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Abstract.— Phylogenetic estimation has largely come to rely on explicitly model-based methods. This approach requires
that a model be chosen and that that choice be justified. To date, justification has largely been accomplished through use of
likelihood-ratio tests (LRTs) to assess the relative fit of a nested series of reversible models. While this approach certainly
represents an important advance over arbitrary model selection, the best fit of a series of models may not always provide
the most reliable phylogenetic estimates for finite real data sets, where all available models are surely incorrect. Here, we
develop a novel approach to model selection, which is based on the Bayesian information criterion, but incorporates relative
branch-length error as a performance measure in a decision theory (DT) framework. This DT method includes a penalty
for overfitting, is applicable prior to running extensive analyses, and simultaneously compares all models being considered
and thus does not rely on a series of pairwise comparisons of models to traverse model space. We evaluate this method
by examining four real data sets and by using those data sets to define simulation conditions. In the real data sets, the
DT method selects the same or simpler models than conventional LRTs. In order to lend generality to the simulations,
codon-based models (with parameters estimated from the real data sets) were used to generate simulated data sets, which
are therefore more complex than any of the models we evaluate. On average, the DT method selects models that are simpler
than those chosen by conventional LRTs. Nevertheless, these simpler models provide estimates of branch lengths that are
more accurate both in terms of relative error and absolute error than those derived using the more complex (yet still wrong)
models chosen by conventional LRTs. This method is available in a program called DT-ModSel. [Bayesian model selection;
decision theory; incorrect models; likelihood ratio test; maximum likelihood; nucleotide-substitution model; phylogeny.]

The last decade has witnessed the emergence of statis-
tical phylogenetics as the dominant view in systematics,
and phylogeny estimation from DNA sequence data has
reached a rather high level of sophistication. Increasingly
complex likelihood models of sequence evolution are
continually being developed, and the application meth-
ods such as the Markov chain Monte Carlo estimation
have allowed these complex models to be incorporated
into phylogeny estimation of large data sets (e.g., Leaché
and Reeder, 2002). Furthermore, the ability to compare
likelihood models objectively is a frequently cited advan-
tage of explicitly model-based methods, such as max-
imum likelihood (ML) and Bayesian estimation, over
competing methods (e.g., Swofford et al., 1996; Sullivan
et al., 1997). This comparison is critical because it has been
repeatedly demonstrated, both in simulations (e.g., Gaut
and Lewis, 1995) and with real data sets (e.g., Sullivan
and Swofford, 1997), that violation of model assump-
tions can lead to inconsistency of ML estimation. Such
demonstrations have led many authors (e.g., Frati et al.,
1997; Sullivan et al., 1997) to use statistical methods such
as hierarchical likelihood-ratio tests (LRTs; Huelsenbeck
and Crandall, 1997) to select a model for phylogeny es-
timation. Posada and Crandall (1998) automated model
selection via LRTs (as well as other methods) with the
production of Modeltest, which (in most cases) uses a
decision tree and successive pairwise comparisons of
nested models to traverse model space and select a
model. This process has led to widespread use of hierar-
chical LRTs in model selection, which is an enormously
important contribution to statistical phylogenetics.

Nevertheless, in spite of increasing model complex-
ity, it is certainly the case that even our most complex
and parameter-rich models are simplifications of the true

evolutionary process that has generated any set of se-
quences. Thus, even the most well-justified model is
surely wrong. Further, hierarchical LRTs can only pro-
vide information regarding the relative fit of the nested
alternatives that have been examined; they can tell us
nothing about the absolute goodness of fit of the cho-
sen model. Although an absolute goodness-of-fit test
does exist (e.g., Goldman, 1993; Sullivan et al., 2000;
Demboski and Sullivan, 2003), there is no guarantee that
the best-fit models will produce the best estimates of phy-
logeny. The reason being, at least for finite data, the re-
lationship between fit (as measured by likelihood score)
and performance is not as straightforward as one might
wish. For example, Buckley et al. (2001) examined the
performance of several models with regard to branch-
length estimation from a data set containing 25 sequences
of three mtDNA genes (COI, A6, and tRNAAsp) from
Maoricicada and two outgroups. They found that both
GTR+I+� and GTR+� models (applied to all the sites)
provided uniformly larger (and probably better) esti-
mates of branch lengths than did a 10-class site-specific
rates (SSR) model (GTR+SSR10), in spite of the fact that
the SSR model is more parameter rich and has a better
likelihood score than the former models. The improve-
ment in fit Buckley et al. (2001) observed with the SSR
model was attributable to more finely matching base fre-
quencies that vary across partitions. The poor perfor-
mance in branch length estimates under SSR was due to
the presence of rate heterogeneity that was not accounted
for under SSR. Thus, a single unit of improvement in
fit with respect to rate heterogeneity has dramatically
more effect on performance than a similar improvement
in fit with respect to base frequencies. Models with the
best likelihood score are not guaranteed consistently to
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produce the best estimates of branch lengths from finite
data and by extension should not necessarily be expected
to perform best in phylogeny estimation.

