
s : ð6Þ

If we denote the number of recombinants that do not
have gaps at site s of the master alignment by Ts ¼PK

k¼1 1fs 2 rangeð fkÞg and define the total number of
recombination breakpoints at site s, Cs ¼

P
k:s2rangeð fkÞ

R ðkÞf �1
k ðsÞ

, for s ¼ 1; . . . ; S, then Equation 6 simplifies to

PrðRð1Þ; . . . ; RðK Þ jpÞ}
YS

s¼1

pCs
s ð1� psÞTs�Cs : ð7Þ

Because in practice the total number of observed
breakpoints is smaller than the number of sites S by one
to two orders of magnitude, estimation of the common
recombination probabilities p is unrealistic without
further assumptions about their prior distribution.
Since HIV recombination is mediated by the enzyme
reverse transcriptase that processes nucleotides sequen-
tially (Negroni and Buc 2001), we argue that recombi-
nation probabilities should have similar values at
adjacent locations. To model such spatial dependency
among components of p, we first obtain recombination
log odds g ¼ ðg1; . . . ; gSÞt , where

gs ¼ ln
ps

1� ps

� �
; for s ¼ 1; . . . ; S ; ð8Þ

and then use a GMRF prior that penalizes large differ-
ences between recombination log odds at neighboring
sites,

Prðg jvÞ} vðS�1Þ=2 exp �v

2

XS�1

s¼1

ðgs � gs11Þ2
( )

: ð9Þ

It is easy to see that distribution (9) is improper if we
reexpress g jv � Nð0; Q�1Þ, where the precision matrix

Q ¼ v 3

1 �1 0
�1 2 �1

1 1 1
�1 2 �1

0 �1 1

0
BBBB@

1
CCCCA ð10Þ

satisfies the identity Q1¼ 0. In the context of small area
estimation, Ghosh et al. (1998) and Sun et al. (1999)
show that despite the singularity of matrix Q such
autoregressive priors lead to a proper posterior distri-
bution under mild conditions on the model likelihood
function. Our ‘‘pseudolikelihood’’ (7) does not satisfy
these conditions when Cs¼ 0 for all s, or when Cs¼Ts for
all s. Although very unlikely, such values of recombina-
tion counts do have strictly positive probability mass a
posteriori. Therefore, we cannot guarantee propriety of
the posterior distribution of all model parameters and
must replace density (9) by a proper approximation,
assuming a priori that g jv � Nð0; Q̃

�1Þ, where Q̃ ¼
Q 1 eI, I is the S 3 S identity matrix, and e is a small
positive constant. Note that the addition of a positive
constant to the diagonal elements of Q preserves the
precision matrix sparseness, but forces Q̃ to be di-
agonally dominant and therefore positive definite. The
proper approximation introduces an additional term,
�ðe=2Þ

PS
s¼1 g2

s , to the exponent of density (9). In all
examples, we use e ¼ 10�6 such that this term �0.05,
assuming gs ¼ lnðð1=SÞ=ð1� 1=SÞÞ for all s.

In addition to providing spatial preferences for break-
point locations, the vector of recombination prob-
abilities p defines the prior distribution for the total
number of breakpoints M ðkÞ ¼

PSðkÞ

s¼1 R ðkÞs for each align-
ment k. It is important to put more prior mass on small
values of M(k) to avoid inferring spurious breakpoints
from noisy sequence data. The original DMCP model
assumes that M(k) is truncated-Poisson distributed with
a rate chosen in such a way that Pr(M(k) . 0) is equal to
a predefined constant, usually 0.5. Similarly, in our
hierarchical formulation, we want to control the overall
probability of at least one recombination breakpoint
in all individual alignments by imposing certain con-
straints on p. We first note that our site-specific prior on
R(k) imposes a Poisson-binomial distribution for M(k)

with small probabilities of success, usually on the order
OðS�1Þ. Therefore, le Cam’s theorem implies that the
distribution of M(k) is approximately Poisson with rate
dk ¼

PSðkÞ

s¼1 pfkðsÞ (le Cam 1960). For some constant c, we
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can set dk¼�ln(1� c), so that PrðM ðkÞ.0Þ � 1� edk ¼ c.
Because restricting recombination probabilities for each
recombinant individually is impractical, we impose our
constraint on the population-level recombination prob-
abilities,

PS
s¼1 ps ¼�lnð1� cÞ. Since dk #

PS
s¼1 ps , this

population-level restriction implies a more conservative
prior distribution for the number of breakpoints in each
individual data set k with Pr(M(k) . 0) # c.

