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Summary. Multistate models are used to characterize individuals’ natural histories through diseases with discrete states.
Observational data resources based on electronic medical records pose new opportunities for studying such diseases. However,
these data consist of observations of the process at discrete sampling times, which may either be pre-scheduled and non-
informative, or symptom-driven and informative about an individual’s underlying disease status. We have developed a novel
joint observation and disease transition model for this setting. The disease process is modeled according to a latent continuous-
time Markov chain; and the observation process, according to a Markov-modulated Poisson process with observation rates
that depend on the individual’s underlying disease status. The disease process is observed at a combination of informative
and non-informative sampling times, with possible misclassification error. We demonstrate that the model is computationally
tractable and devise an expectation-maximization algorithm for parameter estimation. Using simulated data, we show how
estimates from our joint observation and disease transition model lead to less biased and more precise estimates of the disease
rate parameters. We apply the model to a study of secondary breast cancer events, utilizing mammography and biopsy records
from a sample of women with a history of primary breast cancer.
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1. Introduction
Multistate modeling is a statistical tool that allows medi-
cal researchers to characterize the evolution of disease nat-
ural histories through discrete states, including progressive
diseases (like HIV (Longini and Clark, 1989)) and episodic
diseases with reversible transitions (like asthma (Saint-Pierre
et al., 2003)). Many methods exist for modeling disease pro-
cesses with known transition times and trajectories (Andersen
and Keiding, 2002; Meira-Machodo et al., 2009). However, re-
cent interest in mining large databases of electronic medical
records (Dean et al., 2009) poses new statistical and computa-
tional challenges. In such data, patients’ disease statuses are
recorded only at clinic visits, and exact transition times are
unknown. Our goal is to develop a multistate disease mod-
eling framework that accommodates the complexities of ob-
servational data from electronic medical records. Features of
this type of data include panel observation of disease tra-
jectories, duration-dependent hazard functions, misclassified
disease observations, and random visit times that may depend
on the disease trajectory.

There are many options for modeling discretely observed
multistate processes when visit times are non-informative.
The simplest, most tractable models for panel data are
time-homogeneous continuous-time Markov chains (CTMCs)
(Kalbfleisch and Lawless, 1985). However, CTMCs are
limited by an assumption of constant hazard functions that

is frequently unrealistic. More flexible models used for panel
data include inhomogeneous CTMCs (Kay, 1986; Hubbard,
Inoue, and Fann, 2008; Titman, 2011) that allow hazard
functions to vary with respect to time since the process origin.
Although these models expand the functionality of CTMCs,
for many diseases, hazard functions vary with disease state
sojourn duration, not just external time. In these cases, semi-
Markov models are appealing, yet estimation for such models
proves less tractable in the presence of reversible transitions
(Chen and Tien, 2004; Kang and Lagakos, 2007). Recent
research has suggested advantages of using latent CTMCs
in the discrete observation setting (Titman and Sharples,
2010; Lange and Minin, 2013). These models have the
backbone of standard CTMCs, retaining their tractability;
but multiple latent states map to each disease state, yielding
duration-dependent sojourn time distributions. Moreover, it
is easy to extend latent CTMC models into continuous-time
hidden Markov models (HMMs) to allow for misclassification
error. This is the disease modeling framework we will assume.

Most methods developed for panel observed multistate pro-
cesses treat visit times as non-informative—an assumption
that often does not hold in observational studies. Visits sched-
uled in advance, even those based on observations at previ-
ous time points, are ignorable; but times of patient-initiated,
symptom-based visits cannot be ignored in the analysis be-
cause these times depend on the underlying disease process

90 © 2014, The International Biometric Society



A Joint Model for Multistate Disease Processes and Random Informative Observation Times 91

(Gruger, Kay, and Schumacher, 1991). Non-ignorable visit
times necessitate joint modeling of the disease process and
visit times. However, existing joint models of this sort, ca-
pable of analyzing panel data (Chen, Yi, and Cook, 2010;
Sweeting, Farewell, and De Angelis, 2010; Chen and Zhou,
2011, 2013), assume pre-designated visits with informative
missingness, which is appropriate for clinical trials but not
for observational clinical data with random visit times.

In this article, we develop a joint model of a discretely
observed multistate disease process and a random observa-
tion time process. We treat the random, patient-initiated visit
times as a temporal point process, which consists of a time
series of binary events that occur in continuous time (Daley
and Vere-Jones, 2003). Due to their tractability and flexibil-
ity, inhomogeneous Poisson processes are commonly used to
model observation time point processes jointly with a longi-
tudinal outcome, including continuous (Sun et al., 2005) and
panel-count variables (Li, Zhao, and Sun, 2013). However, in
these models the dependence of observation times and the
disease process is specified by modeling the disease process
conditional on the observation process. In contrast, we flip
the conditioning, assuming that the observation process is a
doubly stochastic Poisson process with rates that depend on
the disease state. Our multistate-disease-driven observation
(multistate-DDO) model can be viewed as an extension of
the “preferential sampling” approach for spatial data to mul-
tistate disease processes (Diggle, Menezes, and Su, 2010).

Our joint modeling framework is as follows. The disease
process follows a latent CTMC trajectory. We condition on
all scheduled visits and assume that patient-initiated DDO
times accrue according to a Markov-modulated Poisson pro-
cess with rates that depend on the patient’s current disease
status. The disease process is observed, with possible mis-
classification error, at informative and non-informative visit
times. Our multistate-DDO model is similar to the earthquake
timing model of Lu (2012), but our model also allows for ob-
servations at non-informative times. We demonstrate that the
likelihood of our joint model is computationally tractable.
Moreover, we develop an efficient expectation-maximization
(EM) algorithm to fit our joint multistate-DDO model to
panel data. Via simulations, we demonstrate the importance
of accounting for random informative sampling times in pre-
venting bias and increasing precision of estimates of disease
process parameters.

