
RESEARCH ARTICLE

A Bayesian phylogenetic hidden Markov

model for B cell receptor sequence analysis

Amrit Dhar1,2, Duncan K. RalphID
2, Vladimir N. MininID

3*, Frederick A. Matsen IVID
2*

1 Department of Statistics, University of Washington, Seattle, Washington, United States of America,

2 Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of

America, 3 Department of Statistics, University of California, Irvine, California, United States of America

* vminin@uci.edu (VNM); matsen@fredhutch.org (FAM)

Abstract

The human body generates a diverse set of high affinity antibodies, the soluble form of B

cell receptors (BCRs), that bind to and neutralize invading pathogens. The natural develop-

ment of BCRs must be understood in order to design vaccines for highly mutable pathogens

such as influenza and HIV. BCR diversity is induced by naturally occurring combinatorial “V

(D)J” rearrangement, mutation, and selection processes. Most current methods for BCR

sequence analysis focus on separately modeling the above processes. Statistical phyloge-

netic methods are often used to model the mutational dynamics of BCR sequence data, but

these techniques do not consider all the complexities associated with B cell diversification

such as the V(D)J rearrangement process. In particular, standard phylogenetic approaches

assume the DNA bases of the progenitor (or “naive”) sequence arise independently and

according to the same distribution, ignoring the complexities of V(D)J rearrangement. In

this paper, we introduce a novel approach to Bayesian phylogenetic inference for BCR

sequences that is based on a phylogenetic hidden Markov model (phylo-HMM). This tech-

nique not only integrates a naive rearrangement model with a phylogenetic model for BCR

sequence evolution but also naturally accounts for uncertainty in all unobserved variables,

including the phylogenetic tree, via posterior distribution sampling.

Author summary

Rational vaccine design efforts depend on accurate inference of full evolutionary paths

from a given naive sequence to the corresponding mature B cell receptor sequences

in a germinal center. Before one can perform ancestral sequence inference for clonal

sequences that result from the same naive rearrangement event, one must first obtain an

estimate of the clonal phylogenetic tree. Currently, standard phylogenetic inference tech-

niques are used to model the process of sequence evolution along the tree; however, these

methods do not account for all the complexities associated with this evolutionary process.

In this paper, we propose a Bayesian approach to phylogenetic inference for clonal

sequences that is based on a phylogenetic hidden Markov model. Our phylo-HMM mod-

els both the naive rearrangement and somatic hypermutation processes and this Bayesian

framework allows us to naturally account for uncertainty in all unobserved variables,
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including a phylogenetic tree, via posterior distribution sampling. We perform simula-

tion-based experiments to show that naive sequence and phylogenetic inference per-

formed jointly provides higher-quality estimates than those obtained by considering these

inferences separately. Our application to real data reveals significant uncertainty in naive

and ancestral sequences, confirming the importance of a Bayesian approach.

Introduction

One of the most important features of the adaptive immune system is its ability to create a

wide variety of high affinity antibodies, the soluble form of B cell receptors (BCRs), that bind

to and neutralize pathogens in the body. The initial BCR diversity is generated by randomly

joining together various gene segments in a process called V(D)J rearrangement; after an ini-

tial testing process B cells reach the “naive” state. When stimulated by binding to foreign

material called “antigen,” B cells diversify further by entering germinal centers (GCs) in the

secondary lymphoid organs and going through the process of affinity maturation. During the

GC reaction, B cells mutate rapidly in a process called somatic hypermutation (SHM), and the

high affinity clones are positively selected for via clonal expansion. We would like to better

understand the GC mutation and selection processes, because insight into mutational path-

ways from naive to mature BCR sequences could aid in the development of vaccines for highly

mutable pathogens such as influenza and HIV [1]. We have developed a new statistical infer-

ence framework that better estimates these mutational pathways and quantifies uncertainty in

these estimates.

Rational vaccine design efforts depend on accurate inference of full evolutionary paths

from a given naive sequence to the corresponding mature BCR sequences in a GC. By under-

standing the mutational pathways that lead to broadly neutralizing antibodies (bNAbs), vac-

cines could then be constructed that induce the production of these bNAbs in the body [2].

For instance, in the case of HIV, most bNAbs are generally not observed until after a long

period of chronic infection, requiring prospective studies to characterize them [3]. While there

have been many such studies that experimentally test longitudinal B cell samples spanning

from an initial HIV infection to the development of mature bNAbs [3–5], obtaining early pro-

spective samples is difficult. One way to avoid the process described above is to infer interme-

diate lineage sequences computationally, synthesize them in the laboratory, and test their

binding and neutralization abilities [4, 6]. Consequently, we will focus on inferring mutational

pathways through ancestral sequence reconstruction, a commonly used technique in computa-

tional phylogenetics.

Much of the existing BCR sequence analysis literature focuses on modeling either the V(D)

J recombination process, or the phylogenetic diversification process, but not both. Elhanati

et al. [7] develop a likelihood-based model that encompasses the V(D)J rearrangement, SHM,

and clonal selection processes; however, they implicitly assume clonal sequences arise inde-

pendently and do not consider the phylogenetic structure of SHM. Hoehn et al. [8, 9] intro-

duce novel codon substitution models for ancestral lineage inference that encodes SHM

context-dependent mutational effects but does not account for V(D)J rearrangement dynamics

in the naive sequence within their maximum likelihood phylogenetic inference framework.

Yaari et al. [10] provide estimates of context-dependent SHM substitution probabilities and

motif mutability scores based on an aggregated dataset consisting of the synonymous codon

positions of productive antibody sequences. Ralph and Matsen [11] are able to infer naive BCR

sequences using an HMM-based approach that models the V(D)J rearrangement process but
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assumes independent evolution across the different lineages. While these efforts have contrib-

uted greatly to our understanding of GC dynamics, we believe that the performance of clonal

lineage and ancestral sequence inference procedures can be enhanced by using an evolutionary

model for SHM that also accounts for uncertainty in the naive rearrangement process.

