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ABSTRACT
Motivation: We introduce a dual multiple change-point (MCP) model
for recombination detection among aligned nucleotide sequences. The
dual MCP model is an extension of the model introduced previously
by Suchard and co-workers. In the original single MCP model, one
change-point process is used to model spatial phylogenetic variation.
Here, we show that using two change-point processes, one for spa-
tial variation of tree topologies and the other for spatial variation of
substitution process parameters, increases recombination detection
accuracy. Statistical analysis is done in a Bayesian framework using
reversible jump Markov chain Monte Carlo sampling to approximate
the joint posterior distribution of all model parameters.
Results: We use primate mitochondrial DNA data with simulated
recombination break-points at specific locations to compare the two
models. We also analyze two real HIV sequences to identify recom-
bination break-points using the dual MCP model.
Availability: A software program ‘DualBrothers’ implementing the
dual MCP model is available in the form of a Java package at http://
www.biomath.ucla.edu/msuchard/DualBrothers
Contact: msuchard@ucla.edu
Supplementary information: http://www.biomath.ucla.edu/msuchard/
DualBrothers

1 INTRODUCTION
Recombination plays an important role in the evolution of almost all
living organisms. In rapidly evolving viruses, homologous recom-
bination is one way in which the viruses adapt quickly to changing
environmental conditions (Worobey and Holmes, 1999). At least
10% of the circulating human immunodeficiency virus-1 (HIV-1)
strains are believed to be recombinants containing genetic material
from different viral subtypes (Robertson et al., 1995a,b). Recom-
bination in HIV holds implications for vaccine development (Korber
et al., 2001) and emerging drug resistance (Kellam and Larder, 1995).
While point mutation processes have been used to study HIV immune
response escape (Wei et al., 2003) and drug resistance develop-
ment (Chen et al., 2004), the contributions of recombination are
not well understood. Accurate knowledge of the frequency and loca-
tion of recombination break-points may improve our understanding
of these phenomena, but reliable and statistically rigorous methods
are needed to provide this break-point information.

∗To whom correspondence should be addressed.

Most methods that can detect recombination from a multiple
sequence alignment use statistical, phylogenetic procedures (Hein,
1990). These methods exploit the observation that if recombination
occurred in the evolutionary history of a set of aligned sequences,
then different segments of the alignment should support alternative
phylogenies (Li et al., 1988). One of the most popular approaches to
recombination detection is to slide a window along a sequence align-
ment and look for differences in the phylogenetic tree support within
each window (Grassly and Holmes, 1997; McGuire et al., 1997;
Husmeier and Wright, 2001). Although this approach can success-
fully detect recombination, it suffers from a multiple testing problem
when assessing the significance of recombination (Suchard et al.,
2002) and low resolution for locating recombination break-points,
limited by the window size.

Husmeier and McGuire (2003) develop a Bayesian hidden Markov
model (HMM), where the hidden states are phylogenetic trees and
the observable states are consecutive nucleotide sites of a mul-
tiple sequence alignment. This method can predict recombination
sites more accurately than sliding window methods as shown by
the authors, but their current implementation is limited to only
four sequences, because the dynamic programming, required for
HMM inference, is computationally very expensive. This method
also assumes that all regions of the alignment are under the same
evolutionary pressure. This assumption is known to lead to false
recombination identification under some circumstances (Dorman
et al., 2002; Husmeier and McGuire, 2002). Finally, trees in the
HMM are updated based only on the phylogenetic information from
the neighboring sites. Therefore, noisy and sparse data can also
reduce the accuracy of Bayesian HMM methods.

Suchard et al. (2003b) proposed a single multiple change-point
(MCP) model that can capture spatial phylogenetic variation in both
the trees and the evolutionary pressures. In this model, an align-
ment is partitioned into an unknown number of segments. Each
segment has a vector of phylogenetic parameters associated with it,
such as parameters describing the nucleotide substitution process and
a bifurcating tree topology that specifies evolutionary relationships
between sequences. End points between partitions are called change-
points. Recombination is inferred if at least one change in topology
is observed across a change-point. This model has been successfully
applied to test recombination hypotheses in HIV strains (Suchard
et al., 2002).

Modeling spatial variation of all parameters with a single change-
point process results in prior correlation between sites where
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substitution parameters change and those where topologies change.
This prior correlation can lead to biased break-point estimation when
recombination occurs near the boundary of regions with different
evolutionary pressures. When both substitution process parameters
and topologies change at close, yet distinct, sites the single MCP will
probably produce only one change-point in the neighborhood of the
two true change-points. To overcome this difficulty, we develop a
dual MCP model that decouples substitution process change-points
from topology break-points by introducing two a priori independent
change-point processes to describe spatial phylogenetic variation.