To illustrate the multistate-DDO model, we apply it to
an observational study of secondary breast cancer events
(SBCEs) in women who have had a unilateral primary breast
cancer. We use data on screening and diagnostic mammo-
grams subsequent to the primary breast cancer as well as biop-
sies to characterize transitions between breast cancer states.
The disease model has a competing risks framework, with
terminal competing events corresponding to ipsilateral SBCE
(same side as original cancer), contralateral SBCE (oppo-
site side to original cancer), or death prior to SBCE. Pa-
tient visits occur either at scheduled screening examinations
or at diagnostic examinations triggered by signs or symp-
toms of an SBCE, necessitating modeling of informative visit
times. While conventional studies of SBCEs view time of diag-
nosed secondary cancer as the target of inference (Chapman,
Fish, and Link, 1999; Geiger et al., 2007; Buist et al., 2010),

we focus on latent onset time of a mammographically de-
tectable SBCE prior to diagnosis. Estimates from our model
are clinically meaningful, as they provide information about
prevalence of undetected SBCEs in the growing population of
breast cancer survivors (Siegel et al., 2012) as well as screen-
ing accuracy in this population.

2. Modeling Framework

2.1. Joint Model for Disease Process and Disease Driven
Observation Process

The disease process, denoted X(t) and modeled as a time
homogeneous CTMC, has state space S = {1, . . . , s}, infinites-
imal generator matrix ! = {λij}, and initial distribution π.
Jumps in X(t) correspond to an individual’s transitions be-
tween states in the disease process. The observation process,
denoted N(t), is a Markov-modulated Poisson process with
piecewise constant rates q(t) = q (X(t)) that depend on the
underlying disease state. N(t) has state space {0, 1, . . . ,∞},
corresponding to the accrual of patient-initiated disease-
driven observations (DDOs): the process jumps and the
state increases by one each time a DDO occurs. Rates of
DDOs corresponding to disease states {1, . . . , s} are denoted
q = (q1, . . . , qs).

Jointly, the disease process and counts of DDOs evolve
according to a bivariate time-homogeneous continuous-time
Markov chain, Y(t) = (X(t), N(t)) (Mark and Ephraim, 2013).
The state space for Y(t) is the Cartesian product of the state
space of X(t) and N(t),

S′ = {(1, 0), (2, 0), . . . , (s, 0), (1, 1), . . . (s, 1), . . . , (1, ∞), . . . , (s, ∞)}.

Figure 1A shows an example of a joint three-state dis-
ease and observation process trajectory. Supposing Q =
diag(q1, . . . , qs), the transition generator matrix for the joint
process Y(t) is

R =

⎡

⎢⎢⎢⎢⎣

! − Q Q 0 0 . . .

0 ! − Q Q 0 . . .

0 0 ! − Q Q . . .

...
...

. . .
. . .

. . .

⎤

⎥⎥⎥⎥⎦
.

The structure of R follows from the assumption that DDOs
and changes in disease states cannot occur simultaneously.
The first ! − Q block yields the transition rates between
states (i, 0) and (j, 0) and the first Q block yields the rates
between state (i, 0) and (j, 1); the rest of the generator matrix
is structured similarly (Fearnhead and Sherlock, 2006).

2.2. Likelihood for Observed Data

Our observed data consist of partial observations of the joint
disease and DDO process, since we only see an individual’s
disease status at DDO times or scheduled visit times. The
observation times are t1, . . . , tn, and DDO times are distin-
guished from scheduled visit times via indicator functions
h = (h1, . . . , hn). We denote the collection of DDO event times
as τ = {ti : hi = 1, i = 1, . . . , n}. Disease states at the observa-
tion times are x1, . . . xn.
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Figure 1. (A) Example of a joint informative observation
and disease process, Y(t) = (X(t), N(t)). (B) The informative
observation time process and the disease process observed at
DDO and scheduled times. (C) Same as (B), with misclassi-
fication error.

We first consider the likelihood where we observe X(t) at
DDO and scheduled visit times without misclassification er-
ror (Figure 1B). The likelihood conditions on scheduled visit
times. The random variable hk is a censoring indicator that
denotes whether a DDO observation occurred before or af-
ter the next scheduled visit time from time tk−1. The Markov
property and time-homogeneity of Y(t) enables us to obtain
the likelihood of the observed data as a product of density
or survival functions for the first passage time of Y(t) into
state (j, k + 1), given Y(tk) = (i, k) across each observation in-
terval [tk−1, tk]. Given the time-homogeneity of Y(t) and the
structure of R, it suffices to consider Wi0,j1, the first passage
time into state (j, 1), given state (i, 0) at time 0. When tk is a
DDO time, the contribution to the likelihood for the interval
[tk−1, tk] is the density of Wi0,j1, fij("tk), where "tk = tk+1 − tk.
When tk is a scheduled visit time, we know that Wi0,j1 > "tk,
and the contribution to the likelihood is the survival function
for Wi0,j1, Sij("tk). Thus, the likelihood based on the observed
data is

P(x1, . . . , xn, τ,h)

= νh1πx1(h1)

n∏

k=2

{fxk−1xk
("tk)}htk {Sxk−1xk

("tk)}1−htk .