We complete our model specification by assuming a
priori that v � G(a, b). Following Bernardinelli et al.
(1995) we express our prior belief about v in terms of a
ratio of recombination probabilities pi=pj � egi�gj . On
the basis of in vitro HIV recombination detection ex-
periments (Moumen et al. 2001; Dykes et al. 2004;
Galetto et al. 2004) we expect that site recombination
probabilities should not vary more than sevenfold or
equivalently that recombination log odds should not
differ by .2. Since our smoothing prior implies that
gi � gj � Nð0; j i � j jv�1Þ, setting v ¼ S � 1 ensures
that even the most physically distant log odds do not
deviate from each other by .2 with probability 0.95.
Therefore, we fix the prior mean a/b ¼ S � 1 and
choose b to be a small constant (0.01 in the simulation
study and 0.02 in the analysis of HIV recombinants).

Inference via MCMC simulation: To approximate the
analytically intractable posterior distribution of all model
parameters

PrðFð1Þ; . . . ;FðK Þ;g;v jYð1Þ; . . . ; YðK ÞÞ

}
YK
k¼1

PrðYðkÞ jFðkÞÞPrðCðkÞÞPrðRðkÞ jgÞ3Prðg jvÞPrðvÞ;

ð11Þ

we sample from (11) using MCMC simulation. During
MCMCiterations,weuseaMetropolis-within-Gibbs scheme
to update the model parameters in two major blocks.

In the first block, we simulate from the full con-
ditional distribution of all individual alignment pa-
rameters. The hierarchical structure of our model
immediately implies the conditional independence of
F(k)s,

PrðFð1Þ; . . . ; FðK Þ jg; v; Yð1Þ; . . . ; YðK ÞÞ

¼
YK
k¼1

PrðFðkÞ jg;YðkÞÞ; ð12Þ

making it possible to cycle through recombinants for
each k and simulate from

PrðFðkÞ jg; YðkÞÞ} PrðYðkÞ jFðkÞÞPrðRðkÞ jgÞPrðCðkÞÞ:
ð13Þ

Minin et al. (2005) describe a reversible-jump MCMC
sampler to simulate from the posterior distribution of
the DMCP model parameters under a uniform prior on
recombination locations. Here, we use a similar algo-
rithm to sample from the distributions in (13) with

appropriate modifications of acceptance ratios to in-
corporate the shared prior over recombination loca-
tions. We refer interested readers to Suchard et al.
(2003) and Minin et al. (2005) for a more detailed
description of the DMCP sampling scheme.

The second block of parameters consists of the re-
combination log-odds vector g and the GMRF precision
v. Conditioning on the parameters of the individual
alignments yields

Prðg; v jFð1Þ; . . . ; FðK Þ; Yð1Þ; . . . ; YðK ÞÞ
} PrðC; T jgÞPrðg jvÞPrðvÞ; ð14Þ

where recombination counts C ¼ ðC1; . . . ; CsÞ and trials
T ¼ ðT1; . . . ; TsÞ are as defined in Equation 7, and

PrðC; T jgÞ}
YS

s¼1

egs

1 1 egs

� �Cs 1

1 1 egs

� �Ts�Cs

: ð15Þ

Note that the sum of recombination probabilities con-
straint translates into the nonlinear algebraic identity

XS

s¼1

egs

1 1 egs
¼ �lnð1� cÞ: ð16Þ

We first describe a sampling procedure on the un-
constrained space of recombination log odds and then
show how to approximate (16) with a linear constraint
that can be incorporated into the sampling algorithm
with very little computational burden.