2 METHODS

2.1 Dual MCP model
We start with N aligned DNA or RNA sequences of length S. Columns of the
alignment, also called sites, Y1, Y2, . . . , YS serve as observations of the evol-
utionary process. Each site Ys = (Ys1, Ys2, . . . , YsN )′ contains a nucleotide or
gap from each of the N sequences, such that Ysn ∈ {A, G, C, T/U, −}, for s =
1, 2, . . . , S, and n = 1, 2, . . . , N . We follow conventional likelihood-based
phylogenetic approaches (Felsenstein, 2004) and model the evolutionary pro-
cess in terms of an evolutionary tree (τ , T) and a rate matrix Q, where τ is
a bifurcating tree topology and T = (t1, t2, . . . , t2N−3) is a vector of branch
lengths of τ . Matrix Q = {quv}, u, v ∈ {A, G, C, T/U}, defines the rates
for a continuous-time Markovian nucleotide substitution process along each
branch of τ . We follow the parameterization of Q by Hasegawa et al. (1985),

Q =




− απG βπC βπT

απA − βπC βπT

βπA βπG − απT

βπA βπG απC −


 , (1)

where α is a transition rate, β is a transversion rate, π = (πA, πG, πC, πT)

is the stationary distribution of the nucleotides and the diagonal elements
of Q are set such that the rows of Q sum to 0. The resulting finite-time
transition matrix for substitutions is P(tb) = etbQ = {p(u, v|tb)}, where
p(u, v|tb) is the probability of nucleotide u mutating to v along branch b,
b = 1, 2, . . . , 2N −3. For identifiability between tb and Q, we fix β such that∑

quuπu = −1 and branch lengths are expressed in terms of the expected
number of substitutions per site. The transition/transversion ratio κ = α/β

remains a free parameter ranging from 0 to ∞. This parameterization differs
from the parameterization used by Suchard et al. (2003b), where transition
rate α ∈ [0, 1] plays the role of the free parameter. Although π can be
estimated simultaneously with other model parameters, the resulting estim-
ates normally differ little from the observed frequencies in the alignment.
Therefore, we fix the stationary distribution π to the observed nucleotide
frequencies in the alignment to avoid unnecessary computations (Li et al.,
2000). Felsenstein (1981) provides an efficient algorithm for integrating
out gaps and computing the site likelihood f (Ys |τ(s), T(s), Q(s)), where
(τ (s), T(s), Q(s)) are the evolutionary parameters associated with site s. To
reduce computations further, we assume a coalescent-like prior on branch
lengths, such that p(tb(s)) ∝ exp(−tb(s)/µ(s)) (Sinsheimer et al., 2003).
We refer to the prior mean of branch lengths µ(s) as the average divergence at
site s. Then T(s) can be integrated out of the likelihood as shown in Suchard
et al. (2003b), producing marginal probabilities of mutation p(u, v|µ(s))

and marginal likelihoods f (Ys |τ(s), µ(s), Q(s)). Assuming independence
across sites conditional on the evolutionary parameters of the model, the total
likelihood of the alignment becomes

f =
S∏

s=1

f (Ys |τ(s), µ(s), Q(s)). (2)

The functional dependence of τ , µ and Q on s is introduced for a convenient
representation of the total likelihood (2).

For statistical inference, it is very important to maintain a balance between
the sample size of the data and the number of model parameters. This is the
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Fig. 1. Decoupling of substitution process change-points from recombination
break-points. Square flags on the top alignment represent R random change-
points of a single MCP model. The dual MCP model is illustrated on the
bottom alignment with J circular flags denoting random substitution process
(µ, Q) change-points and M triangular flags denoting random topology (τ )

break-points.

well-known bias-variance trade-off paradigm. Allowing independent para-
meters τ(s), µ(s) and Q(s) for each site s makes the unrealistic evolutionary
assumption of site independence and leads to unreasonably large uncertainty
in parameter estimation. On the other hand, fixing all parameters to be equal
across sites ignores the natural spatial variation in the data, especially in
the presence of recombination (Grassly and Holmes, 1997). Suchard et al.
(2003b) introduce an MCP model that serves as a middle ground between
these two extremes. In their model, the authors divide an alignment into
an unknown number of contiguous segments, allowing parameters (τ , µ, Q)

to differ across segments, but keeping them equal inside each segment. We
further extend this model by decoupling tree topologies τ and substitution
process parameters (µ, Q) into two separate change-point processes.