More generally, the disease process is observed with
misclassification error at scheduled visits and DDO times

(Figure 1C). Thus, we observe o = (o1, . . . , on) rather than
x1, . . . , xn. We assume that disease process observations are
conditionally independent given X(t). The relationship be-
tween observed and latent states is described by an emission
matrix E = {e(i, j)} with entries e(i, j) = P{ot = j|X(t) = i}.
The likelihood includes emission probabilities and sums
P(x1, . . . , xn,o, τ,h) over the possible values of x:

P(o, τ,h) =
∑

x1

∑

x2

· · ·
∑

xn

νh1πx1(h1)

n∏

k=2

{fxk−1xk
("tk)}hk

×{Sxk−1xk
("tk)}1−hk

n∏

i=1

e(xi, oi). (1)

One can derive the density and survival functions fij(t) and
Sij(t) explicitly in terms of ! and Q using standard CTMC
techniques (Freed and Shepp, 1982). First passage time Wi0,j1

has the same distribution of the absorption time of an auxil-
iary process Y ′(t), corresponding to Y(t) for {t : N(t) ∈ {0, 1}},
with state space {(1, 0), . . . (s, 0), (1, 1), . . . (s, 1)}, absorbing
states (1, 1) . . . (s, 1), and rate matrix

R̄ =
[

! − Q Q

0 0

]
.

The survival function for Wi0,j1 is

Sij(t) = P{Wi0,j1 > t|Y(0) = (i, 0)}

= P
{
Y ′(t) = (j, 0)|Y ′(0) = (i, 0)

}

= exp{(! − Q)t}ij,

and the density function is

fij(t) = d

dt
P{Wi0,j1 < t|Y(0) = (i, 0)}

= d

dt
P

{
Y ′(t) = (j, 1)|Y ′(0) = (i, 0)

}

= exp
{
(! − Q) t

}
ij

qj,

via the Kolmogorov forward equation. Web Appendix A de-
scribes modifications to the observed data likelihood (1) for
data containing known transition times to absorbing states,
such as death. Web Appendix B describes efficient methods
for calculating the observed data likelihood (1) based on re-
cursions developed for hidden Markov models and Markov-
modulated Poisson processes (Baum et al., 1970).

2.3. Latent CTMC Model Parameterization

Disease process models based on standard CTMCs as-
sume that disease state sojourn times are exponentially dis-
tributed. To permit more flexibility, we assume a latent
CTMC framework for the disease process. We denote the
disease process V (t), with state space G = {1, 2, . . . , g}. Un-
derlying V (t) is a latent time-homogeneous CTMC X(t),
with transition intensity matrix ! and initial distribution π

and state space S = {11, 12, . . . , 1s1} ∪ {21, 22, . . . , 2s2} ∪ · · · ∪
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{g1, g2, . . . , gsg }. Each observable disease state corresponds to
multiple states in the latent state space, such that V (t) =
j <=> X(t) ∈ {j1, j2, . . . , jsj }. The mapping of multiple latent
states in S to a single disease state in G yields phase-type so-
journ distributions of V (t), which can be used to approximate
distributions with hazard functions having different shapes
(Aalen, 1995). We assume a Coxian structure for ! for its flex-
ibility and the fact that, up to trivial permutation of states, it
is uniquely parametrized when the latent space has a minimal
dimension (Cumani, 1982; Titman and Sharples, 2010). La-
tent CTMC models can be specified in the framework of the
observed data likelihood (1) through use of an emission ma-
trix with observed state space G and hidden state space S that
equates emission probabilities e(j1, k) = e(j2, k), . . . , e(jsj , k)
for all j, k ∈ G, permitting the mapping of the latent disease
space onto the observed disease space.

To incorporate baseline subject-level covariates w(k) in
the disease model, we relate log-rates to a linear predictor,

log(λ
(k)
ij ) = ζT

ij w
(k), where k denotes the individual. In latent

CTMCs, different constraints on covariate effects provide dif-
ferent interpretations. Adding the same covariate parameter
to all latent transitions originating from disease state p, that
is,

{
λij : i ∈ {p1, . . . , psp }

}
, implies a multiplicative effect on

the sojourn time in state p. To represent covariate effects on
cause-specific hazard functions, one can add a separate co-
variate parameter for each transition out of disease state p to
disease state r, that is,

{
λij : i ∈ {p1, . . . , psp , j ∈ {r1, . . . , rsr }

}
.

This specification does not, however, represent a proportional
hazards parameterization without additional non-linear con-
straints (Lindqvist, 2013).

One can also add covariates to DDO, emission, and
initial distribution parameterizations. This is achieved by
relating log rates of DDOs to a linear predictor; that is,

log(q
(k)
i ) = νT

i w(k). Initial distributions and emission distribu-
tions are multinomial. Assuming S has s total states, the ini-
tial distribution π has natural parameters {ηi = log{πi/π1)} :
i = 2, . . . , s}, and the emission distribution ei has natural pa-
rameters

{
ηij = log

{
e(i, j)/e(i, 1)

}
: j = 2, . . . , g

}
. Subject-

level covariates w(k) are added to the multinomial models via
a linear predictor, for example, specifying η

(k)
ij = γij

Tw(k).

3. Model Selection

We recommend selecting models via the Bayesian informa-
tion criterion (BIC), given its good performance for selecting
general mixture models (Steele and Raftery, 2010) and appli-
cability to comparing non-nested models. The BIC can assist
in choosing the dimension of latent space as well assessing
parameter constraints in the DDO rates. Finally, hypothesis
tests for covariate effects based on likelihood ratio or Wald
tests are appropriate, provided parameter identifiability holds
under the null model (Sundberg, 1973), which is achievable
by constraining covariate effects rather than estimating them
separately for each latent disease state.