To sample from distribution (14), we rely on the
strategy introduced by Rue (2001) and Knorr-Held

and Rue (2002) and update (v, g) simultaneously.
Following their scheme, we first propose a new value for
the precision parameter v*¼vu, where v is the current
precision and u is a random variable with density Pr(u)
} 1 1 1/u, defined on the interval [1/U, U ], U . 1. This
proposal is symmetric and can be tuned by the constant
U that controls the ‘‘length’’ of proposal jumps. Given a
new value of the precision, we then generate a proposal
for the vector of log-odds g* from a multivariate Gaussian
distribution that approximates Pr(g j C, T, v*) near its
mode, where

Prðg jC; T; vÞ

} exp �1

2
gtQ̃g 1

XS

s¼1

fCsgs � Ts lnð1 1 egs Þg
" #

: ð17Þ

The Newton–Raphson algorithm is used to locate this
mode g9. Log concavity of density (17) guarantees at
most one mode. Then, a second-order Taylor approxi-
mation of ln Pr(g j C, T, v*) around g9 generates the
proposal mean and precision matrix and concludes the
Gaussian proposal construction. The proposed values
(v*, g*) are accepted or rejected jointly with probability
given by the Metropolis–Hastings acceptance ratio. The
computational efficiency of this multivariate proposal
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follows from the special shape of density (17). Note that,
during construction of the Gaussian approximation, it is
sufficient to apply the Taylor approximation only to the
function

PS
s¼1 Csgs � Ts lnð1 1 egs Þf g. Since all mixed

derivatives of this function are zero, the off-diagonal
elements of Q̃ are equal to the off-diagonal entries of
the Gaussian proposal precision matrix. Therefore, the
multivariate normal proposals retain the same sparse-
ness of Q and can be efficiently realized using fast
methods of Cholesky decomposition for sparse matri-
ces. For more details on approximating densities of the
form similar to (17), see Rue (2001) and Rue et al.
(2004).

Implementing prior constraints: We now turn to the
problem of incorporating the imposed restrictions on
recombination probabilities into our MCMC algorithm.
Implementing a proposal that approximates (17) well
while satisfying nonlinearconstraint (16) is difficult. How-
ever, if we can replace constraint (16) with a linearized
form

PS
s¼1 asgs ¼ e for some vector a ¼ ða1; . . . ; aSÞt

and scalar e, then we can use unconstrained Gaussian
proposals as before to generate a candidate state g* � N
ðn; Q̂Þ and recenter the proposal to satisfy the linear
constraint via

ĝ ¼ g*� Q̂
�1

aðatQ̂
�1

aÞ�1ðatg*� eÞ; ð18Þ

where n and Q̂ are obtained via a Taylor expansion of
ln Pr(g jC, T, v*). Such recentering comes at minimal
computational cost as the Cholesky factorization of Q̂,
needed in the unconditional proposal, can be reused to
perform the algebraic operations in Equation 18 (Rue

and Held 2005).
To arrive at specific values of a and e, we linearize

the function
PS

s¼1 egs=ð1 1 egs Þ ¼
PS

s¼1 hðgsÞ �
PS

s¼1

hðvsÞ1 h9ðvsÞðgs � vsÞ around an arbitrary point v ¼
ðv1; . . . ; vSÞ. Plugging this linearization into Equation
16 yields

as ¼ h9ðvsÞ; ð19Þ

e ¼ �lnð1� cÞ1
XS

s¼1

fh9ðvsÞvs � hðvsÞg: ð20Þ

Choosing v is less straightforward since we particularly
need the linear approximation of (16) to be accurate
near a posteriori probable values of g. To make an
intelligent guess about posterior support of recombina-
tion log odds, we generate a short ‘‘training chain’’ prior
to running our MCMC sampler. During these training
iterations, we alternate between sampling from the full
conditional distributions defined by (12) and (14) with
one heuristic modification that allows us to control the
overall recombination probability implicitly. To under-
stand the motivation behind this heuristic, we first point
out that E

PS
s¼1 Cs jp

� �
¼
PS

s¼1 Tsps � K
PS

s¼1 ps , where
the latter approximation holds when the number of
gaps in the master alignment is small. Therefore, if a
new state of g(i) is accepted at the ith iteration, then a

new value of
PS

s¼1 pðiÞs should be close to
PS

s¼1 C ðiÞs =K .
To heuristically control the overall recombination prob-
ability via the binomial pseudolikelihood (15), we up-
date the vector of trials such that T ðiÞs ¼ º�

PS
s¼1 C ðiÞs =

lnð1� cÞß for all s at iteration i, where ºxß denotes the
largest integer that does not exceed x. After training
runs are complete we set the approximation point v to
an arithmetic average of simulated components of g.