To define the unknown segments for both processes, let ρj for j =
0, . . . , J + 1 be the substitution process change-points that divide an align-
ment into J + 1 non-overlapping intervals, subject to the constraint 1 =
ρ0 < ρ1 < · · · < ρJ < ρJ+1 = S + 1. We allow substitution parameters to
vary only across change-points, keeping them constant inside each segment.
Specifically, (µ(s), Q(s)) = (µj , Qj ) for all s ∈ [ρj−1, ρj ). Similarly, we
introduce topology break-points ξm, for m = 0, . . . , M + 1, subject to the
constraint 1 = ξ0 < ξ1 < · · · < ξM < ξM+1 = S + 1 with τ(s) = τm,
for all s ∈ [ξm−1, ξm). To ensure ξm is truly an identifiable break-point, we
place the additional constraint τm �= τm+1, for all m ∈ {1, . . . , M}. A sim-
ilar constraint on (µj , Qj ) is unnecessary because the probability that two
independent continuous random variables are equal across a change-point
is zero. The random change-point ρ = (ρ1, ρ2, . . . , ρJ ) and break-point
ξ = (ξ1, ξ2, . . . , ξM) positions are independent of each other and may coin-
cide. We illustrate this decoupling process in Figure 1. In this figure, a possible
realization of change-points from the single MCP model is represented as a
sequence of square flags on a multiple sequence alignment. The two change-
point processes of the dual MCP model are shown on the bottom, with circular
and triangular flags denoting substitution process change-points and topology
break-points, respectively. After decoupling, substitution process change-
points and topology break-points do not necessarily align with the original
single MCP change-points.

2.2 Priors
To complete our model specification, we assume independent truncated
Poisson priors on both the number of random topology break-points M and
the number of random substitution process change-points J , such that

p(M) ∝ δM

M! 1{M < S} and p(J ) ∝ λJ

J ! 1{J < S}, (3)

where 1{·} is the indicator function and δ and λ are fixed hyperprior constants.
These hyperpriors can be interpreted as the prior expected number of topology
break-points and substitution process change-points, respectively. Motivation
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for the truncated Poisson stems from previous MCP studies (Green, 1995;
DiMatteo et al., 2001). Given J and M , locations of break-points ξ and
change-points ρ are a priori uniform over all possible unordered selections
of M or J locations from S − 1 choices, such that

p(ξ |M) = M!(S − M − 1)!
(S − 1)! and p(ρ|J ) = J !(S − J − 1)!

(S − 1)! . (4)

For a small number of sequences N , we include all possible EN =
(2N − 5)!/2N−3/(N − 3)! unrooted choices (Felsenstein, 1978) in the space
of tree topologies � considered by the model. However, when handling a lar-
ger number of sequences, we suggest two ways to reduce the size of �. First,
if the phylogenetic relationship between the potential parental sequences that
could have recombined to produce the putative recombinant is known, we
restrict � to the 2N − 5 topologies that could result by adding a new leaf to
any branch in the fixed parental tree with N − 1 taxa (Suchard et al., 2002).
The second method exploits the fact that only a few tree topologies are sup-
ported by the data. All other topologies can be excluded from the analysis.
To identify this subset of topologies, we follow Haake et al. (2004) and use
MrBayes (Huelsenbeck and Ronquist, 2001; Paraskevis et al., 2003) to pre-
calculate the posterior probability distribution of tree topologies for several
small alignments created by breaking the full alignment into subsections. If
a tree garners a posterior probability greater than some fixed threshold for at
least one of the alignment subsections, it is included in the tree space �. In
all three of the above approaches, we assume τm is drawn from a uniform
prior distribution over �.

Evolutionary parameters κj and µj for individual segments are a priori
independent and come from log–normal distributions:

p(κj ) ∝ 1

κj

e(−(log κj −νκ )2)/2σ 2
κ and p(µj ) ∝ 1

µj

e(−(log µj −νµ)2)/2σ 2
µ .

(5)

We aim for a hierarchical prior over the evolutionary parameters across
segments. Hierarchical frameworks improve estimation precision by pool-
ing information across exchangeable parameters. To form a hierarchical
prior, we must assume νκ , σ 2

κ , νµ and σ 2
µ are unknown with their own

hyperprior distributions. When the number of substitution process segments
is less than or equal to 3, it becomes difficult to construct relatively unin-
formative distributions over σ 2

κ and σ 2
µ such that the posterior distribution

remains proper (Gelman, 2004). Therefore, when we expect to see fewer
than four distinct partitions with different evolutionary pressures, we fix
(νκ = 2, σ 2

κ = 1) and (νµ = −2, σ 2
µ = 2). This choice leads to vague and

independent prior distributions on κj and µj . In particular, the prior median
of κj is 7 and κj ∈ (1, 50) with 95% probability; the prior median µj is
0.1 and µj ∈ (0.003, 7) with 95% probability. If we expect four or more
segments with varying evolutionary pressures, we continue the hierarch-
ical construction by assuming diffuse, conjugate hyperpriors on νκ , σ 2

κ , νµ

and σ 2
µ:

p(νκ ) ∝ e−ν2
κ /(2×1002),

p(νµ) ∝ e−ν2
µ/(2×1002),

p(σ−2
κ ) ∝ σ−2(0.01−1)

κ e−σ−2
κ ×0.01,

p(σ−2
µ ) ∝ σ−2(0.01−1)

µ e−σ−2
µ ×0.01.

(6)

We estimate these hyperparameters simultaneously with other model
parameters.

