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Appendix A: Accommodating known times of absorption in observed
data likelihood

Known times of death must be accounted for in the observed data likelihood (eq. (1) in main
manuscript). Let A be the set of all absorbing states in disease state space S. Assuming that
absorption in other states and informative observation events are competing risks, the density of
the time of absorption in state k ∈ A, designated by the random variable Wi0,k0, is given by

gik(t) =
d

dt
P [Wi0,k0 < t|Y (0) = (i, 0)] =

d

dt
P [Y ′(t) = (k, 0)|Y ′(0) = (i, 0)] =

∑
j 6∈A

Sij(t)λjk,

where i is a transient state.

When then final time tn corresponds to absorbtion of X(t) in state k, we modify the observed
data likelihood (eq. (1) in main manuscript) by replacing the terms fxn−1xn(∆tn) or

[fxn−1xn(∆tn)]htn [Sxn−1xn(∆tn)]1−hn

with gxn−1xn(∆tn).

Appendix B: Forward and backward functions

We use the abbreviation x1:k for x1, . . . , xk, o1:k for o1, . . . ok, h1:k for h1, . . . , hk. The sequence
of DDO times up to observation time tk is denoted τ (1, k) = {ti : hi = 1, i = 1, . . . , k}. Forward
functions are defined as αtk(u) = P [o1:k, τ (1, k),h1:k, Xk = u] and backward functions as βtk(u) =
P[ok+1:n, τ (k + 1, n),hk+1:n|Xk = u]. The forward function is initialized with

αt1(u) = P(O1 = o1, X1 = u,H1 = h1) = e(u, o1)νh1πx1(h1),

and the recursion for k = 2, . . . , n− 1 is

αtk(u) =
∑
i

αtk−1
(i)e(u, ok)[fiu(∆tk)]hk [Siu(∆tk)]1−hk .

The backward function is initialized with βtn(u) = 1, and the recursion for k = 1, . . . , n− 1 is

βtk(u) =
∑
i

βtk+1
(i)e(i, ok+1)[fui(∆tk+1)]

hk+1 [Sui(∆tk+1)]
1−hk+1 .
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Observed data likelihood

The observed data likelihood (Section 2.4, eq 1 of the main text) is P (o, τ ,h) =
∑

u αtn(u), via the
forward algorithm; by the backward algorithm, it is
P (o, τ ,h) =

∑
u βt1(u)e(u, o1)νh1πx1(h1). The forward and backward recursions make the likeli-

hood evaluation practical because, similarly to the standard HMM forward-backward algorithm,
the algorithmic complexity of both recursions is O(ns2).

Hidden state smoothing probabilities

One can generalize the forward and backward functions to an arbitrary time t. That is, we can
define αt(u) = P [o1:k, τ (1, k),h1:k, X(t) = u], for t ∈ [tk, tk+1], which is given by

αt(u) =
∑
i

αtk(i)Siu(t− tk).

Similarly, we define βt(u) = P [ok+1:n, τ (k+ 1, n),hk+1:n|X(t) = u], for t ∈ [tk−1, tk], which is given
by

βt(u) =
∑
i

βtk(i)Sui(tk − t).

The general versions of the forward and backward functions also allow us to calculate the smooth-
ing probability P[X(t) = i|o, τ ,h] for any t ∈ [t1, tn], which predicts the hidden disease state at an
arbitrary time conditional on the observed data. This probability is given by

P[X(t) = i|o, τ ,h] =
βt(i)αt(i)

P(o, τ ,h)
. (B-1)

Appendix C: Expectation step

To compute the expectation step (E-step) for the EM algorithm, we note that an individual’s log-
likelihood contribution (eq. (2) in main manuscript) is additive across time intervals Tl = [tl, tl+1].
Thus,

E[l(θ; o, τ ,x)|o, τ ,h] =

s∑
i=1

E[zi|o, τ ,h] log(πi)

+

n−1∑
l=1

s∑
i=1

∑
j 6=i

E[nTl
(i, j)|o, τ ,h] log(λij)−

n−1∑
l=1

s∑
i=1

E[dTl
(i)|o, τ ,h]

∑
j 6=i

λij


+

n−1∑
l=2

s∑
i=1

E[uTl
(i)|o, τ ,h] log(qi)−

n−1∑
l=1

s∑
i=1

E[dTl
(i)|o, τ ,h]qi

+
n−1∑
l=1

s∑
i=1

r∑
j=1

E[oTl
(i, j)|o, τ ,h] log [e(i, j)] .
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Computing the E-step therefore requires conditional expectations of the complete data sufficient
statistics across Tl. Conditional expectations for zi, oTl