In all following analyses we set the prior probability
of at least one recombination c ¼ 0.5, and therefore we
aim at preserving the condition

PS
s¼1 ps ¼ ln 2 � 0:693.

Table 1 shows posterior medians and 95% Bayesian
credible intervals (BCIs) of the overall recombination
probability,

PS
s¼1 ps , for all analyzed data sets. Although

in each case the posterior distribution of the overall
recombination is slightly shifted to the right from 0.693,
this shift and the spread of the distribution are quite
small. Therefore, we conclude that our linear approx-
imation performs well.

RESULTS

Simulation study: To test our model in the presence
of a ‘‘known’’ recombination hotspot, we design a small
simulation study. We start with an 888-site long align-
ment of four primate DNA sequences from humans
(H), orangutans (O), squirrel monkeys (S), and lemurs
(L), previously used to assess the accuracy of the DMCP
model (Minin et al. 2005). This data set strongly
supports phylogeny (H, O, (S, L)) as demonstrated by
several research groups (Yang and Rannala 1997;
Larget and Simon 1999; Suchard et al. 2001). We set
the true (under simulation conditions) recombination
probabilities for 887 sites (excluding the first site) of
this alignment in such a way that sites in the interval
[401, 600] are more likely to be breakpoint locations.
The sum of recombination probabilities in the hotspot
interval is denoted by A. All other sites are assigned a
probability of recombination (1 � A)/687, such that
recombination probabilities sum to one and define a
probability mass function for a discrete random variable
attaining values from 2 to 888. We then generate 30
realizations, D1; . . . ; D30, of this random variable. For
each Di, i ¼ 1; . . . ; 30, we create a new sequence

TABLE 1

Constraining the overall probability of recombination

Data set
Posterior
median 95% BCI

Simulation, A ¼ 0.9 0.76 (0.72, 0.88)
Simulation, A ¼ 0.7 0.76 (0.72, 0.89)
Simulation, A ¼ 0.5 0.72 (0.70, 0.80)
Simulation, A ¼ 0.3 0.72 (0.70, 0.78)
HIV gag 0.73 (0.71, 0.80)

We report posterior medians and 95% BCIs of the sum of
recombination probabilities

PS
s¼1 ps for all analyzed data sets.
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alignment by permuting the nucleotides of H and L in
sites Di through 888. In these newly formed alignments,
sites from 1 to Di � 1 should support the phylogeny (H,
O, (S, L)), while the other portion of the alignment
should favor the phylogeny (L, O, (S, H)), obtained by
exchanging H and L in the original tree.

We generate only 30 recombinants since this quantity
represents well the number of recombinant sequences
typically available for analysis. When sample size is small
relative to the number of sites covered by putative re-
combinants, the strength of a hotspot plays a critical role
in our ability to recover the region. Therefore, we ex-
amine performance of our model for different hotspot
probability mass values A¼ 0.9, 0.7, 0.5, and 0.3. The top
left plot in Figure 2 shows the artificially generated
probabilities used to simulate recombination events. The
remaining plots in the left column of Figure 2 depict
posterior medians (solid lines) and 95% BCIs (shaded
areas) of recombination probabilities estimated under
different true values of hotspot strength A. Solid dots
mark true recombination sites where sequences H and L

begin their permutation. We see that our model success-
fully identifies hotspots in the presence of a strong signal.
On the other hand, when A ¼ 0.3, simulated breakpoint
locations are hardly distinguishable from a random sam-
ple from all 888 sites, and our method aptly detects no
hotspots. This conservative behavior of our estimation
procedure is adequate and, moreover, desirable to avoid
erroneous detection of recombination hotspots.

Figure 2, right, shows the prior density (top histo-
gram) and the marginal posteriors of the GMRF pre-
cision v for each value of A. Note that when significant
clustering of breakpoints is observed, the posterior mass
of v concentrates closer to zero. We expect such behav-
ior since greater variability in recombination log odds,
supported by data, leads to a decrease of smoothness.
Additionally, the bottom plot shows that the prior of
v dominates the posterior when true breakpoints are
distributed nearly uniformly.