4. Parameter Estimation

The parameters of interest in the multistate-DDO model,
θ = (π, !,E,q), characterize the initial distribution, the dis-
ease process, the misclassification probabilities, and the DDO
process rates, respectively; we will condition on h1 rather

than estimating its distribution. The standard approach for
Markov-modulated Poisson processes and partially observed
bivariate CTMCs (Ryden, 1996; Mark and Ephraim, 2013) is
to use an EM algorithm to arrive at the maximum likelihood
estimates (MLEs) of model parameters (Dempster, Laird, and
Rubin, 1977), as this algorithm exploits the ease of maximiz-
ing a “complete data” likelihood compared to the observed
data likelihood.

In the multistate-DDO model, the complete data are
(x, τ,o), the full disease trajectory, the DDO trajectory,
and observed disease statuses at the discrete times, respec-
tively. The complete data log-likelihood has exponential fam-
ily form and is a linear function of complete data sufficient
statistics. These sufficient statistics include nT (i, j), the to-
tal counts of transitions from state i to state j; dT (i), the
total time spent in state i; zi, the initial disease state in-
dicator; uT (i) =

∑n

l=2 I(xl = i)I(hl = 1), the total number of
DDOs that have occurred while X(t) was in state i; and
oT (i, j) =

∑n

l=1 I(xl = i)I(ol = j), the total co-occurrences of
latent state i and observed state j. As described by Lu (2012),
the complete data log-likelihood for an individual is

l(θ;o, τ,x|h1) = l(π; x1|h1) + l(!,q;x, τ|x1) + l(E;o|x, x1)

=
s∑

i

zi log{πi(h1)} +
s∑

i=1

∑

j ̸=i

nT (i, j) log(λij)

−
s∑

i=1

dT (i)

(
s∑

j ̸=i

λij

)
+

s∑

i=1

uT (i)(qi)

−
s∑

i=1

qidT (i) +
s∑

i=1

r∑

j=1

oT (i, j) log[e(i, j)].

(2)

This likelihood is additive across multiple independent indi-
viduals, yielding the complete data likelihood for an entire
sample.

The expectation step (E-step) requires computing the ex-
pectation of the complete data log-likelihood (2) conditional
on observed data (o, τ,h). Methods for obtaining these ex-
pectations are described in Web Appendix C. The maxi-
mization step (M-step) maximizes the conditional expecta-
tion of the complete data likelihood, calculated in the E-step,
with respect to θ. Covariate-free models admit closed-form M-
steps (Lu, 2012). For covariate-parameterized models, we op-
timize the complete data likelihood via the Newton–Raphson
method. Lange and Minin (2013) provide a full description of
such a numeric M-step in the context of discretely observed
latent CTMCs; the extension to multistate-DDOs is straight-
forward, as complete-data score and information functions for
the q parameters are identical to those for !.

We provide an implementation of the EM algorithm in R
(R Core Team, 2013), in the form of the R package cthmm,
available at http://r-forge.r-project.org/projects/
multistate/. As with all local optimization methods,
convergence to the true maximum log-likelihood is not
guaranteed, and the method is sensitive to starting values.
To make it likely that the true maximum is obtained, we run
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Figure 2. Simulation results demonstrating bias that occurs when informative visit times are ignored. Data were simulated
from discretely observed two-state standard and latent CTMC multistate-DDO models on the interval t = [0, 8] at DDO times
or a combination of DDO and scheduled visits (see Web Appendix Figure D1 and Table D1 for simulation details). Data were
fit with correctly specified multistate-DDO models and incorrectly specified panel models. Box plots/functional box plots are
shown for hazard estimates of H → D and D → H transitions from both DDO and panel models. The different DDO rates in the
model states varied across simulations, with more discrepant rates inducing more bias under model misspecification. (A) DDO
rates are qD = 2, qH = 0.25; data also included fixed observation times t = (0, 2, 4, 6, 8). (B) DDO rates are qD = 2, qH = 0.25.
(C) DDO rates are qD = 0.35, qH = 0.25. (D) DDO rates are qH = 0.25 and qD = 2.

the EM algorithm from multiple sets of initial values, such as
random deviates around sensible values based on prior knowl-
edge or MLEs obtained from fitting simpler, for example,
covariate-free, models. Finally, we use numerical differenti-
ation, implemented in the R package “NumDeriv” (Gilbert
and Varadhan, 2012), to obtain standard errors for parameter
estimates from the observed Fisher information matrix.

5. Simulation Study

We used simulated data to characterize the bias incurred by
fitting models that condition on the visit times rather than
jointly modeling them with the disease trajectory. We consid-
ered three disease models: (1) a standard CTMC reversible
disease model with two states (healthy and diseased); (2) a la-
tent CTMC reversible disease model; and (3) a latent CTMC
competing risks model similar to the SBCE application, where
absorbing states I and C correspond to mammographically de-
tectable ipsilateral and contralateral SBCEs (Web Appendix
Figure D1). After simulating disease trajectories from these
models, we used the Markov-modulated Poisson process DDO
models to generate discretely observed datasets with informa-
tive observation times, specifying comparatively higher DDO

rates in the diseased states than in the healthy states. The
competing risks model allowed for potentially misclassified
observations, corresponding to disease surveillance tests with
70% sensitivity and 98% specificity. See Web Appendix Tables
D1 and D2 for details.