Therefore, in spite of the improvement that LRTs rep-
resent over arbitrary model selection, there are at least
two ways that further improvement in model selection
may be achieved. First, the requirement that models be
examined in series of pairwise comparisons presents dif-
ficulties in order of parameter subtraction (or addition in
a bottom up approach). Thus, improvements in model
selection may be achievable by employing simultaneous
comparison of all models under consideration. Second,
if the motivation for evaluation of alternative models is
to choose one for estimation of phylogeny, improvement
in model selection may be achievable by incorporating
some measure of performance into a method for model
selection. Here, we present a new method of model se-
lection that incorporates both these modifications. With
this method, all models under consideration are com-
pared simultaneously using a Bayesian information cri-
terion (BIC) approach that is modified by inclusion of a
decision-theory framework (Bernardo and Smith, 1994)
to evaluate performance of branch-length estimation.

We followed Buckley et al. (2001) in choosing branch-
length estimation as the performance measure for a num-
ber of reasons. Since we’re trying to optimize the model
choice for phylogeny estimation, we looked for a method
with at least the following attributes. First, it should be
applicable prior to conducting extensive phylogenetic
analyses. Second, given the first consideration, such a
method should be based on some property that is in-
timately linked to the performance of phylogeny esti-
mation. It has been repeatedly demonstrated (e.g., Gaut
and Lewis, 1995; Sullivan and Swofford, 1997) that strong
violation of model assumptions can mislead ML analy-
ses in a manner similar to that in which parsimony is
misled in the Felsenstein zone (i.e., where long branches
are separated by a short internal branch). It is also well
documented that this inconsistency is attributable to
the systematic underestimation of branch length that af-
fects long branches disproportionately more than short
branches (e.g., Swofford et al., 2001). Thus, accuracy
of branch-length estimation fulfils the second criterion
of performance-based model selection. Furthermore,
Sullivan and Swofford (2001) demonstrated that, even for
Felsenstein-zone trees, phlyogeny estimation with some
violated models performs as well as does estimation us-
ing the true model that was used to simulate the data.
In that study, even some clearly wrong models were ap-
parently able to estimate branch lengths sufficiently well
to avoid long-branch attraction that afflicted estimation
with very poor models. Thus, given the benefits of lower
variance and shorter run times associated with simpler
models, use of a simpler model should be favored over a
more parameter-rich model when the simple model es-
timates branch lengths sufficiently well. This holds even
when the simple model can be rejected using conven-
tional LRTs of relative goodness of fit.

Here, we developed a performance-based method for
selecting a likelihood model that can be used for sub-

sequent ML or Bayesian estimation of phylogeny. We
evaluated the alternative methods using a combination
of simulations and analyses of real data sets. We took
the approach that all the models being considered were
wrong, and we attempted to find the model that would
incur the least risk (i.e., perform the best) while still at-
tempting to minimize the number of model parameters.
In both real and simulated data sets, the decision the-
ory (DT) method (as implemented in DT-ModSel) selects
models that are simpler on average than those selected
using current model selection procedures (e.g., LRTs as
implemented in Modeltest; Posada and Crandall, 2001),
yet these simpler models provide as good or better es-
timates of branch lengths as the more complex models
selected by methods based on fit alone.