(i, j), and uTl
(i) are computed using the

smoothing probabilities P(Xl = m|o, τ ,h) (B-1). Hence,

E[zi|o, τ ,h] = P(X1 = i|o, τ ,h) =
βt1(i)αt1(i)

P(o, τ ,h)
,

E[oT (j,m)|o, τ ,h] =

n∑
l=1

I(ol = m)P(Xl = j|o, τ ,h) =

n∑
l=1

I(ol = m)
βtl(j)αtl(j)

P(o, τ ,h)
,

and

E[uT (j)|o, τ ,h] =
n∑

l=2

I(hl = 1)P(Xl = j|o, τ ,h) =
n∑

l=2

I(hl = 1)
βtl(j)αtl(j)

P(o, τ ,h)
.

Note that the sum in the last set of identities is over 2 to n, as the first time should not be considered
an observed DDO event.

Expectations of CMTC sufficient statistics CTl
= dTl

(i) or CTl
= nTl

(i, j) can be obtained by
first conditioning on xl, xl+1:

E[CTl
|o, τ ,h] = E [E (CTl

|o, τ ,h, Xl = a,Xl+1 = b)] = E [E (CTl
|Xl = a,Xl+1 = b,Hl+1 = hl+1) |o, τ ,h] .

(C-1)
This follows due to conditional independence of X(t) on [tl, tl+1] given knowledge of the joint
disease and DDO process at the interval endpoints. The task of computing the expectation can be
broken down into computing “inner” expectations E [CTl

|Xl = a,Xl+1 = b,Hl+1 = hl+1] and “outer”
expectations. We describe the “inner" and “outer" expectations in turn.

Inner expectations for CTMC sufficient statistics

The formulae for the “inner expectations” are based on conditional expectations for CTMC suffi-
cient statistics with absorbing states (Asmussen et al., 1996). We derive the desired quantities by
considering conditional expectations of sufficient statistics C = nij(t) or C = dt(i) for a generic
homogeneous CTMC X(t) on the interval [0, t], conditional on X(t) at interval endpoints and the
informative observation status ht at time t.

To obtain these expectations, recall that Wa0,b1 is the first passage time of the bivariate CTMC
Y (t) = (X(t), N(t)) from state (a,0) to state (b,1). Wa0,b1 has the same distribution as the time
to absorption in state (b, 1) of the auxiliary process Y ′(t), given Y ′(0) = (a, 0) and has survival
function Sab(t) = exp(Λ − Q)ab and density function fab(t) = exp [(Λ−Q) t]ab qb (Section 2.1 in
the main manuscript). We will use conditional expectation formulae applicable to Y ′(t) to derive
the desired quantities.

When the endpoint t is a scheduled visit (ht = 0), we seek the conditional expectation

E[C|X(0) = a,X(t) = b, ht = 0] =
E {C × I[Y ′(t) = (b, 0)]|Y ′(0) = (a, 0)}

Sab(t)
. (C-2)

Our bivariate representation of the process Y ′(t) enables us to use standard methods for computing
expectations for CTMCs (Hobolth and Jensen, 2011). Thus, for C = dt(i), the numerator in C-2 is
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the joint expectation

Hi[a, b] = E
{
dt(i)× I[Y ′(t) = (b, 0)]|Y ′(0) = (a, 0)

}
=

t∫
0

exp [(Λ−Q)(u)]ai exp([Λ−Q)(t− u)]ib du,

and for C = nt(i, j), the joint expectation

Mij [a, b] = E
{
nt(i, j)× I[Y ′(t) = (b, 0)]|Y ′(0) = (a, 0)

}
=

t∫
0

λij exp [(Λ−Q)u]ai exp [(Λ−Q)(t− u)]jb du.

When t corresponds to a DDO (hi = 1), we seek the conditional expectation

E[C|X(0) = a,X(t) = b, ht = 1] = E[C|Wa0,b1 = t, Y ′(0) = (a, 0)]

=
∂
∂t E[C, I(Wa0,b1 < t)|Y ′(0) = (a, 0)]

fab(t)
.

(C-3)

To calculate the numerator, we employ expectation formulae derived for CTMCs with absorbing
states (Asmussen et al., 1996). For C = dt(i), the numerator in (C-3) is given by the differentiated
joint expectation

∂

∂t
E[dt(i), I(Wa0,b1 < t)|Y ′(0) = (i, 0)] = Hi[a, b]qb,

and for C = nt(i, j), by

∂

∂t
E[nt(i, j), I(Wa0,b1 < t)|Y ′(0) = (a, 0)] = Mij [a, b]qb,

where Hi[a, b] and Mij [a, b] are defined as before.