To investigate bias resulting from ignoring DDO times, we
fit data generated from the reversible models with correctly
specified multistate-DDO models and with misspecified panel
data models that condition on the observations times. The
multistate-DDO models yielded unbiased estimates of the dis-
ease hazards. Under the misspecified panel models, bias in
rate estimates from the reversible standard CTMC followed a
consistent pattern: hazard rates for healthy → diseased tran-
sitions and diseased → healthy transitions were over- and
under-estimated, respectively, (Figure 2). Intuitively, infor-
mative observation times lead to more observations in the
diseased state and fewer in the healthy state than would be
expected under scheduled visits. Bias declined when non-
informative times were included with the informative obser-
vations (Figure 2A vs. C) and when DDO rates were less
discrepant between healthy and diseased states (Figure 2B vs.
C). Ignoring informative times in the latent CTMC reversible
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models also led to underestimates of diseased → healthy haz-
ard rates, but healthy → diseased hazard rates were overesti-
mated only near the state origin time.

In the competing risks disease model similar to the SBCE
application, we focused on estimates of the cumulative inci-
dence functions of disease of events I and C. Again, to inves-
tigate bias, we either fit correctly specified multistate-DDO
models or misspecified panel data models. The correctly spec-
ified multistate-DDO model produced unbiased cumulative
incidence estimates. The bias resulting from ignoring infor-
mative visit times was consistent with results from reversible
models: the hazard rates for healthy → I/C events were over-
estimated, yielding left-shifted cumulative incidence curves
(Web Appendix Figure D2). Moreover, bias decreased with
increasing numbers of scheduled visits added to supplement
informative visits. Misspecification of the informative sam-
pling times also dramatically underestimated mammography
sensitivity estimates, for example, sensitivity was estimated
at 40% when 20% of visits were informative, versus the data-
generating sensitivity of 70%. Finally, in addition to inves-
tigating bias given model misspecification, we also observed
that cumulative incidence estimates based on the properly
specified DDO model were shifted left relative to those based
on a simulated time of diagnosis, that is, the time of the first
true-positive mammogram (Web Appendix Figure D2). This
is consistent with diagnosis being a left censoring event for
screen-detectable disease.

Via simulation, we also examined the precision of esti-
mates of disease process parameters under informative and
non-informative observation schemes. Informative visit times
mitigate the uncertainty about the underlying disease states
at discrete observations with misclassification error, enabling
more precise estimates. We generated data from the reversible
standard and latent CTMC disease models (Web Appendix
Figure D1) and simulated misclassified observations either
in data sampled at DDO times or at pre-designated visit
times with equivalent average observation frequencies (Web
Appendix Table D1). The simulated data were fit with cor-
rectly specified multistate-DDO models or panel models, and
we observed less variability in multistate-DDO estimates than
their in panel model equivalents (Web Appendix Figure D3).

Covariate effects on disease transition parameters are often
a study’s scientific target. We used data simulated from the
latent CTMC competing risks disease model to consider the
sensitivity of estimated covariate effects to correctly specify-
ing the informative sampling time model versus ignoring infor-
mative sampling times (see Web Appendix D for setup details
and results). Under the correctly specified multistate-DDO
model, the MLEs of covariate effects appear valid in terms of
bias and confidence interval coverage (Web Appendix Table
D3). Interestingly, under misspecified models, estimates of co-
variate effects retained the same sign and order of magnitude
as their data-generating values, and the nominal 95% confi-
dence interval coverage was ∼90%. These results are plausible
as the covariate effects reflect relative rates of transitions be-
tween states across covariate levels rather estimates of the ab-
solute rates. While these simulations are limited in scope, they
support the idea that covariate effect estimates may be rela-
tively robust to misspecification of the sampling time model.
That said, bias in the intercept terms will still yield biased

predictions of state occupancies for different covariate levels.
Finally, all of our simulation studies have assumed that we

have correctly specified the number of latent states in the dis-
ease models. In general, choosing the number of latent states
is an important component of model selection, and we have
recommended using the BIC for this purpose. To evaluate
the performance of the BIC, we conducted simulation exper-
iments based on data generated from the latent CTMC com-
peting risks multistate-DDO model (see Web Appendix D for
details). Upon fitting models that varied in the specification
of latent disease and DDO model, we found that the BIC was
able to correctly select the data-generating model for 50 out
of 50 simulated data sets.

6. Application

We apply the multistate-DDO model to a study of secondary
breast cancer events (SBCEs) in women with a history of
unilateral breast cancer. The target of inference is onset
of mammographically detectable ipsilateral or contralateral
SBCE, which are unobserved events that occur prior to diag-
nosis. The dataset consists of the sequence of mammograms
and biopsies following completion of treatment for a primary
breast cancer. These data are suited for multistate-DDO
models, as mammograms have misclassification error, and
observation times include both scheduled screening and
patient-initiated visits. Scientifically, we are interested in
differences in estimates of cumulative incidence of mammo-
graphically detectable versus diagnosed SBCEs, estimates of
mammography misclassification, and estimates of covariate
effects on disease process parameters.

The study population consists of women diagnosed with
unilateral primary breast cancer between 1994 and 2009 who
were members of Group Health, an integrated health care
system in Washington state, at the time of their primary can-
cer diagnosis. Women were followed from 180 days after their
first cancer until the earliest of the first positive biopsy for
a SBCE, death, or disenrollment from the Group Health co-
hort. Women in this population were recommended to un-
dergo annual screening mammograms in an effort to detect
SBCEs before they become symptomatic. Women were also
recommended to receive diagnostic evaluations for symptoms
that arise in between scheduled surveillance intervals. Mam-
mograms that are positive were followed up with further imag-
ing workup, and, if warranted, biopsies. Mammography visit
times were considered to be scheduled screening visits un-
less the woman and radiologist reported that the visit was
for “evaluation of a breast problem,” or only the radiologist
coded it as such, but the woman endorsed an additional vari-
able indicating symptoms. Web Appendix E provides addi-
tional details on outcome variable definitions and exclusion
criteria.

