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ABSTRACT
Phylodynamics focuses on the problem of reconstructing past

population size dynamics from current genetic samples taken from
the population of interest. This technique has been extensively used
in many areas of biology, but is particularly useful for studying
the spread of quickly evolving infectious diseases agents, e.g.,
influenza virus. Phylodynamics inference uses a coalescent model
that defines a probability density for the genealogy of randomly
sampled individuals from the population. When we assume that
such a genealogy is known, the coalescent model, equipped with
a Gaussian process prior on population size trajectory, allows for
nonparametric Bayesian estimation of population size dynamics.
While this approach is quite powerful, large data sets collected
during infectious disease surveillance challenge the state-of-the-
art of Bayesian phylodynamics and demand computationally more
efficient inference framework. To satisfy this demand, we provide
a computationally efficient Bayesian inference framework based on
Hamiltonian Monte Carlo for coalescent process models. Moreover,
we show that by splitting the Hamiltonian function we can further
improve the efficiency of this approach. Using several simulated and
real datasets, we show that our method provides accurate estimates
of population size dynamics and is substantially faster than alternative
methods based on elliptical slice sampler and Metropolis-adjusted
Langevin algorithm.

1 INTRODUCTION
Population genetics theory states that changes in population size
affect genetic diversity, leaving a trace of these changes in
individuals’ genomes. The field of phylodynamics relies on this
theory to reconstruct past population size dynamics from current
genetic data. In recent years, phylodynamic inference has become
an essential tool in areas like ecology and epidemiology. For
example, a study of human influenza A virus from sequences
sampled in both hemispheres pointed to a source-sink dynamics of
the influenza evolution [Rambaut et al., 2008].
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Phylodynamics connects population dynamics and genetic data
using coalescent-based methods [Griffiths and Tavare, 1994, Kuhner
et al., 1998, Drummond et al., 2002, Strimmer and Pybus,
2001, Drummond et al., 2005, Opgen-Rhein et al., 2005, Heled
and Drummond, 2008, Minin et al., 2008, Palacios and Minin,
2013]. Typically, phylodynamics relies on Kingman’s coalescent
model, which is a probability model that describes formation
of genealogical relationships of a random sample of molecular
sequences. The coalescent model is parameterized in terms of the
effective population size, an indicator of genetic diversity [Kingman,
1982].

While recent studies have shown promising results in alleviating
computational difficulties of phylodynamic inference [Palacios
and Minin, 2012, 2013], existing methods still lack the level
of computational efficiency required to realize the full potential
of phylodynamics: developing surveillance programs that can
operate similarly to weather monitoring stations allowing public
health workers to predict disease dynamics in order to optimally
allocate limited resources in time and space. To achieve this goal,
we present an accurate and computationally efficient inference
method for modeling population dynamics given a genealogy. More
specifically, we concentrate on a class of Bayesian nonparametric
methods based on Gaussian processes [Minin et al., 2008, Gill
et al., 2013, Palacios and Minin, 2013]. Following Palacios and
Minin [2012] and Gill et al. [2013], we assume a log-Gaussian
process prior on the effective population size. As a result, the
estimation of effective population size trajectory becomes similar to
the estimation of intensity of a log-Gaussian Cox process [LGCP;
Møller et al., 1998], which is extremely challenging since the
likelihood evaluation becomes intractable: it involves integration
over an infinite-dimensional random function. We resolve the
intractability in likelihood evaluation by discretizing the integration
interval with a regular grid to approximate the likelihood and the
corresponding score function.

For phylodynamic inference, we propose a computationally
efficient Markov chain Monte Carlo (MCMC) algorithm using
Hamiltonian Monte Carlo [HMC; Duane et al., 1987, Neal, 2010]
and one of its variation, called Split HMC [Leimkuhler and
Reich, 2004, Neal, 2010, Shahbaba et al., 2013], which speeds
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up standard HMC’s convergence. Our proposed algorithm has
several advantages. First, it updates all model parameters jointly
to avoid poor MCMC convergence and slow mixing rates when
there are strong dependencies among model parameters [Knorr-
Held and Rue, 2002]. Second, unlike a recently proposed Integrated
Nested Laplace Approximation [INLA Rue et al., 2009, Palacios
and Minin, 2012] method, our approach can be extended to a
more realistic setting where instead of a genealogy of the sampled
individuals, we observe their genetic data that indirectly inform us
about genealogical relationships. Third, we show that our method is
up to an order of magnitude more efficient than MCMC algorithms,
such as Metropolis-Adjusted Langevin algorithm [MALA; Roberts
and Tweedie, 1996], adaptive MALA [aMALA; Knorr-Held and
Rue, 2002], and Elliptical Slice Sampler [ES2; Murray et al., 2010],
frequently used in phylodynamics. Finally, although in this paper
we focus on phylodynamic studies, our proposed methodology can
be easily applied to more general point process models.