We also need to consider the special case of computing conditional expectations for dt(i) and
nt(i, j) when the interval endpoint t corresponds to a known absorption time in the disease process,
such as a time of death. Let A be the set of all absorbing states in S. Treating DDO events as a
competing risk, supposeWa0,k0 is the time of absorption of Y ′(t) in state k ∈ A, given Y ′(0) = (a, 0),
with density gak(t) =

∑
j 6∈A Sij(t)λjk. In this case, we need the conditional expectation

E[C|Wa0,k0 = t, Y ′(0) = (a, 0)] =
∂
∂t E[C, I(Wa0,k0 < t)|Y ′(0) = (a, 0)]

gak(t)
. (C-4)

When the complete-data statistic of interest is C = dt(i), the numerator in C-4 is the differentiated
joint expectation

∂

∂t
E[dt(i)I(Wa0,k0 < t)|Y ′(0) = (a, 0)] = I(i 6 ∈A)

∑
c6∈A

Hi(t)[a, c]λck.

For C = nt(i, j), the numerator in C-4 is the differentiated joint expectation

∂

∂t
E[nt(i, j)I(Wa0,k0 < t)|Y ′(0) = (a, 0)] = I(i, j 6 ∈A)

∑
c 6∈A

Mij(t)[a, c]λck + I(i 6 ∈A, j = k)Sai(t)λik.

One can use eigenvalue decomposition or the uniformization approach to computing the integrals
in each of the joint expectation formulae (Hobolth and Jensen, 2011). Our implementation uses the
efficient matrix-based methods from (Minin and Suchard, 2008).
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Outer expectations for CTMC sufficient statistics

After computing the “inner expectations," using the described formulae, one can compute “outer”
expectations (C-1) for sufficient statistics CTl

= dTl
(i) or CTl

= nTl
(i, j) on the interval Tl using

Baum-Welch’s bivariate smoothing probabilities

P(Xl = a,Xl+1 = b|o, τ ,h) =
e(b, ol+1)αtl(a)βtl+1

(b)[fab(∆tl+1)]
hl+1 [Sab(∆tl)]

1−hl+1

P(o, τ ,h)
.

Thus, the expression for the conditional expectation of the complete data sufficient statistic CT

across the entire time interval T = [t1, tn] is

E[CT |o, τ ,h] =
n−1∑
l=1

s∑
a=1

s∑
b=1

E[CTl
|Xl = a,Xl+1 = b,Hl+1 = hl+1]P(Xl = a,Xl+1 = b|o, τ ,h).
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Appendix D: Simulation study

A. C. 

H D

B.

Figure D-1: Data-generating disease models for the simulation study. Data-generating disease
models for the simulation study, with transition intensities next to arrows corresponding to each
transition. Most studies assumed no covariate effects and common disease models across individuals.
A. 2-state standard CTMC disease model. B. 2-state latent CTMC disease model, where latent
states (H1, H2) and (D1, D2) map to diseased and healthy states, respectively. C. Competing

risks disease model similar to the SBCE model. Latent states (H1, H2) map to the healthy state;
I and C are two absorbing diseased states, corresponding to ipsilateral and contralateral SBCEs.
A. 2-state standard CTMC disease model. B. 2-state latent CTMC disease model, where latent
states (H1, H2) and (D1, D2) map to diseased and healthy states, respectively. C. Competing

risks disease model similar to the SBCE model. Latent states (H1, H2) map to the healthy state;
I and C are two absorbing diseased states, corresponding to ipsilateral and contralateral SBCEs.
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Table D-1: Data descriptions for discretely-observed datasets simulated from reversible disease mod-
els ( Figures D-1A and D-1B), including DDO rates, fixed observation times, and misclassification
probabilities. These data specifications pertain to experiments summarized in Figure 2 in the main
text and in Figure D-3. Each experiment consisted of 100 simulated datasets with 1000 independent
individuals.
Figure Disease model qD qH e(H,D) e(D,H) Obs. interval Fixed times DDOs observed
2A A 2 .25 0 0 [0,8] 0,2,4,6,8 Y
2B A 2 .25 0 0 [0,8] 0,8 Y
2C B .3 .25 0 0 [0,8] 0,8 Y
2D B 2 .25 0 0 [0,8] 0,8 Y
D-3A A 2 .25 .15 .15 [0,7.9] 0,7.9 Y
D-3B A 0 0 .15 .15 [0,7.9] 0,7.9+10 obs. N
D-3C B 2 .25 .15 .15 [0,.8.2] 0,8.2 Y
D-3D B 0 0 .15 .15 [0,8.2] 0,8.2+8 obs N