2.3 Sampling algorithm
In Bayesian analysis, one attempts to describe the posterior distribution of all
model parameters given the observed data and then use this distribution for
estimation or hypothesis testing. The parameters in our dual MCP model can
be represented as

θ = (M , J , ξ , τ , ρ, κ , µ, φ), (7)

where τ = (τ1, . . . , τM+1), κ = (κ1, . . . , κJ+1), µ = (µ1, . . . , µJ+1) and
φ = (νκ , σ 2

κ , νµ, σ 2
µ) is the vector of hyperparameters. Our objective is to

approximate the posterior distribution of the dual MCP model

p(θ |Y ) ∝
S∏

s=1

f (Ys |τ (s), Q(s), µ(s))

× p(τ )

J+1∏
j=1

p(κj |φ)p(µj |φ)

× p(φ)p(ξ |M)p(ρ|J )p(M)p(J ).

(8)

Since analytic expression of our dual MCP model posterior is intractable,
we employ Markov chain Monte Carlo (MCMC) to generate random samples
from the posterior (Tierney, 1994). When simulating from a posterior distri-
bution via MCMC, the states of the Markov chain are points in the parameter
space of the model and the proportion of time the chain spends at each state
approximates the posterior probability (density) of this state. In an MCP
model, the dimension of the parameter space is not fixed, but depends on
the number of change-points in the model, necessitating a means of trans-
itioning between states with different numbers of components. Green (1995)
has developed a reversible jump MCMC (rjMCMC) algorithm by extending
the Metropolis–Hastings (MH) sampling scheme (Hastings, 1970) to allow
moves between spaces of different dimensions. This method introduces aux-
iliary variables to construct a bijective map between parameter states with
unequal numbers of components. This dimension-matching procedure is con-
cluded by adjusting MH acceptance probabilities with the Jacobian of the
transformation.

In developing an rjMCMC sampler for Equation (8), we follow the scheme
introduced by Suchard et al. (2003b) adjusting it when necessary. In par-
ticular, steps involving adding or removing change-points are modified to
accommodate two kinds of change-points, and the proposal distributions for
continuous parameters are altered to improve convergence of the chain. We
describe our general sampling scheme first and then focus the attention of
the readers on the differences between the MCMC implementations for the
single and the dual MCP models.

Our sampler achieves mobility between spaces with different dimensions
by proposing birth and death steps for both substitution process change-
points and topology break-points. At each step, one of the following moves
is attempted: inserting or deleting topology break-point(s), inserting or delet-
ing a substitution process change-point or updating all model parameters
conditional on the current values of J and M . The probabilities of choosing a
particular move follow with slight modification from the single MCP sampler.
Proposals for changes in the number of substitution process change-points
replicate the equivalent proposals for the single MCP sampler, but changes in
the number of break-points necessitate novel proposals in order to preserve
inequality between adjacent topologies. We demonstrate this requirement
with a simple example. Suppose the current state θ in the Markov chain has
three break-points separating four topologies: (τ1, τ2, τ3, τ4) = (A,B,A,B),
where A �= B. If the sampler proposes to remove the single break-point ξ2 that
separates topologies τ2 and τ3, then two segments collapse into one. The new
segment should reasonably inherit its topology from either of the original
segments with some probability, but both possible realizations (A,B,B) or
(A,A,B) from this proposal violate the identifiability restriction: τm �= τm+1,
for all m. To avoid this problem, we propose to add or delete two break-
points in a single step. When the sampler encounters the situation above,
it also removes the additional break-point that is producing the violation.
To preserve detailed balance, we introduce a complementary birth step that
adds two topology break-points at a time. A tuning parameter c is employed
to adjust the fraction of time that the sampler uses the double rather than
single break-point birth step. In our experience, setting c = 1/EN results in
consistent and satisfactory mixing of topology break-points.

We update (ξ , τ , ρ, κ , µ, φ) conditional onM andJ in a Metropolis-within-
Gibbs cycle. During this step, we sequentially propose new values for tree
topologies and substitution model parameters for each partition, accepting
or rejecting them according to the MH rule. All updates are as in Suchard
et al. (2003b), except new values of κj and µj are proposed by generating
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a uniform random variable U ∈ [0, 1] and multiplying current values of κj

and µj by eU−0.5. Under this scheme, our sampler can take bigger jumps as
current values of the variables get larger. These long jumps allow for faster
exploration of the parameter state space. After the dual MCP sampler updates
model parameters for all partitions, the locations of any change-points and
break-points are updated. If we let hyperparameters φ vary, they are also
updated during this round. Since full conditional distributions of νκ , σ 2

κ , νµ

and σ 2
µ are available (Gelfand and Smith, 1990; Suchard et al., 2003a), we

use Gibbs sampling to update them.
We generate MCMC chains of length 2 100 000. Each chain starts with

one partition (i.e. no change-points or break-points). Values for κ1 and µ1

are generated uniformly from the intervals (0, 100) and (0, 1), τ1 is drawn
uniformly from �. The first 100 000 iterations of each chain are discarded
as burn-in and every 200th iteration thereafter is saved, resulting in posterior
samples containing 10 000 draws.