The remainder of the paper is organized as follows. In Section
2, we provide a brief overview of the coalescent model and HMC
algorithms. Section 3 presents the details of our proposed sampling
methods. Experimental results based on simulated and real data are
provided in Section 4. Section 5 is devoted to discussion and future
directions.

2 PRELIMINARIES
2.1 Coalescent
Assume that a genealogy with time measured in units of generations
is available. The coalescent model allows us to trace the ancestry of
a random sample of n genomic sequences as tree: two sequences
or lineages merge into a common ancestor as we go back in time.
Those “merging” times are called coalescent times. The coalescent
with variable population size can be viewed as an inhomogeneous
Markov death process that starts with n lineages at present time,
tn = 0, and decreases by one at each of the consequent coalescent
times, tn−1 < · · · < t1, until reaching their most recent common
ancestor [Griffiths and Tavare, 1994].

Suppose we observe a genealogy of n individuals sampled at
time 0. Under the standard (isochronous) coalescent model, the
coalescent times tn = 0 < tn−1 < · · · < t1, conditioned on
the effective population size trajectory, Ne(t), have the density

P [t1, . . . , tn | Ne(t)] =

n∏
k=2

P [tk−1 | tk, Ne(t)]

=
n∏
k=2

Ck
Ne(tk−1)

exp

{
−
∫
Ik

Ck
Ne(t)

dt

}
,

(1)

where Ck =
(
k
2

)
and Ik = (tk, tk−1]. Note that the larger the

population size, the longer it takes for two lineages to coalesce.
Further, the larger the number of lineages, the faster two of them
meet their common ancestor [Palacios and Minin, 2012, 2013].

For rapidly evolving organisms, we may have different sampling
times. When this is the case, the standard coalescent model can be
generalized to account for such heterochronous sampling [Rodrigo
and Felsenstein, 1999]. Under the heterochronous coalescent the
number of lineages change at both coalescent times and sampling
times. Let {tk}nk=1 denote the coalescent times as before, but now
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Fig. 1. A genealogy with coalescent times and sampling times. Blue
dashed lines indicate the observed times: coalescent times {t1, · · · , t6} and
sampling times {s1, s2, s3}. The intervals where the number of lineages
change are denoted by Ii,k . The superimposed grid {x1, · · · , x5} is marked
by gray dashed lines. We count the number of lineages in each interval
defined by grid points, coalescent times and sampling times.

let sm = 0 < sm−1 < · · · < s1 denote sampling times of
nm, . . . , n1 sequences respectively, where

∑m
j=1 nj = n. Further,

let s and n denote the vectors of sampling times {sj}mj=1 and
numbers of sequences {nj}mj=1 sampled at these times, respectively.
Then the coalescent likelihood of a single genealogy becomes

P [t1, . . . , tn | s,n, Ne(t)] =

n∏
k=2

C0,k exp
{
−
∫
I0,k

C0,k

Ne(t)
dt−

∑
i≥1

∫
Ii,k

Ci,k
Ne(t)

dt
}

Ne(tk−1)
,

(2)

where the coalescent factor Ci,k =
(
li,k
2

)
depends on the number

of lineages li,k in the interval Ii,k defined by coalescent times and
sampling times. For k = 2, . . . , n, we denote half-open intervals
that end with a coalescent event by

I0,k = (max{tk, sj}, tk−1 ] , (3)

for sj < tk−1, and half-open intervals that end with a sampling
event by (i > 0)

Ii,k = (max{tk, sj+i}, sj+i−1 ] , (4)

for tk < sj+i−1 ≤ sj < tk−1. In density (2), there are n − 1
intervals {Ii,k}i=0 and m − 1 intervals {Ii,k}i>0 for all i, k. Note
that only those intervals satisfying Ii,k ⊂ (tk, tk−1] are non-empty.
See Figure 1 for more details.