DECISION THEORY BACKGROUND

The following conceptualization is very useful to il-
lustrate decision theory. Let us suppose one is playing a
game, the object of which is to choose an evolutionary
scenario. At the end of the game, the true state of nature
is revealed and penalties are assessed according to how
far off one’s guess is from the truth. However, the game
is not played in complete ignorance. The data provide
clues that, if used wisely, should lead to a reasonable
choice that, if not completely correct, will at least receive
a low penalty at the end of the game. Suppose, for exam-
ple, that it is revealed a priori that one of M possibilities
is the correct model of evolution under which the ob-
served data were generated. One point is deducted for
choosing the incorrect model and nothing is gained by
choosing correctly. As we demonstrate below, under this
penalty scheme, the optimal model-choice strategy is to
calculate a statistic called the BIC (Bayesian Information
Criterion) score and choose the model with the lowest
score.

We begin by establishing some general notation. Let D
be a particular data set that we are interested in analyz-
ing. D is the information we use to make a model selec-
tion. The collection of models being considered can be de-
noted by M1, M2, . . . , Mm. Associated with each model is
a vector of parameters denoted by θ1, θ2, . . . , θm, where
θi = (θi1, θi2, . . . , θidi ), and di is the number of parame-
ters for model Mi . We denote the likelihood of the data
under model Mi with parameters θi as

P(D | Mi , θi ).

If we place a prior distribution of θi under model Mi
denoted by g(θi | Mi ) then the marginal probability of
the data given only the model is defined as

P(D | Mi ) =
∫

P(D | Mi , θi )g(θi | Mi ) dθi .

The above represents a di -dimensional integral that
would in principle be difficult to compute. However,
Bayesian statistical theory (Raftery, 1995) provides the
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following useful approximation:

ln P(D | Mi ) ≈ ln P(D | Mi , θ̂i ) − (di/2) ln n,

where n is the number of observations in the sample and
θ̂i is the vector of ML estimates. For phylogenetic anal-
ysis, where we assume that the tree topology is known
and each site evolves independently along the branches
of the tree, the sample size is the number of sites. The
right side of the above equation is related to the BIC as
follows:

BIC = −2 ln p(D | Mi , θ̂i ) + di ln n ≈ −2 ln P(D | Mi ).

Note that the approximation does not depend on the
form of the prior distribution. Since we used the above
approximation throughout, selection of a model was not
influenced by prior probabilities of model parameters;
only the data were used to make our final model selec-
tion.

For Bayesian model selection, the posterior probability
of the model given the data is of primary concern. If we
place a uniform prior probability on each model, that
is P(Mi ) = 1/m for all i , then the usual Bayes formula
relates BIC to posterior probabilities:

P(Mi | D) = P(D | Mi )∑m
j=1 P(D | Mj )

(1)

≈ e−BICi /2∑m
j=1 e−BIC j /2 .

Since the denominator in Equation 1 is the same for all
models, lower BIC scores correspond to higher posterior
probabilities, and picking the model with the lowest BIC
score is equivalent to picking the model with the highest
posterior probability of being correct.

Now let us return to the game. Let li j be 1 if model i
is chosen when model j is correct and lii = 0 if the true
model is chosen. Since the true state of nature will not
be revealed, we cannot directly compute this penalty. We
can, however, compute an expected or average penalty
conditional on the data. In the language of decision the-
ory, this is the posterior risk associated with choosing
model i . The posterior risk of choosing model i given
the above 0 or 1 penalty function and assuming one of
the models is correct, is defined by

Ri =
m∑

j=1

li j P(Mj | D) = 1 − P(Mi | D) (2)

The optimal Bayesian model choice is the one that min-
imizes the posterior risk. We see from Equations 1 and 2
that minimizing the posterior risk is equivalent to max-
imizing the posterior probability of the model, which in
turn leads to the BIC decision rule.

The above scenario demonstrates the usefulness of the
conceptualization of model choice as a game with spe-
cific rules and penalties. However, the above game in-
cludes departures from an application to phylogenet-
ics. The m statistical models that a phylogeneticist might
propose are all only rough approximations to the truth;
to assume a priori that one is correct is not reasonable.
Also, suppose model i fits the data slightly better than
does model j , but both models produce nearly the same
inferences. Now suppose model k produces completely
ridiculous results. It is not reasonable to assess the same
penalty to model j as model k. Thus, performance may
be incorporated into model selection through a risk func-
tion that allows for a nonbinary penalty function.