Finally, we test the ability of our model to recover the
strength of a hotspot A. For each value of A, Table 2
reports the true proportion of simulated breakpoints

Figure 2.—Simulation study. The
left top plot shows recombination
probabilities used to simulate recom-
bination events in primate mitochon-
drial DNA sequences. The letter A
denotes the probability mass over
the region [401, 600]. The rest of
the plots on the left depict the sites
at which recombination was simu-
lated (solid dots) and the posterior
median (solid line) and 95% BCIs
(shading) of inferred site-specific re-
combination probabilities. The right
top plot depicts the prior density of
GMRF precision v. Posterior densi-
ties of v are plotted underneath the
prior.
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contained in the interval [401, 600], the posterior
median and 95% BCI of the normalized probability
masses, Â½401;600� ¼

P600
s¼401 ps=

P888
s¼1 ps and Â½351;650� ¼P650

s¼351 ps=
P888

s¼1 ps . The normalization is necessary for
comparison of the simulated and estimated recombina-
tion probabilities as the former sum to one by construc-
tion and the latter sum to �ln 2 due to the enforced
constraint. Mass Â½401;600� consistently underestimates
the strength of the hotspot with a 95% BCI covering the
true value of A only when A¼ 0.7. However, if we expand
the region by 50 sites in both directions, the posterior of
Â½351;650�more accurately reflects the true strength of the
hotspot. This indicates that uncertainty in estimated
breakpoint locations leads to an overestimation of the
size of the simulated hotspot region.

A newly observed HIV recombination hotspot: We
apply our model to detect spatial recombination pref-
erences in the gag coding region of the HIV genome.
We select 42 sequences from the Los Alamos HIV Se-
quence Database, all of which have been previously
classified as recombinants of pure subtypes A and G (see
supplemental information at http://www.genetics.org/
supplemental/ for accession numbers). We focus our
attention on these two subtypes to limit variation in
breakpoint locations due to different subtype composi-
tion. Although the effects of such variation remain
unknown, experimental evidence is emerging that
highlights the importance of subtype composition in
the biochemistry of recombination (Chin et al. 2005).
The recombinant sequences that we select for our
analysis come from several different epidemiological
studies (Guo et al. 1993; Durali et al. 1998; Peeters et al.
2000; Barlow et al. 2001; Tebit et al. 2002; Vidal et al.
2003) and therefore should represent a diverse set of
recombination events. Besides the recombinant se-
quences, individual alignments contain representative
sequences of subtypes A, G, and B, where the latter
serves as an outgroup. Lengths of the alignments range
from 562 to 820 nucleotides covering 1118 bp of the
HIV genome.

In the top plot of Figure 3 we show the locations of
gene products Matrix and Capsid in the master align-
ment of gag and indicate the position of one of the
HIV instability elements (INSs). INSs are RNA sequence
motifs involved in post-transcriptional regulation of
the HIV gene expression (Mikaélian et al. 1996). It is
possible that INS primary or secondary structure pro-
motes recombination. Below the gene map we depict
the posterior medians and 95% BCIs of the population-
level recombination probabilities. This recombination
profile strongly suggests an �300-nucleotide-long hot-
spot near the beginning of the Capsid coding region.
The posterior median of the GMRF v precision
amounts to 418, and the 95% BCI of v is (225, 721).

The bottom two plots of Figure 3 contain individual-
level recombination characteristics, estimated jointly
with the hierarchical approach and independently with
the DMCP model. In both plots, vertical bars represent
naive estimates of site-specific posterior recombination
probabilities, obtained by taking the posterior mean of
Cs/Ts for all s, where counts Cs and trials Ts retain their
definitions in the joint and independent analyses. Solid
circles mark point estimates of breakpoint locations in
individual alignments. Point estimates are defined as
sites where the topology with maximum posterior
probability is not equal to the topology with maximum
probability at the preceding site. We see that in the
joint analysis breakpoints and higher recombination
probabilities cluster more tightly in the Capsid region,
when compared with the independent DMCP anal-
ysis. Moreover, several breakpoints in the ‘‘cold’’ regions
of the gag do not receive substantial posterior sup-
port during the joint analysis. Under the hierarchical
model such shrinkage of individual-level recombina-
tion probabilities and breakpoint estimates results
from sharing spatial breakpoint information among
individual recombinants via the common recombina-
tion prior.