We can think of isochronous coalescence as a special case of
heterochronous coalescence when m = 1, C0,k = Ck, I0,k =
Ik, Ii,k = ∅ for i > 0. Therefore, in what follows, we refer to
Equation (2) as the general case.
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We assume the following log-Gaussian Process prior on the
effective population size, Ne(t):

Ne(t) = exp[f(t)], f(t) ∼ GP(0,C(θ)), (5)

where GP(0,C(θ)) denotes a Gaussian process with mean function
0 and covariance function C(θ). A priori, Ne(t) is a log-Gaussian
Process.

For computational convenience, we use Brownian motion, which
is a special case of GP, as our prior for f(t). We define the
covariance function as C(κ) = 1

κ
CBM , where the precision

parameter κ has a Gamma(α, β) prior. For ascending times 0 =
x0 < x1 < x2 < · · · < xD−1, the (i, j)-th element of CBM

is set to min{xi, xj}. This way, we reduce the computational
complexity of inverting the covariance matrix from O(n3) to O(n)
since the inverse covariance matrix is tri-diagonal [Rue and Held,
2005, Palacios and Minin, 2013] with elements

C−1
BM (i, j) =



1{i+1≤D−1}

xi+1 − xi
+

1

xi − xi−1
, if i = j,

− 1

|xi − xj |
, if |i− j| = 1,

0, otherwise.

In practice we modify the (1, 1) element, 1/(x2 − x1) + 1/x1, to
be 1/(x2 − x1) and denote the resulting precision matrix as C−1

in

to indicate that it comes from an intrinsic autoregression [Besag and
Kooperberg, 1995, Knorr-Held and Rue, 2002]. Note that C−1

in is
degenerate in 1 eigen direction so we add a small number, e, to the
diagonal elements of C−1

in to make it invertible when Cin is needed.

2.2 HMC
Hamiltonian Monte Carlo [Duane et al., 1987, Neal, 2010] is a
Metropolis sampling algorithm that suppresses the random walk
behavior by proposing states that are distant from the current state,
but nevertheless accepts new proposals with high probability. These
distant proposals are found by numerically simulating Hamilton
dynamics, whose state space consists of position, denoted by the
vector θ, and momentum, denoted by the vector p. The objective
is to sample from the continuous probability distribution with the
density function π(θ). It is common to assume p ∼ N (0,M),
where M is a symmetric, positive-definite matrix known as the mass
matrix, often set to the identity matrix I for convenience.

In this simulation of Hamiltonian dynamics, the potential energy,
U(θ), is defined as the negative log density of θ (plus any constant);
the kinetic energy, K(p) for momentum variable p, is set to be
the negative log density of p (plus any constant). Then the total
energy of the system, the Hamiltonian function, is defined as their
sum: H(θ,p) = U(θ) +K(p). Then the system of (θ,p) evolves
according to the following set of Hamilton’s equations:

θ̇ = ∇pH(θ,p) = M−1p,

ṗ = −∇θH(θ,p) = −∇θU(θ).
(6)

In practice, we use a numerical method called leapfrog to
approximate the Hamilton’s equations [Neal, 2010] when the
analytical solution is not available. We numerically solve the system
for L steps, with some step size, ε, to propose a new state in

the Metropolis algorithm, and accept or reject it according to
the Metropolis acceptance probability. [See Neal, 2010, for more
discussions].

3 METHOD
3.1 Discretization
As discussed above, the likelihood function (2) is intractable
in general. We can, however, approximate the likelihood using
discretization. To this end, we use a fine regular grid, x =
{xd}Dd=1, over the observation window and approximate Ne(t) by
a piece-wise constant function as follows:

Ne(t) ≈
D−1∑
d=1

exp[f(x∗d)]1t∈(xd,xd+1], x∗d =
xd + xd+1

2
. (7)

Note that the regular grid x does not coincide with the sampling
coalescent times, except for the first sampling time sm = x1
and the last coalescent time t1 = xD . To rewrite (2) using the
approximation (7), we sort all the time points {t, s,x} to create new
D+m+n−4 half-open intervals {I∗α} with either coalescent time
points, sampling time points, or grid time points as the end points
(See Figure 1).