6.1. Data Description

There are 2936 women in the analysis sample, with a median
follow-up time of 5.8 years (IQR 2.8–9.2). Web Appendix Ta-
ble E1 provides a description of baseline sample character-
istics. There were 14,288 contralateral and 10,468 ipsilateral
mammograms and 241 contralateral and 212 ipsilateral biop-
sies. There are fewer ipsilateral than contralateral mammo-
grams because some women were treated for their primary
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Table 1
Outcomes for mammograms and biopsies by procedure laterality

Observed result

Procedure type Laterality Total Healthy Ipsi. Contra.

Mamm. Contra. 14,288 13,305 0 983
Ipsi. 10,468 9,800 668 0

Biopsy Contra. 241 157 0 84
Ipsi. 212 148 64 0

cancer with mastectomy and thus no longer require disease
surveillance on the ipsilateral side. The results of the mam-
mograms and biopsies are shown in Table 1. There were 84
women diagnosed with contralateral SBCEs and 64 diagnosed
with contralateral SBCEs. Approximately 7% of all mam-
mograms and 33% of biopsies were positive. Overall, there
were 280 days coded as patient-initiated informative visits.
On average, women had 0.98 scheduled mammogram visits
per person-year. In contrast, rates of informative visits were
low: 0.018 per person-year.

6.2. SBCE Models

The disease model is a competing risks model with three
absorbing states: ipsilateral SBCE, contralateral SBCE, and
death before SBCE. We considered both a standard CTMC
with state space {H = healthy, I = Ipsilateral SBCE, C =
contralateral SBCE, D = death before SBCE} and a latent
model with state space {H1, H2, I, C, D}, where H1, and H2 are
two latent states that map to the healthy disease state. The la-
tent model is biologically plausible as it allows for SBCE haz-
ard rates to be higher near the time of primary breast cancer
diagnosis, reflecting recurrences of the primary breast can-
cer, and to level out over time, reflecting novel cancer events
(Demicheli et al., 1996). The transitions in the two models
are depicted in Figure 3. All women are assumed to be dis-
ease free at the beginning of the study, and start in either the
H or H1 state, depending on the disease model.

Figure 3. SBCE competing risks disease models. (A) Stan-
dard CTMC, where H=healthy, C=contralateral SBCE,
I=ipsilateral SBCE, and D=death before SBCE. (B) Latent
CTMC with Coxian structure. States H1 and H2 map to the
healthy state.

Covariates were added to the disease model assuming an
additive effect on the log-rates, that is, log(λij) = ζT

ij X, where
X are the covariates and ζij the coefficients for transition
i, j. To ensure parameter identifiability, we constrained pa-
rameters in the latent model ζH1,j = ζH2,j, j ∈ {I, C, D} and
did not add covariates to the H1 → H2 transition. Thus, for
each covariate, there is one parameter each affecting transition
rates from the healthy state to ipsilateral SBCEs, contralat-
eral SBCEs and death prior to SBCE. The specific covariates
we focused on included age at diagnosis, dichotomized to age
<50 versus age >50; American Joint Committee on Cancer,
Version 6, stage of the primary breast cancer (0 =in situ, 1,
2+); adjuvant endocrine therapy for the original cancer (yes
or no); and race (White vs. non-White), based on prior evi-
dence in the literature (de Bock et al., 2006; Andreetta and
Smith, 2007; Moran et al., 2008).

The DDO models specify rates of informative sampling
times according to the individual’s underlying disease state.
For model comparison and sensitivity analysis we considered
different restrictions on these DDO rates, that is, assuming
that the rate was the same in more than one state (for de-
tails, see Web Appendix Table E2). All models assumed that
the DDO rate in the death state was zero. Models that assume
DDO rates are identical across the healthy and ipsilateral and
contralateral states suggest that the sampling times are not
informative about the disease process: this assumption yields
estimates that are quite similar to models that condition on
the times, but allows for model comparison via the BIC.

Each mammogram and biopsy was classified as ipsilateral
or contralateral. To model mammography misclassification,
we assumed a zero probability of detecting an SBCE with a
discordant procedure laterality; for example, detecting an ip-
silateral SBCE via a mammogram on the contralateral side.
In order to promote parameter identifiability in the overall
model, we estimated mammography sensitivity and specificity
but fixed the biopsy false negative rate at 0.02 and false pos-
itive rate at 0, which are reasonable given modern biopsy
accuracy rates (Dillon et al., 2005). To accommodate differ-
ent misclassification probabilities depending on the procedure
type and side, we used a time-dependent emission distribu-
tion.

6.3. Model Fitting Results

The BIC is lowest for the latent CTMC disease model and
H1/H2/I, C DDO model, where rates of DDO times are al-
lowed to vary in the two healthy states, but are equal in ip-
silateral and contralateral SBCE states (see Web Appendix
Table E3 for model comparison). The estimated DDO rate in
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Death

Figure 4. Estimated cumulative incidence for ipsilateral and contralateral SBCEs and death, via empirical estimates of the
diagnosis times or using the BIC-selected multistate-DDO model (Web Appendix Table E2, model 6). The bands are point-
wise standard errors. Abbreviations: Dx empirical = empirical estimate of cumulative incidence of diagnosed SBCE events;
SE = standard error.

state H1 is 0.046/person-year (95% CI (0.036,0.058)); in H2

it declines to 0.009/person-year (95% CI (0.007,0.012)); and
in the SBCE disease states it is 0.076/person-year (95% CI
(0.047,0.11)). These rate estimates are plausible given that
patients may be more likely to exhibit symptoms or to ini-
tiate visits close to their primary breast cancer diagnosis, as
well as after they have developed an SBCE.