2.4 Bayes factors
Bayesian model selection is often accomplished by comparing prior and pos-
terior probabilities of competing hypotheses via Bayes factors (Kass and
Raftery, 1995). We adopt this approach to test for the presence of recombina-
tion in the evolutionary history of a putative recombinant. Let H1 = {M > 0}
be a hypothesis postulating that there is at least one site in an alignment where
recombination has occurred, and let H2 = {M = 0} be the alternative hypo-
thesis in which the evolutionary history under investigation does not contain
recombination. Then the Bayes factor in favor of recombination is

B12 = Pr(M > 0|Y )

Pr(M = 0|Y )

/
Pr(M > 0)

Pr(M = 0)
. (9)

Recalling that a priori M approximately follows a Poisson distribution with
mean δ, we obtain Pr(M > 0)/Pr(M = 0) ≈ eδ−1. The posterior probability
of recombination Pr(M > 0|Y ) can be directly estimated as the fraction of
MCMC simulants satisfying the condition M > 0. The simplicity of this
procedure is deceptive, because the standard error of such an estimator can
be quite large when Pr(M > 0|Y ) approaches 0 or 1 (Weiss et al., 1999). To
minimize this standard error, Carlin and Chib (1995) propose adjusting prior
probabilities of competing hypotheses so that a posteriori the hypotheses are
approximately equiprobable. In line with this idea, we employ the logistic
regression model for Bayes factor estimation introduced by Suchard et al.
(2005). This approach benefits from averaging across several values of prior
odds to arrive at a more efficient estimate of the Bayes factor.

3 DATA
To demonstrate the advantages of the dual MCP sampler over
the single MCP sampler, we examine three datasets containing
either simulated data or real sequence alignments including HIV
recombinants.

We start with a previously used test example involving mito-
chondrial DNA (mtDNA) coding subunits 4 and 5 of the NADH-
dehydrogenase enzyme and three transfer RNAs (tRNAs) from
humans (H), orangutans (O), squirrel monkeys (S) and lemurs
(L) (Hayasaka et al., 1988). Previous phylogenetic studies report the
consensus tree (H,O,(S,L)) as the evolutionary relationship among
these taxa (Yang and Rannala, 1997; Larget and Simon, 1999;
Suchard et al., 2001). We construct an artificial alignment from these
data, where sites are rearranged to form four distinct partitions: the
first three partitions comprise the three codon positions from the
protein-coding region of the alignment, while the last partition con-
sists of tRNA sites. Larget and Simon (1999) have demonstrated
that these partitions differ greatly in their evolutionary pressures.
The greatest evolutionary divergence can be observed in the third
(codon) partition where silent mutations are common. We therefore
expect, among others, a substitution process change-point around

site 464, the starting site for partition three. To investigate the effect
of distance between change-points and break-points on the accuracy
of recombination detection, we generate 18 alignments, each with a
single simulated recombination break-point. We simulate the recom-
bination event by permuting the nucleotides from the H and the L
sequences starting at a fixed site in each alignment. Such permuta-
tions change the inferred relationship between taxa to the alternative
topology (L,O,(S,H)) after the chosen site. The artificial break-points
are placed every 10 sites starting at 405 and ending at 575.

We also apply the dual MCP model to two real HIV datasets.
The first dataset consists of a portion of the gag gene from HIV-1
isolate RW024 (accession number U86548) aligned with the eight
HIV-1 subtype consensus sequences A, B, C, D, F, G, H and J from
the Los Alamos HIV Database. The alignment contains 729 sites
encoding gag proteins p17 and p24. We assume that the phylo-
genetic tree describing evolutionary relationships among consensus
subtype sequences is fixed and equals ((((((A,H),G),J),C),F),B,D)
as reported by Robertson et al. (1999). This assumption allows us
to consider only those topologies that can be obtained by adding
sequence RW024 to any branch in the subtype tree, thus reducing
the size of the tree space � to 13 possible topologies. The isolate
RW024 has been analyzed by Cornelissen et al. (1996), who found
that different portions of the gag gene (p17, p24) support different
parental heritage (A, H) of the isolate. Dorman et al. (2002) and
Suchard et al. (2002) find support in favor of recombination generat-
ing this isolate with a P -value < 0.0001 and a Bayes factor of 1019,
respectively.

In the third example, we analyze the full genome of HIV-1 isolate
KAL153 from Kaliningrad, Russia (accession number AF193276).
Liitsola et al. (1998) show that the gag and env genes of this isol-
ate originated from subtypes A and B, respectively. The resulting
A/B recombinant viral strain is suspected to be the causative agent
of an explosive HIV-1 epidemic in Kaliningrad among intravenous
drug users. We use an alignment of the KAL153 isolate along with
subtypes A, B and F consensus sequences.