PERFORMANCE-BASED MODEL SELECTION

There are two aspects of a phylogeny that are of fun-
damental importance: the tree topology and the branch
lengths (the rate of evolution times the time between each
node or speciation event in the tree). Under model-based
frameworks, if we assume momentarily that topology is
known, we can focus attention on accurate branch-length
estimates; rather than worry about the somewhat artifi-
cial criterion of whether or not a model is correct, we will
focus on the accuracy of the branch lengths estimated un-
der various models. If a simple model is returning esti-
mates of branch lengths that are nearly identical to those
from a more complex model, there will be little difference
in phylogenetic estimation under the two models.

We assume that the phylogeny is described by an un-
rooted binary tree with k terminal nodes. As in current
model selection procedures, we use a neighbor-joining
tree based on LogDet distances. Therefore, there will be
2k − 3 branches. We denote the vector of branch lengths
by B = (B1, B2, . . . , B2k−3). Let B̂i be the estimated branch
lengths under the assumptions of model Mi . That is, B̂i
is a function of the data D, the model Mi , and the ML
estimates of the parameters θ̂i under model Mi . Instead
of a 0 or 1 penalty function, we develop a decision the-
oretic approach that penalizes models according to their
performance with regard to branch length estimation.
Consider the estimated vector of branch lengths under
models Mi and Mj . The squared Euclidean distance be-
tween the branch-length estimates is given by

‖B̂i − B̂ j‖2 =
2k−3∑
l=1

(B̂il − B̂ jl)2 (3)

and the risk of choosing model Mi is given by

Ri =
m∑

j=1

‖B̂i − B̂ j‖P(Mj | D)

(4)

≈
m∑

j=1

‖B̂i − B̂ j‖ e−BIC j /2∑m
j=1 e−BIC j /2 .
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Ri can therefore be calculated for each model, and that
model with the minimum posterior risk can be chosen.

The following theoretical comparisons point out the
advantages to our approach. First, in our approach each
model is compared to all competing models at once; ex-
isting automated model-selection methods (e.g., LRTs in
Modeltest) require a sequence of pairwise comparisons.
Second, each model is weighted according to the pos-
terior probability of the model conditional on the data.
Since any model of evolution is only a crude approxi-
mation to reality, rather than focus attention on trying
to find the “correct model” (e.g., Posada and Crandall,
2001), we have a measure of how plausible a model is
given the data. Third, the decision theoretic framework
allows for much flexibility. One can decide based on bi-
ologically relevant criteria what makes a model useful
and use this criterion to assess a higher penalty to mod-
els that do not meet the criterion than to those that do.
Our method combines branch-length estimates, model
fit, and a penalty for overfitting in a statistically rigorous
way.

DATA SETS AND SIMULATIONS

We chose several data sets with different patterns of
evolution to assess the performance of the model selec-
tion methods under different conditions. First, we ex-
amined 12 primate mitochondrial DNA (mtDNA) se-
quences (Hayasaka et al., 1988) with a high average
rate of evolution and strong heterogeneity among sites.
This data set is included as an example in the distri-
bution of PAUP* (Swofford, 1998) and has been used
in many studies in which new phylogenetic methods
have been developed (e.g., Yang, 1994). Second, we de-
cided to focus on nuclear elongation factor 1α (EF-1α)
sequences in Ips beetles (Cognato et al., 2001). In analy-
ses of this data set, we excluded closely related taxa to do
large scale simulations (AF397613, AF397617, AF397619,
AF397621 AF397623, AF397624, AF397625, AF397626,
AF397631, AF397632, AF397633, AF397634, AF397635,
AF397636, AF397638, AF397642, AF397648, AF397649).
The choice of this data set was motivated by the fact that
nuclear DNA sequences have slower average rate of evo-
lution and less rate heterogeneity among sites relative to
mtDNA. Third, we examined a typical phylogeographic
data set. We took 43 mtDNA cytochrome b (cyt b) se-
quences of Sumichrast’s harvest mice, Reithrodontomys
sumichrasti (Sullivan et al., 2000) and excluded redundant
and closely related individuals to reduce the number of
sequences to 14. Fourth, we examined another rodent
cyt b data set, which includes 22 species of sigmodon-
tine rodents (T. Rinehart et al., unpubl.), that we down-
loaded from GenBank (accessions AY041185–AY041206).
We emphasized this last data set because, as is commonly
the case, use of LRTs to compare models resulted in ac-
ceptance of the most general and parameter rich of the
commonly used alternatives (i.e., the GTR+I+� model;
Table 1).