A cluster of several breakpoints at the end of Capsid
does not substantially elevate the corresponding popula-
tion-level recombination probabilities. Recombination
signal in this region comes only from six recombinants.
All of these breakpoints are located at the very end of
individual alignments and some of them represent noise,
associated with topological uncertainty, rather than re-
combination events. Figure 3 demonstrates that the pos-
terior support of all breakpoints in this cluster decreases
during the joint analysis, resulting in either a shift of
their estimates or an elimination of weakly supported
breakpoints.

We also compare the joint and independent analyses
with respect to their estimates of the total number of
breakpoints in each recombinant. We plot the posterior
mean number of breakpoints, obtained using both ap-
proaches, in Figure 4. Great variability in M(k) among
individual recombinants highlights the importance of
allowing flexibility in the number of breakpoints. Most

TABLE 2

Recombination hotspot strength

Simulated A

Inferred Â[401,600] Inferred Â[351,650]

Posterior
median 95% BCI

Posterior
median 95% BCI

0.9 0.66 (0.47, 0.82) 0.76 (0.58, 0.88)
0.7 0.57 (0.37, 0.75) 0.67 (0.48, 0.83)
0.5 0.32 (0.24, 0.48) 0.48 (0.36, 0.62)
0.3 0.26 (0.18, 0.35) 0.38 (0.28, 0.49)

The first column contains the sum of recombination prob-
abilities A ¼

P600
s¼401 ps , used to simulate breakpoint locations

in primate mitochondrial DNA alignment. The remaining
columns report posterior medians and 95% BCIs of the nor-
malized recombination probability masses in the regions
[401, 600] and [351, 650].
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data sets exhibit a slight increase in a posteriori supported
number of breakpoints during the joint analysis, but
the overall pattern remains unchanged between the two
types of analysis. To investigate the cause of the in-
creased support, we compare recombination profiles
(data not shown) of all individual recombinants, ob-
tained via the joint and independent approaches. We
find that in all cases the increase occurs due to higher
values of population-level recombination probabilities
in the ‘‘hot’’ portion of gag boosting the posterior con-
fidence in breakpoints located in this region that are
weakly or moderately supported under the indepen-
dent analysis with a flat recombination prior. Therefore,
the informative recombination prior does not intro-
duce false breakpoints, but rather amplifies the existing
signal inside recombination hotspots. This amplifica-
tion can be clearly seen by comparing the ‘‘skylines’’ in
the bottom two plots of Figure 3.

Diagnostics of MCMC performance: To assess the
performance of our sampler we first examine parame-
ters at the individual recombinant level of the DMCP
models. The total number of breakpoints M(k) for each

alignment k is a pivotal parameter in the DMCP model
as its time evolution demonstrates how well our re-
versible-jump MCMC sampler moves between spaces of
different dimension. Since M(k) is a discrete-valued pa-
rameter it is natural to examine the regeneration times
ti, i ¼ 1; . . . ; n, the time steps at which the Markov chain
visits a predefined state (or a set of states), where n is
the random number of total visits observed during an
MCMC run of fixed length. Mykland et al. (1995) note
that the behavior of a renewal process defined by
regeneration times of a Markov chain may be used to
test the performance of an MCMC sampler. The authors
suggest plotting ti/tn against i/n. According to the law of
large numbers for renewal processes, this scaled re-
generation quantile (SRQ) plot should be close to a line
passing through points (0, 0) and (1, 1). Since the total
number of breakpoints is only a marginalization of
the complete Markov chain state, regeneration times of
M(k) are not independent and identically distributed
(i.i.d.). However, Li et al. (2000) show that the same
interpretation of SRQ plots remains useful even when
regeneration times are not strictly i.i.d.