For each α ∈ {1, · · · , D + m + n − 4}, there exists some i, k
and d such that I∗α = Ii,k ∩ (xd, xd+1]. Each integral in density (2)
can be approximated as a sum:∫

Ii,k

Ci,k
Ne(t)

dt ≈
∑

I∗α⊂Ii,k

Ci,k exp[−f(x∗d)]∆d,

where ∆d := xd+1 − xd. This way, the likelihood of coalescent
times (2) can be rewritten as a product of the following terms:{

Ci,k
exp[f(x∗d)]

}yα
exp

{
− Ci,k∆d

exp[f(x∗d)]

}
, (8)

where yα is set to 1 if I∗α ends with a coalescent time, and to
0 otherwise. This happens to be proportional to the probability
mass of a Poisson random variable yα with intensity λα :=
Ci,k∆d exp[−f(x∗d)]. Therefore, the likelihood of coalescent times
(2) can be approximated as follows:

P [t1, . . . , tn | Ne(t)] ≈
D+m+n−4∏

α=1

P [yα | Ne(t)]

=

D−1∏
d=1

∏
I∗α⊂(xd,xd+1]

{
Ci,k

exp[f(x∗d)]

}yα
exp

{
− Ci,k∆d

exp[f(x∗d)]

}
,

(9)

where the coalescent factor Ci,k on each interval I∗α is determined
by the number of lineages li,k in I∗α.

3.2 Sampling methods
Denote f := {f(x∗d)}D−1

d=1 . Our model can be summarized as

yα|f ∼ Poisson[λα(f)],

f |κ ∼ N
(

0,
1

κ
Cin

)
,

κ ∼ Gamma(α, β).

(10)
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Transforming the coalescent times, sampling times and grid points
into {yα, Ci,k,∆d}, we condition on these data to generate
posterior samples for f = logNe(x

∗) and κ, where x∗ = {x∗d}
is the set of the middle points in (7). We use these posterior samples
to make inference about Ne(t).

For sampling f using HMC, we use (9) to compute the discretized
log-likelihood

l = −
D−1∑
d=1

∑
I∗α⊂(xd,xd+1]

{yαf(x∗d) + Ci,k∆d exp[−f(x∗d)]}

and the corresponding gradient (score function)

sd = −
∑

I∗α⊂(xd,xd+1]

{yα − Ci,k∆d exp[−f(x∗d)]} .

Because the prior on κ is conditionally conjugate, we could
directly sample from its full conditional posterior distribution,

κ|· ∼ Gamma(α+ (D − 1)/2, β + fTC−1
in f/2). (11)

However, updating f and κ separately is not recommended in
general because of their strong interdependency [Knorr-Held and
Rue, 2002]: large value of precision κ strictly confines the variation
of f , rendering slow movement in the space occupied by f .
Therefore, we update (f , κ) jointly in MCMC sampling algorithms.
In practice, it is better to sample θ := (f , τ), where τ = log(κ) is
in the same scale as f = logNe(x

∗). Note that the log-likelihood
of θ is the same as that of f because equation (2) does not involve
τ . The log-density prior on θ is defined as follows:

logP (θ) ∝ ((D − 1)/2 + α− 1)τ − (fTC−1
in f/2 + β)eτ . (12)

3.3 Speed up by splitting Hamiltonian
Splitting the Hamiltonian is a technique used to speed up HMC
[Leimkuhler and Reich, 2004, Neal, 2010, Shahbaba et al., 2013].
The underlying idea is to divide the total Hamiltonian into several
terms, such that the dynamics associated with some of these terms
can be solved analytically. For these parts, typically quadratic forms,
the simulation of the dynamics does not introduce a discretization
error, allowing for faster movements in the parameter space.

We split the Hamiltonian H(θ,p) = U(θ) +K(p) as follows:

H(θ,p) =
−l − [(D − 1)/2 + α− 1]τ + βeτ

2
+

fTC−1
in feτ + pTp

2
+
−l − [(D − 1)/2 + α− 1]τ + βeτ

2
.