Both of the HIV putative recombinants have been successfully
analyzed in a single MCP framework, but correlation between the
inferred locations of substitution process change-points and topology
break-points is observed (Suchard et al., 2002, 2003b). A dual MCP
model analysis should reveal if this correlation is supported by the
data or is an artifact of the a priori correlation between change-points
and break-points from which the single MCP model suffers.

Although all the data used in our examples can be found in pub-
lic databases, the multiple sequence alignments may not be easily
reproduced without the knowledge of original alignment algorithm
settings. Therefore, we make the unpermuted alignment of the
mtDNA and alignments of the putative HIV recombinants avail-
able from http://www.biomath.ucla.edu/msuchard/DualBrothers as
Supplementary information.

4 RESULTS

4.1 Prior choice and sensitivity analysis
Most parameters in the dual MCP model receive non-informative
prior distributions, requiring little if any a priori knowledge to spe-
cify. However, the numbers of change-points and break-points follow
Poisson distributions that can be tuned to incorporate prior inform-
ation. Suchard et al. (2003b) outline one procedure of choosing a
prior mean for the number of change-points in the single MCP model.
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Fig. 2. Sensitivity to the choice of prior probability of recombination in the KAL153 example. Posterior probabilities of the number of topology break-points
attaining values 2, 3 and 4 (vertical bars) are plotted for different values of the prior probability of at least one recombination break-point (x-axis).

Since most of the change-points in the single MCP model correspond
to substitution change-points in the dual MCP model, we readily
apply these guidelines to specify the prior mean number of substi-
tution change-points λ. Following the suggestions of Suchard et al.
(2003b) we assign λ roughly to the number of boundaries between
genes or gene products in the alignment. In the primate mtDNA
example we set λ = 3 corresponding to the four artificial partitions of
the nucleotide sites. For the RW024 HIV example, we expect a priori
λ = 1 substitution process change-point somewhere near the bound-
ary between the two gag gene products, and for the KAL153 analysis,
we recall that the alignment contains all 10 HIV genes, suggesting
λ = 9 divisions. Usually, no prior information about recombination
is available, especially for newly sequenced strains. Therefore, in
both our synthetic and real examples, we set the prior mean number
of break-points δ = log 2; this translates into a prior probability of at
least one recombination point Pr(M > 0) ≈ 1−e−δ = 1

2 , generating
a fair test a priori.

Naturally, the results of any Bayesian analysis depend on
the choice of prior distributions (O’Hagan, 2003). The more
informative priors, p(J ) and p(M) in our case, tend to have
the greatest impact on results. After perturbing the prior mean
number of substitution change-points in the primate example,
we find that despite the differences in the posterior distribu-
tions of J , posterior profiles of the evolutionary parameters
remain robust to the choice of λ (see Supplementary information
at http://www.biomath.ucla.edu/msuchard/DualBrothers). Since the
number of topology break-points is the most important parameter for
recombination detection, we examined its sensitivity to the choice
of prior in more detail. We apply the single and dual MCP models
to the KAL153 example nine times by varying the prior probability
of at least one recombination break-point from 0.1 to 0.9. Manipu-
lating this prior probability is trivial in the dual MCP model since
Pr(M > 0) ≈ 1−e−δ . On the contrary, controlling the prior probab-
ility of recombination is rather challenging in the single MCP model
(Suchard et al., 2002) as this probability is a function of both the prior

mean number of change-points and the probability that two adjacent
segments share the same topology. In our sensitivity analysis we set
the former to 9 and vary the latter. Vertical bars in Figure 2 denote the
posterior probability that the number of topology break-points attains
values 2, 3 and 4. Other values are not shown as they do not gain sub-
stantial posterior support under either single or dual MCP models.
Both models support two topology break-points under conservative
priors on recombination. As the prior probability of recombination
increases, the single MCP model more quickly favors the next most
probable configuration with four topology break-points than the dual
MCP model. The two additional break-points are located near the
boundary of pol and vif genes as can be seen in Figure 5. This region
contains very few sparsely distributed informative sites. This sparse-
ness explains the sensitivity of the MCP models to the prior in this
part of the alignment. We conclude that the contribution of the prior
to posterior estimates of the number of topology break-points is min-
imal in the presence of sufficient phylogenetic information, but can
be significant when the data are sparse or noisy. The fact that even for
high values of the prior probability of recombination the posterior
mode of M under the dual MCP model remains at 2 in contrast to
the results of the single MCP analysis indicates that the dual MCP
model is more robust to misspecification of the prior probability of
recombination.