Figure 3.—Analysis of HIV recombinants. The top plot illustrates the locations of gene products in the HIV gag coding region
and marks the position of an instability element (INS) in the Capsid reading frame (hatched box). Below the gene map we show
posterior medians (solid line) and 95% BCIs (shading) of population-level recombination probabilities. In the bottom two plots
we depict averaged individual-level recombination probabilities (vertical bars), estimated jointly with the hierarchical model (plot
second from bottom) and independently with the DMCP model (bottom plot). Solid circles mark breakpoint locations in indi-
vidual recombinants as estimated by the joint and independent approaches.
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We evaluate the performance of our sampler on the
HIV data set with 42 recombinants. For each k ¼ 1; . . . ;
42, we choose the posterior median of M(k) to be the
renewal state for defining regeneration times ti. We
show 42 superimposed SRQ plots in Figure 5, left. Since
all SRQ plots in Figure 5 are concentrated around the
line y ¼ x, we conclude that our MCMC chains are
running long enough to sufficiently sample the poste-
rior distributions of the individual-level parameters.

To monitor convergence of population-level param-
eters, we use a Gelman–Rubin potential scale reduction
factor (PSRF) (Gelman and Rubin 1992). This statistic
tests whether multiple Markov chains, started at differ-
ent values, converge to the same distribution. The PSRF
is approximately equal to the square root of the variance
estimated by combining all chains, divided by an
average of within-chain variances. If all chains reach
stationarity, the PSRF approaches 1. If we assume that
the stationary distribution is normal, we also can
compute confidence bounds for the t-distributed PSRF.

We calculate PSRFs for the recombination log odds
from five chains, each started with different values of g
and v. We generate initial values v(0) from a uniform
distribution over the interval (0, 10,000). We then sam-
ple a value for g1

ð0Þ from a normal distribution with
mean lnð�lnð1� cÞ=ðS 1 lnð1� cÞÞÞ and variance of 2.
Conditional on v(0) and g1

ð0Þ, we initialize the remaining
recombination log odds through a random-walk re-
alization, g

ð0Þ
i � Nðg

ð0Þ
i�1; v�1Þ, for i ¼ 2; . . . ; S. Such a

distribution of starting values for (v, g) should be over-
dispersed with respect to the posterior, as recommen-
ded by Gelman and Rubin (1992). Figure 5, right,
depicts the PSRFs (solid line) with their 97.5% quantiles
for the HIV example recombination log odds. The PSRF
and its 95% quantile for ln v are 1.04078 and 1.09845,
respectively. Close proximity of all estimated PSRFs to 1
suggests that all chains reach stationarity.

DISCUSSION

We present a new Bayesian model for estimating
spatial preferences of breakpoints when multiple instan-
ces of recombination are observed. The hierarchical
framework is built on an individual-level multiple
change-point model and a population-level prior for
breakpoint locations. Spatial smoothing of population-
level recombination probabilities facilitates their esti-
mation when the number of recombination events is
small compared to the total number of sites covered by
the sequences. Moreover, such smoothing has a mean-
ingful biological interpretation. In retroviruses, recom-
bination occurs during template switching by reverse
transcriptase as it linearly copies the viral RNA genome
into DNA (Negroni and Buc 2001). Therefore, we
expect adjacent sites to have similar log odds of re-
combination. We realize smoothing by placing a GMRF
hyperprior on recombination log odds. GMRFs offer a

Figure 4.—Number of breakpoints in individ-
ual recombinants. The top plot shows indepen-
dently estimated posterior mean numbers of
breakpoints plotted against jointly estimated pos-
terior mean numbers of breakpoints for the 42
HIV gag individual recombinants. In the two bot-
tom bar plots, we show the posterior mean num-
bers of breakpoints for the two types of
recombination analysis that correspond to the
x- and y-axes of the top plot.
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unified and flexible framework for imposing complex
correlation structures in high-dimensional parameter
(sub)spaces. Additionally, fast algorithms, available for
simulation of GMRFs, allow us to sample efficiently the
space of model parameters during MCMC simulation.

Breakpoints in the DMCP model require special
attention as their total number needs to be individually
controlled in the presence of noisy sequence infor-
mation. The common prior distribution provides such
oversight. We constrain the sum of recombination
probabilities to impose an approximately Poisson dis-
tribution with a fixed rate on the total number of re-
combination events in each data set. Such a seemingly
trivial modification considerably complicates our
MCMC implementation as the modification changes
the a priori correlation structure of the recombination
log odds, which without constraints is dictated solely
by the GMRF hyperprior. To overcome this difficulty, we
introduce a linearized constraint for the recombination
log odds that approximates our original restrictions on
the recombination probabilities. The advantage of such
a linear approximation is the ease and computational
efficiency of incorporating it into our MCMC transition
kernels. We demonstrate that our linear constraint
achieves desirable behavior both for the recombination
probabilities and for the total number of breakpoints
in individual alignments.