(13)

We further split the middle part (which is the dominant
part) into two dynamics involving f |τ and τ |f respectively,{

ḟ |τ = p−D,

ṗ−D = −C−1
in feτ .

(14a)
{
τ̇ |f = pD,

ṗD = −fTC−1
in feτ/2.

(14b)

Using the spectral decomposition C−1
in = QΛQ−1 and denoting

f∗ :=
√

Λeτ/2Q−1f and p∗−D := Q−1p−D , we can analytically
solve the dynamics (14a) as follows [Lan, 2013] (more details are in
the appendix):[

f∗(t)
p∗−D(t)

]
=

[
cos(
√

Λeτ/2t) sin(
√

Λeτ/2t)

− sin(
√

Λeτ/2t) cos(
√

Λeτ/2t)

] [
f∗(0)

p∗−D(0)

]
.

We then use the standard leapfrog method to solve the dynamics
(14b) and the residual dynamics in (13) in a symmetric way. Note

that we only need to diagonalize C−1
in once before the sampling, and

calculate fTC−1
in feτ = f∗Tf∗; therefore, the overall computational

complexity of the integrator is O(D2).

4 EXPERIMENTS
We illustrate the advantages of our HMC-based methods using three
simulation studies and apply these methods to analysis of a real
dataset. We evaluate our methods by comparing them to INLA
in terms of accuracy and to several sampling algorithms, MALA,
aMALA, and ES2, in terms of sampling efficiency. We define
sampling efficiency as time-normalized effective sample size (ESS).
Given B MCMC samples for each parameter, we calculate the
corresponding ESS = B[1 + 2ΣK

k=1γ(k)]−1, where ΣK
k=1γ(k) is

the sum of K monotone sample autocorrelations [Geyer, 1992]. We
use the minimum ESS normalized by the CPU time, s (in seconds),
as the overall measure of efficiency: min(ESS)/s.

We tune the stepsize and number of leapfrog steps for our HMC-
based algorithm such that their overall acceptance probabilities
are in a reasonable range (close to 0.70). Since MALA [Roberts
and Tweedie, 1996] and aMALA [Knorr-Held and Rue, 2002]
can be viewed as HMC with one leap frog step for numerically
solving Hamiltonian dynamics, we implement MALA and aMALA
proposals using our HMC framework. MALA, aMALA, and
HMC-based methods update f and τ jointly. aMALA uses a
joint block-update method designed for GMRF models: it first
generates a proposal κ∗|κ from some symmetric distribution
independently of f , and then updates f∗|f , κ∗ based on a local
Laplace approximation. Finally, (f∗, κ∗) is either accepted or
rejected. It can be shown that aMALA is equivalent to a form
of Riemannian MALA [Roberts and Stramer, 2002, Girolami and
Calderhead, 2011, also see Appendix B]. In addition, aMALA
closely resembles the most frequently used MCMC algorithm in
Gaussian process-based phylodynamics [Minin et al., 2008, Gill
et al., 2013].

ES2 [Murray et al., 2010] is a commonly used sampling algorithm
designed for models with Gaussian process priors. It was also
adopted by Palacios and Minin [2013] for phylodynamic inference.
ES2 implementation relies on the assumption that the target
distribution is approximately normal. This, of course, is not a
suitable assumption for the joint distribution of (f , τ). Therefore,
we alternate the updates f |κ and κ|f when using ES2.

4.1 Simulations
We simulate three genealogies relating n = 50 individuals with the
following true trajectories:

1. logistic trajectory:

Ne(t) =

{
10 + 90

1+exp(2(3−(t mod 12)))
, t mod 12 ≤ 6,

10 + 90
1+exp(2(−9+(t mod 12)))

, t mod 12 > 6;

2. exponential growth: Ne(t) = 1000 exp(−t);

3. boombust:

Ne(t) =

{
1000 exp(t− 2), t ≤ 2,

1000 exp(−t+ 2), t > 2.

4
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Fig. 2. INLA vs MCMC: simulated data under logistic (top), exponential
growth (middle) and boombust (bottom) population size trajectories. Dotted
blue lines show 95% credible intervals given by INLA and shaded regions
show 95% credible interval estimated with MCMC samples given by
splitHMC.