For each of the data sets, we first conducted an ML
search using PAUP* (Swofford, 1998) under a single

TABLE 1. Four sample data sets and the results of model selection
using traditional LRTs and the DT methods presented here applied to
the real data.

Model selected, no. parameters

Data set
No.
taxa

Sequence
length
(bp) LRT DT

Primate mtDNA 9 693 TVM+�, 8 TrN+I+�, 7
Beetle EF-1α 20 553 TrN+�, 6 TrN+�, 6
Harvest mouse 14 1,130 TrN+I+�, 7 TrN+I+�, 7

Cyt b
Sigmodontine 22 772 GTR+I+�, 10 HKY+I+�, 6

Cyt b

model determined by conventional LRTs. We then parsed
each data set by codon position and used the previous
ML tree to optimize branch lengths and parameters of the
GTR+I+� model for each codon position (again using
PAUP*). We then used the codon-specific branch lengths
and model parameters in conjunction with Seq-Gen, v.
1.2.5 (Rambaut and Grassly, 1997) to generate first, sec-
ond, and third codon-position data sets for each replicate.
Finally, we merged codon positions to form a single repli-
cate data set, which was thus generated with a separate
GTR+I+� model for each codon position (each of which
was estimated from the original data). This strategy was
designed to generate simulated data using a model that
is much more complex than any of the candidate models
typically used for phylogeny estimation. Each replicate
was then subjected to model selection using both conven-
tional LRTs (as implemented in Modeltest) and our new
performance-based DT method (as implemented in DT-
ModSel). We conducted 1,000 replicates for each of these
four real data sets described above, and evaluated the
accuracy of branch lengths estimated under the model
chosen by each method. This was done both in terms of
absolute and relative branch-length error. For the former,
the vector of true branch lengths was calculated by aver-
aging position-specific true branch lengths across codon
positions (which is valid because branch lengths are ex-
pressed in expected substitutions per site and there is the
same number of sites in each codon position). In math-
ematical language, if B is the vector of “true” branch
lengths and B̂i is the estimated branch-length vector un-
der model i chosen by the particular model selection cri-
teria, then ‖B̂i − B‖2 is the absolute error. If model j pro-
duces branch-length estimates closest to the true branch
lengths but model i is chosen, then ‖B̂i − B̂ j‖2 is the rel-
ative error.

SIMULATION RESULTS

In general, application of DT-ModSel to the replicate
data sets chose simpler models on average than did ap-
plication of LRTs (Fig. 1). The one exception to this is the
harvest mouse phylogeography data set in which the
LRTs chose a slightly simpler model on average (Fig. 1c).
This data set represents the most recent divergences we
examined. Interestingly, for the fourth data set, which
is from the same gene (mitochondrial cyt b) in a group
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FIGURE 1. The distributions of the number of parameters in the model chosen by conventional LRTs (as implemented in Modeltest; top)
and the new DT method presented here (as implemented in DT-ModSel; bottom) for the four conditions simulated. Data were simulated using
conditions estimated from (a) the primate mtDNA, (b) the beetle EF1-α data, (c) the harvest mouse cyt b data, and (d) the sigmodontine cyt b data.
Each distribution represents 1,000 simulations conducted with the codon-based model described in the text, and the only models considered
were applied across codon positions.
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of rodents that spans much deeper divergences, the DT
algorithm selected substantially simpler models, both in
the simulations (Fig. 1d) and in the real data set (Table 1).
This is probably a very representative data set in that
application of the LRT approach to the real data indi-
cated that the most general and parameter-rich alterna-
tive (GTR+I+�) was required; this is frequently the case

FIGURE 2. The distributions of the relative error in branch lengths estimated by the model chosen by conventional LRTs (as implemented
in Modeltest) and the new DT method presented here (as implemented in DT-ModSel) for the four conditions simulated. Data were simulated
using conditions estimated from (a) the primate mtDNA, (b) the beetle EF1-α data, (c) the harvest mouse cyt b data, and (d) the sigmodontine
cyt b data. Relative branch error was calculated as described in the text.