Figure 4 plots estimates of cumulative incidence of mam-
mographically detectable SBCEs based on the BIC-preferred
multistate-DDO model, in addition to empirical cumulative
incidence of diagnosed SBCE events. The multistate-DDO
model estimates that at 5 years after diagnosis 3.7% (95% CI
[2.6,4.8]) of women will have a mammographically detectable
ipsilateral SBCE, whereas 2% (95% CI [1.14,2.6]) will have
been diagnosed. Likewise, at 5 years, the multistate-DDO
model estimates 3.6% (95% CI [2.6,4.5]) will have a contralat-
eral SBCE, whereas 2.4% (95% CI [1.9, 2.9]) will have been di-
agnosed. In general, the BIC-preferred DDO model estimates
that a range of 25–45% of prevalent SBCEs are undiagnosed
from 5 to 10 years after the primary BC, demonstrating the
potential benefit of a more sensitive test for improvement of
early disease detection.

The multistate-DDO models allow us to estimate true and
false positive rates for mammograms. Based on the BIC-

selected multistate-DDO model, the estimate of the true pos-
itive rate is 69% (95% CI (55%,81%)), and the false positive
rate is 5.6% (95% CI (5.3%, 5.9%)). These results are com-
parable with empirical estimates of mammography sensitivity
of 65.4% (95% CI, (61.5%, 69.0%)) and specificity of 98.3%
(95%CI (98.2%, 98.4%)) from the Breast Cancer Surveillance
Consortium, of which Group Health is a participating institu-
tion (Houssami et al., 2011), as well as a recent meta analy-
sis reporting mammography sensitivity ranges of 64-67% and
specificity ranges of 85–97% across studies (Robertson et al.,
2011).

The multistate-DDO models are parametric, and results
are sensitive to model parameterization. Moreover, misspec-
ification of either the observation time, misclassification, or
disease model will affect estimates of all components. We ex-
amined how results differed if we had assumed a CTMC dis-
ease model or a non-informative observation model for the
patient-initiated visit times. Unlike the BIC-selected latent
disease model, the standard CTMC disease model was un-
able to capture higher SBCE cumulative incidence in the
first 5 years after breast cancer diagnosis (Web Appendix
Figure E1). Further, assuming no informative observations
yielded left-shifted cumulative incidence estimates relative to
models allowing for DDO rates to differ across disease states.
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Table 2
Coefficient estimates for a covariate-parameterized version of the BIC-selected SBCE multistate-DDO (M-DDO) model (Web
Appendix Table E-2, model 6) and an analogous latent CTMC competing risks disease model based on time of diagnosis (Dx)

Ipsilateral Contralateral Death

95% CI 95% CI 95% CI

Model Est. Low. Upp. Est. Low. Upp. Est. Low. Upp.

Endocrine Dx −0.89 −1.50 −0.28 −0.06 −0.52 0.40 −0.19 −0.45 0.07
therapy M-DDO −0.87 −1.47 −0.27 −0.07 −0.52 0.38 −0.21 −0.47 0.05

Age <50 Dx 0.45 −0.09 0.99 −0.36 −0.98 0.26 −0.81 −1.20 −0.42
M-DDO 0.69 0.18 1.20 −0.28 −0.89 0.33 −0.80 −1.20 −0.40

Stage 1 Dx −0.60 −1.18 −0.02 0.32 −0.31 0.95 0.50 0.07 0.93
(ref stage 0) M-DDO −0.84 −1.40 −0.28 0.33 −0.32 0.98 0.49 0.06 0.92

Stage 2+ Dx −0.46 −1.18 0.26 0.09 −0.65 0.83 1.17 0.73 1.61
(ref stage 0) M-DDO −0.47 −1.15 0.21 0.22 −0.52 0.96 1.17 0.72 1.62

Non-white Dx −0.18 −0.92 0.56 −0.14 −0.80 0.52 −0.35 −0.76 0.06
ethnicity M-DDO −0.14 −0.87 0.59 −0.13 −0.79 0.53 −0.33 −0.74 0.08

While these results are consistent with the simulation studies
examining bias due to ignoring informative sampling times
(Web Appendix Figure D2), the magnitude of the shift is
much more subtle, probably attributable to the low incidence
of DDO times. Estimates of mammography true positive rates
are also sensitive to choice of disease and DDO model (Web
Appendix Table E4). Indeed, higher sensitivity estimates are
associated with lower estimates of the cumulative incidence
of SBCEs across the observation period.

6.4. Covariate Effects

Point estimates for the covariate parameters within the BIC-
selected multistate-DDO model are shown in Table 2. For the
purpose of comparison, we also estimated covariate effects for
an analogous latent CTMC disease model based on time of di-
agnosis, the modeled event in conventional studies of SBCEs.
Estimates for covariate effects were quite similar between the
multistate-DDO and diagnosis-time models, with the excep-
tion of effect sizes for age and primary cancer stage on ipsi-
lateral SBCEs. Interestingly, covariate effects were not only
similar between diagnosis and multistate-DDO models, they
also were relatively robust to misspecification of the informa-
tive sampling time model (Web Appendix Figure E2). The
models indicated overall significant covariate effects on rates
of ipsilateral disease (Wald test (p<0.001), but not contralat-
eral SBCEs (Wald p-values ranged from 0.6 to 0.84). Our find-
ings on covariate effects are compatible with an exploratory
data analysis we conducted looking at the marginal effects of
covariates on cumulative incidence of diagnosed SBCEs (Web
Appendix Figure E3), as well as the Breast Cancer Surveil-
lance Consortium’s study on diagnosed SBCEs (Buist et al.,
2010). Further, although the chosen covariate parameteriza-
tion does not imply proportional hazards, inspection of esti-
mated hazard ratios revealed they were very near constant
over time. Thus exponentiated coefficient estimates are ap-
proximately interpretable as having multiplicative effects on
hazards. For example, hormone treatment for primary cancer
was associated with a reduced hazard of ipsilateral SBCEs, by

a factor of exp(−0.89) = 0.41 (95% CI [0.23,0.76]), adjusting
for other covariates.