The analysis of the HIV gag genomic region strongly
suggests a recombination hotspot near the beginning
of the Capsid coding region. Since local sequence motifs
have been long suspected to promote HIV recombina-
tion (Balakrishnan et al. 2001; Moumen et al. 2001,
2003; Negroni and Buc 2001; Galetto et al. 2004), we
examine this part of the HIV genome for the presence
of known motifs. One of the HIV instability elements,
denoted as INS2-M6 by Schneider et al. (1997), covers
sites [564, 609] of our master alignment (see Figure 3).
We hypothesize that either primary or secondary struc-
ture of this RNA segment promotes formation of a
recombination hotspot in the Capsid coding region.
This hypothesis grows even more promising in light of
preliminary experimental results confirming an in-
creased rate of in vitro reverse transcriptase strand

transfer in the Capsid hotspot (S. Carpenter, personal
communication).

Selection of recombinant sequences for hotspot map-
ping can bias results and therefore should be performed
with caution. For example, several sequences may be
descendants of the same ancestral recombinant. In-
cluding such recombinants into the analysis would
violate our assumption of independence among recom-
bination events, leading to overcounting of breakpoints
in some regions of the master alignment. Researchers
should pay particular attention to circulating recom-
binant forms (CRFs) since by definition they may be
overrepresented in a population sample. To check for
this possibility, we examined CRFs with recombination
between A and G subtypes in the gag coding region and
found that no known CRF contributes breakpoint signal
at the hotspot that we identified from the 42 HIV gag
recombinants (data not shown). Another danger comes
from the fact that individual recombinants usually cover
different portions of the master alignment. Although
site-specific trials T account for such uneven coverage,
the breakpoint noise, often seen at the boundaries of
individual alignments, may be amplified if many re-
combinants start or end in close proximity to each other.

Since the factors promoting HIVrecombination in vivo
are largely unknown, it is natural to capitalize on the
flexible GMRF structure and incorporate covariates into
the prior of recombination log odds, using a generalized
linear model framework. Such an extension will not only
improve estimation of hotspot locations by injecting
additional information into the model, but also enable
the testing of the role of specific sequence features in
producing a nonuniform distribution of breakpoint
locations along the HIV genome. Our model aug-
mented with covariates should be superior to previous
approaches that use phylogenetic recombination detec-
tion to test spatial association of recombination hotspots
with local genomic RNA properties (Magiorkinis et al.
2003; Zhang et al. 2005), as the hierarchical approach
allows for integration over all breakpoint locations sup-
ported by molecular sequence data.

Finally, we outline future opportunities for bridging
phylogenetic and coalescent-based methods for studying

Figure 5.—Convergence diagnostics. The left
plot depicts 42 scaled regeneration quantile
(SRQ) plots, where ti denotes an iteration, at
which the total number of breakpoints in individ-
ual alignments returns to its posterior median for
the ith time. Gelman–Rubin potential scale re-
duction factors (PSRFs, solid line) and their cor-
responding 97.5% quantiles (dashed line) for
recombination log odds g1; . . . ; gS are plotted
against site indexes on the right.
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recombination. These two approaches are often con-
sidered competitors (Awadalla 2003). In our opinion,
phylogenetic and coalescent-based methods for study-
ing recombination do not compete, but rather comple-
ment each other. Both frameworks provide sensible
tools for analyzing recombination among sequences,
but differ in the recombination/mutation rate ratio
most appropriate for the chosen method. Moreover, it is
not hard to envision a Bayesian model with a phyloge-
netic change-point likelihood controlling breakpoint
locations and a coalescent-based prior forcing phyloge-
nies to obey the laws of population genetics. This unified
framework is particularly promising for studying re-
combination during HIV intrahost evolution as both
phylogenetic and coalescent-based approaches have
advantages to contribute when analyzing such sequence
data.
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