4.2 Results of posterior simulations
We first discuss the simulation study aimed at demonstrating the
improved accuracy of the dual MCP model. In Figure 3, we plot
the inferred against simulated recombination sites using the single
and dual MCP models (open circles). Ideally one expects all plot-
ted points to lie on the line y = x, indicating perfect estimation of
recombination sites. The dashed horizontal line in each plot marks
site 464, where a substitution process change-point is inferred by
the dual MCP. The single MCP model shows a strong attraction
between the inferred recombination sites and the substitution pro-
cess change-point, with inferred recombination sites clustering along
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Fig. 3. Simulation study demonstrates improved accuracy of dual MCP sampler. For both the single and the dual MCP models, estimated locations of
recombination are plotted against true break-points (open circles), simulated at various positions near site 464, where a substantial change in evolutionary
pressures occurs (dashed line). Circles on the diagonal denote informative sites that support (light grey) or contradict (dark grey) the recombinant structure;
blank diagonal gaps correspond to the uninformative regions. Posterior attraction of inferred recombination sites towards the substitution process change-point
is greatly reduced in the dual as compared with the single MCP model.

the dashed horizontal line. The dual MCP model yields more accur-
ate inference with small variation about the diagonal. To interpret
the off-diagonal variation, we define two classes of topologically
informative sites in the alignment, those supportive or contradictory
of the simulated recombinant structure. A site is called supportive
when it supports the consensus topology and sits left of a simu-
lated break-point or when it supports the alternative topology and
lies right of the break-point. Supportive sites provide both the single
and the dual MCP algorithms information with which to infer the
location of recombination. Sites contradictory to the recombinant
structure are sites that support the alternative topology to the left of
the break-point or support the consensus topology to the right of the
break-point. Careful thought shows that all sites can be classified
based solely on the topology supported by the unpermuted data and
regardless of the actual break-point location. We mark supportive
and contradictory sites in Figure 3 as light and dark grey circles,
respectively. Sites that do not support either of the two competing
topologies are not plotted. As expected, the greatest inaccuracies in
detection occur when the simulated recombination events are located
in uninformative regions, especially those bordered by contradictory
sites.

We analyze the RW024 putative recombinant with the single and
the dual MCP models and summarize the results of our posterior
simulations in Figure 4. For each site in the alignment we plot
the marginal posterior probabilities of the tree topologies as well
as medians and 95% Bayesian credible intervals (BCIs) for κ and
µ. In Figure 4, arrows mark distinctions in the results between the
two models. As estimated by the single MCP model, changes in the
evolutionary substitution process and the most probable topology
effectively occur at the same location. Over 95% of the change-points
located between nt 280 and 320 are both substitution process change-
points and topology break-points. Decoupling of the MCP process
results in a shift in the estimated break-point and change-point in

opposite directions. Change-points and break-points located between
sites 280 and 320 coincide only 0.3% of the time during MCMC
simulation. Both models predict a higher κ in the 3′ end of the
genome. The BCIs of κ calculated under the dual MCP model are
larger than those of the single MCP model for sites in the middle of
the alignment. Visual examination of this alignment region reveals
that the dual MCP model correctly identifies a region with a rel-
atively high transition/transversion ratio κ , but lack of information
leads to great uncertainty about its actual value. The single MCP
model places the substitution process change-point further 5′, near
the topology break-point; therefore, averaging κ among sites with
high and low transition/transversion ratio in the region downstream
of the change-point.

We plot the results of posterior simulations for the KAL153
putative recombinant in Figure 5. This figure follows the same
arrangement as in Figure 4. As before, differences in performance of
the single and the dual MCP models are marked by arrows. The dual
MCP model estimate of the first recombination site lies 5′ of the single
MCP estimate. Both models identify a strongly supported (A,B,A)
recombinant structure and a small region on the boundary of pol and
vif with somewhat uncertain origin. A Bayes factor calculated under
the dual MCP model amounts to 1077 providing decisive support
for at least one recombination point in the KAL153 sequence. We
find no evidence of recombination when we substitute KAL153 with
a pure subtype A representative (see Supplementary information at
http://www. biomath.ucla.edu/msuchard/DualBrothers).

Table 1 reports estimates of recombination break-points together
with their 95% BCIs calculated under both models. In the KAL153
example, despite the increase in the number of parameters, the dual
MCP break-point estimates have roughly the same size BCIs as the
estimates calculated under the single MCP model. Therefore, the
dual MCP model improves the accuracy of recombination detection
while preserving the precision of the single MCP model. However,
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Fig. 4. Comparison of the single and the dual MCP models for HIV-1 RW024. The top plot shows the locations of gene products within the gag gene. The plot
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Fig. 5. Comparison of the single and the dual MCP models for HIV-1 KAL153. The top plot highlights positions of the open reading frames along the HIV-1
genome. The rest of the figure follows the format in Figure 4, with light grey representing subtype A heritage and medium grey representing subtype B heritage
in the plot labeled τ . Inferred recombinant structure is (A,B,A) under the dual and the single MCP models.

the topology break-point in the RW024 has a noticeably larger BCI
under the dual MCP model. The roots of the increased uncertainty
lie not only in the different complexities of the two models, but
also in differences in the utilization of sequence information. In
this example, it is not surprising that the change-point inferred by
the single MCP has smaller posterior variance since its location

was deduced from both topological incongruence and heterogen-
eous sequence divergence. Pulling these events together may not be
advantageous. We believe that recombination inference should be
based solely on the discordance in tree topologies since the con-
tribution of other sequence features to recombination has not been
rigorously established.
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Fig. 6. Gelman–Rubin PSRFs and their corresponding 97.5% quantiles calculated for site-specific transition/transversion ratios κ(s) along the genome. PSRFs
represent the factor by which the posterior variance of a monitored parameter will be reduced as the number of iterations of MCMC sampling approaches
infinity. The closeness of PSRFs to 1 indicates how well the sampler is converging to the target distribution. The dual MCP model exhibits better overall
convergence suggesting that appropriate partitioning of the data may result in more efficient exploration of the posterior distribution of model parameters.