Method AP s/iter minESS(f )/s spdup(f ) ESS(τ )/s spdup(τ )
ES2 1.00 1.56E-03 0.22 1.00 0.25 1.00
MALA 0.84 1.81E-03 0.41 1.90 1.47 5.89

I aMALA 0.53 4.60E-03 0.08 0.38 0.13 0.53
HMC 0.80 9.51E-03 1.78 8.23 1.81 7.25
splitHMC 0.75 7.30E-03 2.19 10.13 2.51 10.04
ES2 1.00 1.57E-03 0.21 1.00 0.23 1.00
MALA 0.78 1.82E-03 0.32 1.53 1.14 5.03

II aMALA 0.53 4.61E-03 0.09 0.41 0.18 0.79
HMC 0.76 1.19E-02 2.73 12.99 1.34 5.91
splitHMC 0.76 7.84E-03 4.31 20.50 2.35 10.40
ES2 1.00 1.56E-03 0.20 1.00 0.20 1.00
MALA 0.83 1.82E-03 0.37 1.87 1.05 5.18

III aMALA 0.53 4.61E-03 0.08 0.40 0.14 0.67
HMC 0.81 1.18E-02 2.22 11.24 1.17 5.75
splitHMC 0.72 7.41E-03 2.87 14.53 1.90 9.33

Table 1. Sampling efficiency in modeling simulated population trajectories.
The true population trajectories are: I) logistic, II) exponential growth,
and III) boombust respectively. AP is the acceptance probability. s/iter is
the seconds per sampling iteration. “spdup” is the speedup of efficiency
measurement minESS/s using ES2 as baseline.

We use D = 100 equally spaced grid points in the approximation
of likelihood when applying INLA and MCMC algorithms (HMC,
splitHMC, MALA, aMALA and ES2).

Figure 2 compares the estimates of Ne(t) using INLA and
MCMC algorithms in for the three simulations. In general, the
results of MCMC algorithms match closely with those of INLA.
It is worth noting that MALA and ES2 are occasionally slow to
converge. Also, INLA fails when the number of grid points is large,
e.g. 10000, while MCMC algorithms can still perform reliably.

For each experiment we run 15000 iterations with the first 5000
samples discarded. We repeat each experiment 10 times. The results
provided in Table 1 are averaged over 10 repetitions. As we can see,
our methods substantially improve over MALA, aMALA and ES2.
Note that although aMALA has higher ESS compared to MALA,
its time-normalized ESS is worse than that of MALA because of its
high computational cost of calculating the Fisher information.

Figure 3 compares different sampling methods in terms of their
convergence to the stationary distribution when we increase the size
of grid points to D = 1000. As we can see in this more challenging
setting, Split HMC has the fastest convergence rate. Neither MALA
nor aMALA, on the other hand, has converged within the given time.
aMALA is not even getting close to the stationarity, making it much
worse than MALA.

4.2 Human Influenza A in New York
Next, we analyze real data based on a genealogy estimated from 288
H3N2 sequences sampled in New York state from January 2001 to
March 2005 in order to estimate population size dynamics of human
influenza A in New York [Palacios and Minin, 2012, 2013]. The
key feature of the influenza A virus epidemic in temperate regions
like New York are the epidemic peaks during winters followed by
strong bottlenecks at the end of the winter season. We use 120 grid
points in the likelihood approximation. Figure 4 shows that with
C−1
BM , MCMC algorithms identify such peak-bottleneck pattern

more clearly than INLA. However, their results based on intrinsic
precision matrix, C−1

in , are quite comparable to that of INLA. In
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splitHMC converges the fastest.

Table 2, we can see that the speedup by HMC and splitHMC over
other MCMC methods is substantial.

Method AP s/Iter minESS(f )/s spdup(f ) ESS(τ )/s spdup(τ )
ES2 1.00 1.92E-03 0.34 1.00 0.27 1.00
MALA 0.78 2.12E-03 0.29 0.86 0.60 2.20
aMALA 0.77 8.48E-03 0.002 0.01 0.33 1.23
HMC 0.71 1.74E-02 1.69 4.98 0.57 2.12
splitHMC 0.75 1.11E-02 2.90 8.53 1.06 3.92

Table 2. Sampling efficiency of MCMC algorithms in influenza data.