for real data. In terms of relative branch-length error, the
models chosen by the DT algorithm always performed
slightly better than did the models chosen by the LRT
(Fig. 2). This result was expected because DT-ModSel
was designed to choose the simplest model that mini-
mizes relative branch-length error. The performance of
models chosen by DT-ModSel was improved in terms
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of relative branch-length error obtained across data sets,
but improvement was most pronounced in simulations
based on the primate mtDNA and sigmodontine rodent
cyt b. These two data sets are more complex than the
others (Table 1). In the beetle EF-1α data set, there is rel-
atively little heterogeneity in the rate matrix (R = 1.00,
3.89, 1.00, 1.00, 8.47, 1.00), whereas in the harvest mouse
cyt b data the divergences are relatively shallow. Some
very interesting patterns emerged in the assessment of

FIGURE 3. The distributions of the absolute error in the branch lengths estimated by the model chosen by conventional LRTs (as implemented
in Modeltest; top) and the new DT method presented here (as implemented in DT-ModSel; bottom) for the four conditions simulated. Data
were simulated using conditions estimated from (a) the primate mtDNA, (b) the beetle EF1-α data, (c) the harvest mouse cyt b data, and
(d) the sigmodontine cyt b data. The absolute branch-length error is calculated as the Euclidean distance between the vector of ML branch
lengths estimated under the model and the vector of true branch lengths used to simulate the data.

absolute branch-length error (Fig. 3). First, in all the data
sets, the model chosen via the DT algorithm estimated
the true branch lengths slightly better on average than
did the model chosen using LRTs. This observation is
particularly interesting when coupled with the obser-
vation that DT-ModSel generally selected simpler mod-
els than did Modeltest (Fig. 1). One might expect that
more complex incorrect models would always outper-
form incorrect simpler models, but this clearly is not the
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case. When the data were generated by a separate GTR+
I+� model for each codon position and analyzed with a
single model applied to all the sites, the simpler model
chosen by the DT algorithm performed better on aver-
age than did the more complex model chosen by LRTs.
Second, for the primate mtDNA and sigmodontine cyt b
data, there is a large amount of absolute error in branch-
length estimation. Even though there is not a great deal
of relative branch-length error for either of these data
sets, even the best relative estimates are quite poor in ab-
solute terms. This suggests that an important extension
of DT-ModSel will be to incorporate tests of likelihood
models based on codon position.

DISCUSSION

One obvious limitation of our method (both in appli-
cation to real data and in our simulations) is that we used
a single tree topology at the very beginning and never
changed it, whereas for real data, the true tree is un-
known. However, Posada and Crandall (2001) showed
that use of different initial trees (e.g., a neighbor-joining
or maximum-parsimony tree) does not affect the accu-
racy of model selection methods unless a random tree
is chosen as the initial tree. This finding is expected
given the nature of the relationship between topology
and model parameters (Sullivan et al., 1996), use of an
initial tree should not confound model selection using
LRTs. However, this conclusion may not extend to our
DT method. Not only do we rely on an initial topol-
ogy, but we also use the vector of branch lengths from
that topology under the model being considered, using
point estimates of its parameters. This is certainly a limi-
tation of our DT method. Suchard et al. (2002) developed
a method for selecting models that incorporates uncer-
tainty across topologies, and Bollback (2002) developed
a test of the adequacy of a model that incorporates un-
certainty in both topology and model parameters. Nev-
ertheless, our use of initial point estimates of topology
and model parameters permits the selection of a model
prior to running extensive analyses that will perform as
well as or better than any of the alternatives considered.

Performance Under Alternative Models

We used the sigmodontine cyt b data to assess the
effect of selecting models using our DT method ver-
sus conventional LRTs. We subjected this data set to a
series of analyses using the Hasegawa–Kishino–Yano
HKY+I+� model selected by the DT method and the
GTR+I+� model selected by LRTs. First, we conducted
ML searches (stepwise addition, 10 random addition se-
quences with tree bisection–reconnection branch swap-
ping) under each model using a 1-GHz Macintosh G4.
The analysis using the HKY+I+� model ran in 1 hour
8 minutes, whereas the analysis using GTR+I+� ran in
1 hour 32 minutes. Slightly different trees were found
using each model. The analysis under HKY+I+� found
a single ML tree (Fig. 4), whereas the analysis under

FIGURE 4. The ML tree for the sigmodontine cyt b data estimated
using the HKY+I+� model selected by the DT method. Estimation
under the GTR+I+� model (selected by conventional LRTs) resulted
in three trees. In one of the GTR+I+� ML trees, node E was collapsed
into a polytomy and the other two GTR+I+� ML trees are alternative
resolutions of that polytomy.