Table D-2: Data descriptions for simulated data from discretely-observed competing risks model
(Figure D-1C), including DDO rates, fixed observations, and misclassification probabilities. Nota-
tion: qI/C = qI = qC and e(H, I/C) = e(H, I) = e(H,C). These data specifications pertain to
experiments summarized in Figure D-2. Each experiment consisted of 100 simulated datasets with
1000 independent individuals.
Figure Disease model qI/C qH e(H,I/C) e(I/C,H) Obs. interval Fixed times %DDO times
D-2 C 2 .25 .01 .3 [0,8] 0,8 49%
D-2 C 2 .25 .01 .3 [0,8] 0,2,4,6,8 35%
D-2 C 2 .25 .01 .3 [0,8] 0,1,2,...,7,8 20%
D-2 C 2 .25 .01 .3 [0,8] 0,.5,1,...,7.5,8 11%
D-2 C 2 .25 .01 .3 [0,8] 0,.25,.5,...,7.75,8 6%

7



Event I                                    Event C
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Fitting Model: panel

35%

20%

11%

6%

Percent DDO times

Fitting Model: DDO

Fitting Model: Dx time
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Figure D-2: Functional box plots for simulated data estimates of cumulative incidence for disease
events I and C in the latent CTMC competing risks model (Figure D-1C.) Discretely observed
data were generated from the disease trajectories according to informative observation times from
a DDO model with qH1 = qH2 = .25 and qI = qC = 2, and varying proportions of supplemental
non-informative times. Observations had 70% sensitivity and 98% specificity, corresponding to
mammography data. See Table D-2 for further dataset details. Data were fit with panel models
or multistate-DDO models, demonstrating bias incurred by ignoring informative observations, and
how increasing proportions of supplemental scheduled visits mitigates such bias. Also shown is
cumulative incidence based on time of diagnosis (Dx time), i.e. the time of the first true positive
mammogram.

8



Standard CTMC Latent CTMC

A.                B. C.                                      D.

KEY
DDO Panel

Fitting Model

Data-generating 
value

Obs. model Obs. model

es
ti

m
at

ed
 l

o
g-

ha
za

rd

Figure D-3: Box plots/functional box plots for hazard estimates of H → D and D → H transitions
for standard and latent CTMC reversible disease models (Figure D-1A, D-1B), observed with 15%
misclassification error at either DDO times or at fixed times with equal average frequencies. See
Table D-1 for further details. Data are fit with correctly specified multistate-DDO or panel models.
These result demonstrate the gains in precision in hazard estimates via jointly modeling informative
sampling times in the presence of misclassification error.
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Simulation studies examining estimated covariate effects on disease transition
parameters

These simulations used the competing risks latent CTMC disease model as their disease model
framework (Figure D-1C). Informative observation times were generated at a rate of 2/year in
states I and C, and .25/year in states H1, and H2. Each dataset consisted of 500 individuals,
observed at informative sampling times between t = 0 and t = 8 years. We generated a binary
covariate, X, and assumed that relative to those with X=0, those with X=1 had the log intensity
rates H1 → C and H2 → C increased by 1.5, and the H1 → I and H2 → I transitions reduced
by 1.5. We then fit a correctly specified multistate-DDO model or an analogous, but incorrectly
specified, panel model to 100 simulated datasets.

The results summarizing the estimates of these two parameters (denoted β1 and β2, with data
generating values of 1.5 and -1.5, respectively) are summarized in Table D-3. Also shown are the
intercept terms for the intensity rates. For the correctly specified models, the estimates of β1 and
β2 and their standard errors demonstrate little apparent bias, and the coverage of 95% confidence
intervals was close to the nominal 95%. Interestingly, the estimates from the panel model are similar
in sign, and not too far off in magnitude, to their data-generating values, despite the obvious bias
of other estimates of intensity parameters in the latent model. Moreover, the confidence interval
coverage for the estimated covariate effects is not too far from the nominal 95%.