5 DISCUSSION
In this paper, we have proposed new HMC-based sampling
algorithms for phylodynamic inference, which are substantially
more efficient than existing methods. Although we have focused on
phylodynamics, the methodology presented here can be applied to
general LGCP models.

There are several possible future directions. One possibility is
to use ES2 as a proposal generating mechanism in updating f as
opposed to using it for sampling from the posterior distribution.
Finding a good proposal for κ(τ), however, remains challenging.

An important extension of the methods presented here is to
allow for genealogical uncertainty. The MCMC methods analyzed
here can be incorporated into a hierarchical framework to infer
population size trajectories from sequence data directly. In contrast,
INLA cannot be adapted easily to perform inference from sequence
data. This greatly limits its generalizability.
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Fig. 4. Population dynamics of influenza A in New York (2001-2005):
shaded region is the 95% credible interval calculated with samples given
by splitHMC. Results using C−1

BM (upper) vs results using C−1
in (lower).

APPENDIX A: SPLITHMC
Here, we show how to solve Hamiltonian dynamics defined by (13)
using the “splitting” strategy. Denote z := (f ,p), M := C−1

in eτ ,

and A :=

[
0 I
−M 0

]
. The dynamics (14a) can be written as

ż = Az. (15)

We then have the analytical solution to (15) as

z(t) = eAtz(0), (16)

where eAt is a matrix defined as eAt :=
∑∞
i=0

ti

i!
Ai, which in turn

can be written as follows:

eAt =

[
I− t2

2!
M + t4

4!
M2 + · · · It− t3

3!
M + t5

5!
M2 + · · ·

−Mt+ t3

3!
M2 − t5

5!
M3 + · · · I− t2

2!
M + t4

4!
M2 + · · ·

]

=

[
cos(
√

Mt) M− 1
2 sin(

√
Mt)

−M
1
2 sin(

√
Mt) cos(

√
Mt)

]

=

[
M− 1

2 0
0 I

] [
cos(
√

Mt) sin(
√

Mt)

− sin(
√

Mt) cos(
√

Mt)

] [
M

1
2 0

0 I

]
.

For positive definite matrix M, we can use the spectral
decomposition M = QDQ−1, where Q is orthogonal matrix, i.e.
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Q−1 = QT. Therefore we have

eAt =

[
Q 0
0 Q

] [
D−

1
2 0

0 I

] [
cos(
√

Dt) sin(
√

Dt)

− sin(
√

Dt) cos(
√

Dt)

]

·
[
D

1
2 0

0 I

] [
Q−1 0

0 Q−1

]
.

(17)

In practice, we only need to diagonalize C−1
in once: C−1

in =
QΛQ−1, then D = Λeτ . If we let f∗ :=

√
Λeτ/2Q−1f , p∗−D :=

Q−1p−D , we have the following solution (16):

[
f∗(t)

p∗−D(t)

]
=

[
cos(
√

Λeτ/2t) sin(
√

Λeτ/2t)

− sin(
√

Λeτ/2t) cos(
√

Λeτ/2t)

] [
f∗(0)

p∗−D(0)

]
.

We then apply leapfrog method to the remaining dynamics.
Algorithm 1 summarizes these steps.

Algorithm 1 splitHMC for the coalescent model (splitHMC)
Initialize θ(1) at current θ = (f , τ)

Sample a new momentum value p(1) ∼ N (0, I)

CalculateH(θ(1),p(1)) = U(θ(1)) +K(p(1)) according to (13)
for ` = 1 to L do

p
(`+1/2)

= p
(`)

+ ε/2

[
s(`)

((D − 1)/2 + α− 1)− β exp(τ(`))

]

p
(`+1/2)
D = p

(`)
D − ε/2f

∗(`)T
f
∗(`)

/2

τ
(`+1/2)

= τ
(`)

+ ε/2p
(`+1/2)
D[

f∗(`+1)

p
∗(`+1/2)
−D

]
←

 cos(
√

Λe
1
2
τ(`+1/2)