7. Discussion

The increasing availability of electronic medical resources
presents new opportunities for modeling multistate diseases.
However, as patients’ disease statuses are only assessed at
discrete clinic visit times – and visit times may be informa-
tive about the patients’ disease histories – these data pose
challenges for inference. The multistate-DDO model provides
a novel and flexible approach for modeling such data: it ap-
plies to a broad class of disease models, including chronic
diseases with reversible transitions and duration-dependent
hazard functions; allows for covariate effects; and accommo-
dates both patient-initiated random visit times and scheduled
non-informative visits.

Our application of the multistate-DDO model to the study
of SBCEs represents a new analysis method in this setting.
Existing studies of secondary breast cancers focus on diagno-
sis as the primary outcome (Chapman et al., 1999; Geiger
et al., 2007; Buist et al., 2010), our method uses patient
mammography data to model onset of mammographically de-
tectable disease, a clinically relevant outcome that indicates
the fraction of a screened population at a given time with
undetected disease. Further, others have studied mammog-
raphy visit patterns in breast cancer survivors (Wirtz et al.,
2014), as well as the relationship between screening mammog-
raphy and mortality (Buist et al., 2013), but our approach is
unique in its joint modeling of disease and mammography visit
processes.

The multistate-DDO approach for the SBCE data bears
similarities to models developed for disease screening trials
(Boer, Plevritis, and Clarke, 2004); both model onset of
screen-detectable disease and estimate screen sensitivity.
However, there are important differences between the two
approaches. Disease screening models consider progression
to a single disease state that is divided into symptom-free



A Joint Model for Multistate Disease Processes and Random Informative Observation Times 99

pre-clinical and symptomatic clinical sub-states. In contrast,
the multistate-DDO model can handle more complicated
disease frameworks, such as the SBCE model’s competing
risk scenario, but does not distinguish between pre-clinical
and clinical sub-states. Indeed, the multistate-DDO model
reflects symptom-development implicitly through the infor-
mative visit process; DDOs based on symptoms occur more
frequently in diseased states but may also occur when the
patient is healthy. Ultimately, while estimating pre-clinical
sojourn duration is desirable for developing screening proto-
cols, the multistate-DDO model’s flexibility invites its use in
contexts where screening models do not apply.

The multistate-DDO model also has limitations. For one,
the latent structure means parameters are not always
identifiable: model building requires compromises between
parameterizations that retain estimability but are rich enough
to describe the disease process. Furthermore, the model’s
parametric assumptions make it sensitive to model-
misspecification. In particular, misspecification of the disease
model impacts both estimates of disease cumulative incidence
and mammography sensitivity — an observation also made
in reference to disease screening models (Etzioni and Shen,
1997). To probe parametric assumptions of the multistate-
DDO model, it will be important to develop goodness of fit
evaluation strategies. The informative sampling times mean
that the methods aimed at goodness of fit assessment for dis-
cretely observed multistate models are no longer applicable
(Titman and Sharples, 2008). In our setting, the observed
disease states at the disease driven observation times can be
construed as a multivariate point process (Gerhard, Haslinger,
and Pipa, 2011). Transforming event times in a multivariate
point process by the events’ cumulative hazard functions
yields independent Poisson processes, one for each event cat-
egory (Meyer, 1971), enabling goodness of fit evaluation via
testing the Poisson process assumptions. We plan to adapt
this strategy to the multistate-DDO model in the future.

Another concern is the requisite of identifying patient-
initiated visits. In absence of such information, we advise
against modeling all visit times via the Markov-modulated
Poisson process, due to clustering of scheduled visit times.
Visit indication is often available from insurance claims as
well as clinical records, although different sources may con-
flict (Fassil et al., 2014; Fenton et al., 2014). In this situation,
we recommend performing sensitivity analyses using various
visit definitions. There is also the potential for expanding the
multistate-DDO model to include visit status as an additional
latent component.

We note the potential for other model extensions, in-
cluding allowing disease transition parameters to have time-
dependent covariates. Accommodating piecewise constant co-
variate effects is straightforward, since one can split individ-
ual records on times that the covariate values change. More
generally, the models could also include time-dependent co-
variates that vary in a continuous fashion, but such an ap-
proach would require calculating transition probabilities by
numerically solving the Kolmogorov forward equations and
numeric optimization to obtain MLEs (Titman, 2011). It
would also be possible to expand the DDO model to accom-
modate prior and future visit times as time-dependent co-
variates, allowing for additional temporal dependence in the

DDO process. In general, estimation in a Bayesian framework
might also be useful, as it would allow incorporation of prior
information about the disease process or misclassification
probabilities and might mitigate concerns about parameter
identifiability.

8. Supplementary Materials

The R package cthmm is found at http://r-forge.
r-project.org/projects/multistate/. Web Appendices,
Tables, and Figures referenced in Sections 2, 4, 5, and 6, are
available with this paper at the Biometrics website on Wiley
Online Library. Sample code and simulated data demonstrat-
ing the package are also included.
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