Simulation studies examining usefulness of Bayesian information criterion for
model selection

To verify the usefulness of the BIC in latent state selection, we have conducted simulation exper-
iments. In these studies, we used the competing risks latent CTMC disease model (Figure D-1C)
and generated informative sampling times with rates of 2/year in states I and C and .25/year in
states H1, and H2. We generated 50 data sets with 1000 individuals each and fit models that either
correctly or incorrectly specified the latent CTMC disease and informative sampling time models.
The alternative, incorrect models, varied either the disease model structure or the informative sam-
pling time model. Table D-4 provides details of the additional models fit to the data. After fitting
each model to the simulated data, we calculated and ranked the BIC for each of the models fit to
the data. Across each of the 50 datasets, the ranking of the BIC was consistent: BIC was lowest
for the correctly specified model (Model 3, Table D-4), followed by Models 4, 5, 1, and 2. Thus,
using the criterion of selecting a model based on the lowest BIC, the correctly specified model was
selected for 50/50 simulated datasets.

Appendix E: Second Breast Cancer Event Application

Mammography and biopsy outcomes

Mammograms were positive if the BI-RADS (Breast Imaging-Reporting and Data System) score
was 0=“more imaging needed,” 4=“suspicious abnormality,” 5=“highly suggestive of malignancy,”
or 6=“known malignancy” American College of Radiology (2003). Biopsies with a result of invasive
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Table D-3: Summary of covariate estimates based on correctly specified multistate-DDO (M-DDO)
or incorrectly specified panel models using simulated data.
Model Param. True value Mean of est. Sd of est. Ave. SE of est. Coverage of 95% CI
M-DDO β1 1.50 1.53 0.21 0.19 0.92
M-DDO β2 -1.50 -1.51 0.30 0.30 0.97
M-DDO log(λ12) .41 .38 .25 .23 .92
M-DDO log(λ13) -1.39 -1.46 .26 .24 .97
M-DDO log(λ14) -1.95 -2.00 .32 .33 .97
M-DDO log(λ23) -4.53 -4.60 .28 .25 .90
M-DDO log(λ24) -2.87 -2.90 .12 .14 .98

Panel β1 1.50 1.66 0.25 0.22 0.92
Panel β2 -1.50 -1.29 0.29 0.31 0.90
Panel log(λ12) .41 .95 .51 .38 .78
Panel log(λ13) -1.39 -.13 .54 .40 .12
Panel log(λ14) -1.95 .06 .52 .38 <.01
Panel log(λ23) -4.53 -6.31 .82 .95 .65
Panel log(λ24) -2.87 -3.30 .28 .29 .82

Table D-4: Multistate DDO models fit to simulated competing risks data. Model 3 in this table is
the correctly specified multistate-DDO model.

Model label Disease model DDO constraints No. params
1 Standard CTMC qI = qC 6
2 Latent CTMC (2 states) qH1 = qH2 = qI = qC 8
3 Latent CTMC (2 states) qH1 = qH2 , qI = qC 9
4 Latent CTMC (2 states) qH1 = qH2 10
5 Latent CTMC (3 states) qH1 = qH2 = qH3 , qI = qC 13

malignancy or ductal carcinoma in situ (DCIS) were considered positive; negative findings included
benign growths and benign hyperplasias.

Dataset exclusions

There were 4,133 women with primary unilateral breast cancers diagnosed from 1994-2009 who
subsequently received mammography at Group Health. We applied sequential exclusions to obtain
an analysis dataset. We excluded women with a mammographically-detectable SBCE within 180
days following the primary breast cancer diagnosis (N=94), since events prior to that time likely
reflect progression of the primary disease. We also excluded women if they had a biopsy record
not preceded by a mammogram within the preceding 100 days (N=352), as well as those with any
missing laterality for mammograms or biopsy procedures (N=424), and those missing any of the
covariates of interest (N=327). In total, these exclusions reduced the dataset from 4,133 to 2,936
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women, removing 49% percent of ipsilateral cases, 32% of contralateral cases, 37% of those who
died prior to an SBCE, and 27% of those who were alive and SBCE-free at the time they were last
seen. More ipsilateral cases were dropped since they were more likely to have biopsies not preceded
by mammograms within the study period.