ε) sin(
√

Λe
1
2
τ(`+1/2)

ε)

− sin(
√

Λe
1
2
τ(`+1/2)

ε) cos(
√

Λe
1
2
τ(`+1/2)

ε)


·
[

f∗(`)

p
∗(`+1/2)
−D

]

τ
(`+1)

= τ
(`+1/2)

+ ε/2p
(`+1/2)
D

p
(`+1)
D = p

(`+1/2)
D − ε/2f∗(`+1)T

f
∗(`+1)

/2

p
(`+1)

= p
(`+1/2)

+ ε/2

[
s(`+1)

((D − 1)/2 + α− 1)− β exp(τ(`+1))

]

end for
CalculateH(θ(+1),p(L+1)) = U(θ(L+1)) +K(p(L+1)) according to (13)
Calculate the acceptance probability α = min{1, exp[−H(θ(+1),p(L+1)) +

H(θ(1),p(1))]}
Accept or reject the proposal according to α for the next state θ′

APPENDIX B: ADAPTIVE MALA
We now show that the joint block updating in Knorr-Held and Rue
[2002] can be recognized as an adaptive MALA algorithm. First,
we sample κ∗|κ ∼ p(κ∗|κ) ∝ κ∗+κ

κ∗κ on [κ/c, κc] for some c > 1

controlling the step size of κ. Denote w := {Ci,k∆d}D+m+n−4
1

Algorithm 2 Adaptive MALA (aMALA)
Given current state θ = (f , κ) calculate potential energy U(θ)
repeat
z ∼ Unif[1/c, c], u ∼ Unif[0, 1]

until u < z+1/z
c+1/c

update precision parameter κ∗ = κz
Sample momentum p ∼ N (0,G(f , κ∗)−1)
Calculate log of proposal density log p(f∗|f , κ∗) =
− 1

2
pTG(f , κ∗)p + 1

2
log det G(f , κ∗)

update momentum p← p− ε/2G(f , κ∗)−1∇U(f , κ∗)
update latent variables f∗ = f + εp
update momentum p← p− ε/2G(f∗, κ)−1∇U(f∗, κ)
Calculate log of reverse proposal density log p(f |f∗, κ) =
− 1

2
pTG(f∗, κ)p + 1

2
log det G(f∗, κ)

Calculate new potential energy U(θ∗)
Accept/reject the proposal according to logα = −U(θ∗) +
U(θ)− log p(f∗|f , κ) + log p(f |f∗, κ) for the next state θ′

and use the following Taylor expansion for log p(f |κ) about f̂ :

log p(f |κ) = −yTf −wT exp(−f)− 1

2
fTκC−1

in f

≈ −yTf − (w exp(−f̂))
T
[1− (f − f̂) + (f − f̂)2/2]− 1

2
fTκC−1

in f

= (−y + w exp(−f̂)(1 + f̂))
T
f +

1

2
fT[κC−1

in + diag(w exp(−f̂))]f

=: bTf − 1

2
fTGf ,

where b(f̂) := −y + w exp(−f̂)(1 + f̂), G(f̂ , κ) := κC−1
in +

diag(w exp(−f̂)). Setting f̂ to the current state, f , and propose
f∗|f , κ∗ from the following Gaussian distribution:

f∗|f , κ∗ ∼ N (µ,Σ),

with

µ = G(f , κ∗)−1b(f) = f + G(f , κ∗)−1∇f log p(f |κ∗) and

Σ = G(f , κ∗)−1,

which has the same form as Langevin dynamical proposals.
Interestingly, G(f̂ , κ) is exactly the (observed) Fisher information.
That is, this approach is equivalent to Riemannian MALA [Girolami
and Calderhead, 2011].

Finally, θ∗ = (f∗, κ∗) is jointly accepted with the following
probability:

α = min

{
1,
p(θ∗|D)

p(θ|D)

p(κ|κ∗)p(f |f∗, κ)

p(κ∗|κ)p(f∗|f , κ∗)

}
= min

{
1,
p(θ∗|D)

p(θ|D)

p(f |f∗, κ)

p(f∗|f , κ∗)

}
,

where p(κ∗|κ) is a symmetric proposal. Algorithm 2 summarizes
the steps for adaptive MALA.
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