GTR+I+� found three different trees, one of which is not
fully resolved (e.g., has one zero-length internal branch).
The nonbifurcating tree of these four ML trees has a sin-
gle internal polytomy (formed by collapsing node E in
Fig. 4), and the other three trees represent the alterna-
tive resolutions compatible with that polytomy. Thus,
searches under the two models essentially resulted in
the same topology, but the search run under the model
selected by DT-ModSel required one-third less time. We
also conducted Bayesian analyses (Mr Bayes; Huelsen-
beck and Renquist, 2001) under the two different models
(Table 2). In general, there would be no differences in the
interpretation of nodal supported as estimated under the
model selected by DT-ModSel (HKY+I+�) and conven-
tional LRTs (GTR+I+�). Nodes are strongly supported
(posterior probability > 0.95) in both analyses, moder-
ately supported (0.85 < posterior probability < 0.95) in
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TABLE 2. Posterior probabilities for sigmodontine cyt b data across
nodes estimated under the GTR+I+� model, which was selected by
conventional LRTs, and under the HKY+I+� model, which was se-
lected by the DT method.

Posterior probabilitya

Node HKY+I+G GTR+I+G

A 100 100
B 100 100
C 83 80
D 81 82
E 31 NA
F 100 100
G 91 93
H 100 100
I 96 96
J NA 33
K 100 100
L 100 100
M 98 97
N 87 94
O 70 72
P 61 66
Q 80 69
R 96 96
S 80 77
T 99 99

aPosterior probabilities under each model were estimated using MrBayes
(Huelsenbeck and Ronquist, 2001), with two chains of 106 generations, a burn-in
of 5 × 104 generations, and uniform priors. NA = not applicable.

both analyses, or poorly supported (posterior probability
< 0.85) in both analyses (Fig. 5). This finding is consis-
tent with those of Sullivan and Swoford (2001) that, even
in the Felsenstein zone, phylongeny estimation with an
incorrect HKY+I+� performs as well as estimation with
the correct GTR+I+� model.

FIGURE 5. Posterior nodal probabilities (pp) for the sigmodontine cyt b data estimated under the GTR+I+� model (selected by LRTs) plotted
against posterior probabilities estimated under the HKY+I+� model (selected by the DT method).

Next Logical Step

As currently implemented in DT-ModSel, our method
is restricted to evaluating the same 56 models that are
examined by Modeltest (Posada and Crandall, 2001); all
these models are applied uniformly across a data set,
without regard to codon position (or any other parti-
tions that one may wish to consider). While the DT
method we have developed here will allow for selec-
tion of the simplest model that outperforms the alter-
natives in terms of branch-length estimation, for two of
the four conditions we simulated the chosen model still
estimates branch lengths rather poorly (Fig. 3) in terms
of absolute branch-length error. This result clearly indi-
cates that application of a separate model to codon posi-
tons in protein-coding genes will frequently result in im-
proved phylogenetic performance. The logical extension
of the work presented here is to incorporate evaluation of
partitions into model selection. For example, one might
wish to treat all three codon positions separately or split
just third positions from first and second positions. Sim-
ilarly, one might wish to consider some formulation of a
covarion model (Fitch and Markowitz, 1970; Miyamoto
and Fitch, 1995). Basing such decisions on whether (and
how) to incorporate codon structure and nonstationarity
of the process across a tree on a metric that incorporates
performance as well as fit (such as the DT method just
described) should be an improvement over basing such
decisions on fit alone (e.g., Huelsenbeck, 2002).

Program Availability

A Perl script that implements DT-ModSel is available
at http://www.uidaho.edu/∼jacks/DTModSel. We are
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in the process of developing a Java-based program that
will integrate with PAUP*; this program will replace the
Perl script as soon as it is available.
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