Sample characteristics

The 2,936 women in the sample used for analysis, as well as the 1,197 excluded from the sample, are
described in Table E-1. The sample was predominantly white (84.7%, N=2,488), with a median age
of 61 at primary breast cancer diagnosis (IQR 52, 71). Approximately one fifth of the sample had a
stage 0 (DCIS) primary breast cancer (18.6%, N=548), whereas half had stage 1 (49.6%, N=1,456),
and the rest, stage 2 or higher. The main difference between included and excluded women is
that excluded individuals were more likely to have stage 2 or higher cancer. This is related to our
exclusion of individuals with biopsies not preceded by mammograms within the study period being
more likely to have advanced stage primary breast cancer.
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Table E-1: Characteristics of the Group Health patients with a history of primary breast cancer,
either included in or excluded from the analysis sample. Percentages do not include missing data.
Abbrevations: ER+=estrogen receptor positive, PR+=progesterone receptor positive.

Included (N=2,936) Excluded (N=1,197)
N % N %

Age at diagnosis
<50 557 19 264 22.1

50-59 801 27.3 330 27.6
60-69 757 25.8 281 23.5
70+ 821 28 322 26.9

Missing 0 0
Race

White 2488 84.7 1005 86.6
Black 83 2.8 34 2.9
Asian 189 6.4 48 4.1
Other 176 6 73 6.3

Missing 0 37
Stage of primary cancer

0 548 18.7 138 14.1
1 1456 49.6 425 43.4

2+ 932 31.7 417 42.6
Missing 0 217

ER+ or PR+ for primary cancer
No 386 16.3 165 17.5
Yes 1984 83.7 779 82.5

Missing 556 253

Treatment of primary breast cancer
Mastectomy

None 18 0.6 24 2.3
Partial 1925 66.4 711 66.9

Complete unilateral 955 33 328 30.9
Missing 38 134

Radiation
No 943 33.3 323 30.9
Yes 1891 66.7 723 69.1

Missing 102 151 26.9
Chemotherapy

No 2054 70.2 704 63.3
Yes 874 29.8 409 36.7

Missing 8 84
Adjuvant endocrine therapy

No 1464 49.9 500 50.8
Yes 1472 50.1 485 49.2

Missing 0 212
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Table E-2: Informative sampling time models for the SBCE data. Non-informative models assume
the same DDO rate in all states.
Model label Disease model DDO model

No. DDO params Constraints
1 Standard CTMC non-informative 1 qH = qI = qC
2 H/I,C 2 qH , qI = qC
3 H/I/C 3 qH , qI , qC

4 Latent CTMC non-informative 1 qH1 = qH2 = qI , qC
5 H1,H2/I,C 2 qH1 = qH2 , qI = qC
6 H1/H2/I,C 3 qH1 , qH2 , qI = qC
7 H1/H2/I/C 4 qH1 , qH2 , qI , qC

Table E-3: Model fitting results for SBCE disease and informative sampling time models.
Disease Model

Standard CTMC Latent CTMC
DDO model DDO model
non-inf. H/I,C H/I/C non-inf. H1,H2/I,C H1/H2/I,C H1/H2/I/C

Model label 1 2 3 4 5 6 7
LL -9,166 -9,155 -9,154 -9,141 -9,131 -9,103 -9,102
no. params 6 7 8 10 11 12 13
BIC 18,381 18,366 18,373 18,362 18,349 18,302 18,308

Table E-4: Mammography misclassification estimates for different DDO and disease models.
True positive rate 95% CI
Model label Disease model DDO model Estimate Lower Upper
1 Standard CTMC Non-inf. 0.77 0.63 0.86
3 Standard CTMC H/I/C 0.81 0.68 0.90
4 Latent CTMC Non-inf. 0.61 0.46 0.74
6 Latent CTMC H1/H2/I,C 0.69 0.55 0.81

False positive rate 95% CI
Model label Disease model DDO model Estimate Lower Upper
1 Standard CTMC Non-inf. 0.056 0.053 0.059
3 Standard CTMC H/I/C 0.056 0.053 0.059
4 Latent CTMC Non-inf. 0.055 0.053 0.058
6 Latent CTMC H1/H2/I,C 0.056 0.053 0.059

14



Figure E-1: Sensitivity of SBCE cumulative incidence estimates to choice of disease and observation
model. Table E-2 shows model details. Models include informative multistate-DDO models (models
2 and 6), and misspecified non-informative observation models (models 1 and 4). Abbreviations:
Dx empirical=empirical estimate of cumulative incidence of diagnosed SBCE events.
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

Figure E-2: Point esitmates and 95% confidence intervals for covariate effects via a latent diagnosis
time model and different multistate-DDO models (Table E-2). For Stage 1 and Stage 2+, the
reference cancer stage is Stage 0.
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Figure E-3: Empirical cumulative incidence estimates for diagnosis of ipsilateral and contralateral
SBCEs and death prior to SBCE, stratified by covariate levels.
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