Table 1. Posterior medians and 95% BCIs of inferred recombination sites
using single and dual MCP models

Single MCP Dual MCP
Median 95% BCI Median 95% BCI

KAL153 example
1886 1666–1988 1825 1669–1985
7643 7631–7677 7652 7631–7678

RW024 example
306 290–313 298 283–337

We report convergence of our MCMC sampler for the KAL153
example using the Gelman–Rubin potential scale reduction factor
(PSRF), a convergence statistic based on a comparison of the
within-chain and between-chain variances from multiple MCMC
runs (Gelman and Rubin, 1992). We follow Brooks and Giudici
(1998) and identify site-specific transition/transversion ratios
κ(1), . . . , κ(S) as a set of parameters that retain their interpretation
even as the dimension of the parameter space changes. We com-
pute PSRFs using 10 independent MCMC chains with overdispersed
starting values. Figure 6 plots point estimates of the PSRFs and the
corresponding 97.5% quantiles for each site in the alignment. The
closeness of the estimates to 1 indicates good convergence of the
sampler. The dual MCP model shows better overall convergence of
the site-specific transition/transversion ratios, in spite of the fact that
both samplers use the same transition kernels.

5 DISCUSSION
In this paper, we improve the accuracy of recombination detection
afforded by Bayesian phylogenetic methods. Accuracy is improved
by modeling spatial phylogenetic variation with two independent

change-point processes, an extension of the single change-point pro-
cess used by Suchard et al. (2003b). One process models changes
in the tree topology along a multiple sequence alignment; the other
process allows nucleotide substitution pressures to vary. Decoupling
these processes eliminates the prior correlation between locations of
changes in topology and evolutionary pressure, yielding more accur-
ate estimation of both change-point types. The dual MCP model
inherits a major strength from the original MCP model in its real-
istic modeling of spatial phylogenetic variation using a parsimonious
number of parameters. In addition, similar to the single MCP model,
the dual model allows simultaneous estimation of regions with dif-
ferent evolutionary pressures, uncertainty in topologies and locations
of recombination sites.

Analysis of alignments with recombination simulated in an area
with a significant change in evolutionary pressure shows that dual
MCP estimates of break-points are more accurate than single MCP
results. The recombination sites inferred under the single MCP model
are clearly attracted to the evolutionary change-point location owing
to the prior correlation between the two kinds of change-points.
In the RW024 example under the single MCP model, the estimates
of change in evolutionary pressure and recombination site locations
effectively coincide. In contrast, the dual model predicts the substi-
tution change-points and topology break-points to occur at distinct
and fairly distant positions along the genome. Similar separation of
substitution change-points and topology break-points are observed
in the KAL153 example within the pol coding region. We con-
clude that strong posterior correlation between locations of change
in evolutionary pressure and recombination is an artifact of the single
MCP model. The dual MCP model should result in more accurate
estimation of locations of substitution change-points and topology
break-points. Moreover, as the KAL153 examples show, the dual
MCP model is less sensitive to the choice of prior on recombination
in the presence of sparse and noisy data.
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We observe improved convergence of the rjMCMC sampler after
decoupling of change-points. Because the dual MCP model selects
more accurate partitions of the data, it may produce better sampler
mixing by regularizing the posterior landscape. For example, if the
marginal posterior distribution of the transition/transversion ratio κ

is bimodal in a given partition, splitting this partition by adding
an appropriate change-point may result in two new partitions with
unimodal posterior distributions of κ . Two unimodal distributions
may be more efficiently explored by the rjMCMC sampler. Since
the dual MCP model identifies partition boundaries more accurately,
fewer multimodal distributions and faster exploration of the posterior
distribution of model parameters are expected.

In addition to the increased accuracy in recombination site iden-
tification, using two change-point processes allows us to model
recombination sites explicitly as model parameters. This expli-
cit representation of recombination makes estimation and hypo-
thesis testing more rigorous and the specification of the prior on
recombination sites more flexible. For instance, it is now possible to
use a site-specific recombination prior, where each site is explicitly
assigned a prior probability of being a topology break-point. Such
prior specification allows one to incorporate information from pre-
vious recombination detection studies, directing the algorithm to
regions where recombination is more likely to occur. We believe
that the dual MCP shows great promise for accurately detecting
recombination and finding patterns in the spatial distribution of
recombination sites.
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