Kepler [12] has developed a likelihood-based SHM modeling framework that jointly esti-

mates the naive sequence and the associated clonal tree and incorporates information about

the V(D)J rearrangement process. However, this work does not consider phylogenetic or

ancestral sequence uncertainty in the naive sequence estimation procedure. While there is evi-

dence to suggest that ancestral sequence estimation is robust to phylogenetic uncertainty in

other settings [13], the parameter regime of BCR diversification is quite different from that of

this previous work, leaving open the question of whether incorporating phylogenetic uncer-

tainty would aid in BCR ancestral sequence inference. Therefore, we would like to construct a

phylogenetic inference procedure that not only allows for easy quantification of phylogenetic

and ancestral sequence uncertainty but also models the V(D)J recombination as an informa-

tive prior for the naive sequence at the root of a phylogenetic tree describing the evolution of

one clonal lineage.

In this paper, we propose a Bayesian approach to phylogenetic inference for clonal

sequences that is based on a phylogenetic hidden Markov model (phylo-HMM) [14]. Our

phylo-HMM models both the naive rearrangement and SHM processes. The Bayesian frame-

work allows us to naturally account for uncertainty in all unobserved variables, including a

phylogenetic tree, via posterior distribution sampling. We perform simulation-based experi-

ments to show that naive sequence and phylogenetic inference performed jointly provides

higher-quality estimates than those obtained by considering these inferences separately. Our

application to real data reveals significant uncertainty in naive and ancestral sequences, con-

firming the importance of a Bayesian approach.

Results

Simulation experiments

In our simulation experiments, we focus on validating the accuracy of the naive sequence and

ancestral sequence estimates produced by linearham. For naive sequence validations, we

compare and contrast the performance between linearham, partis, and the ARPP pro-

gram [12]. The partis package provides maximum likelihood naive sequence estimates

[11], but its model assumes a star-tree configuration, which is unrealistic for many CFs going

through long periods of SHM and affinity maturation [3–5]. The ARPP program is also a like-

lihood-based framework that jointly infers a CF tree and the associated naive sequence using

information about the V(D)J rearrangement process, but does not quantify phylogenetic or

ancestral sequence uncertainty; we use this program in our validations because it is one of the

only other programs that estimates CF phylogenies and naive sequences at the same time. We

did attempt to use the newer version of ARPP (called Cloanalyst), but ran into difficulties

with the program crashing and were unable to successfully resolve this issue when we con-

tacted the program author.

Similarly, for our ancestral sequence validations, we restrict our comparisons to the line-
arham, RevBayes, and dnaml [38] packages. As discussed before, the RevBayes program

performs Bayesian phylogenetic inference on a given MSA, but in this case, we sample CF

trees and ASRs from RevBayes using an augmented CF sequence alignment that contains

the partis-inferred naive sequence (i.e. D� from above). This approach to ASR was used in

[6] and is similar to that of linearham with the main difference being that RevBayes ASR

sampling is conditional on the partis-inferred naive sequence whereas linearham ASR
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inference conditions on naive sequences drawn from a posterior distribution. For all the

experiments conducted in this section, we run RevBayes using 50,000 MCMC iterations,

sampling every 10 iterations, discard the first 500 RevBayes samples as burn-in, and sample

without replacement 225 times from the 4,500 effective RevBayes samples in the case of

linearham inference. The dnaml package performs maximum likelihood phylogenetic

inference and generates an ASR conditional on this likelihood-based tree estimate. While it is

possible to sample ASRs on a maximum likelihood tree [34], dnaml only reports the most

probable ancestral sequences. We run dnaml on an augmented CF sequence alignment that

contains the ARPP maximum likelihood estimate of the naive sequence. Our simulation input

and output data has been made publicly available on Zenodo (https://doi.org/10.5281/zenodo.

3746832). In the following subsections, we describe our simulation experiments in more detail

from the data-generating mechanism to the validation results.

Simulation setup. To simulate tree topologies with a fixed number of tips in our experi-

ments, we used the single-parameter beta-splitting generative process [39]. The beta-splitting

process is able to generate a wide variety of tree topologies ranging from balanced topologies

(i.e. trees with approximately equal root-to-tip distances) to imbalanced topologies (i.e. trees

with highly variable root-to-tip distances) by varying the associated “balance” parameter β.

Intuitively, this process can be seen as a recursive partitioning procedure that, at each tree

split, partitions the Uniform(0, 1) random numbers corresponding to the “tips” on the current

sub-interval according to a Beta(β + 1, β + 1) distribution. As β!1, the generated trees get

closer and closer to balanced binary trees and, as β! −2, the simulated topologies look more

and more “comb-like” (i.e. imbalanced) [39].

We are motivated to use this topology-generating process because the level of balance of the

tree determines the extent to which a phylogenetic approach to naive sequence estimation

improves over a star-tree model. Informally speaking, a phylogenetic approach weights the

information coming from tips close to the root (in the imbalanced case) more strongly than

tips more distant from the root. Thus we expect a phylogenetic approach to be superior in the

imbalanced case. On the other hand, partis assumes evolution occurs according to a star

tree, which implies the expected number of substitutions from the root to each of the tip

sequences should be approximately equal. Thus, for imbalanced trees, that have a large vari-

ance in the root-to-tip branch length distances, we would expect partis to provide poor

naive sequence estimates for sequence datasets generated on those trees compared to a phylo-

genetic approach. Throughout the rest of this section, we define “tree imbalance” to be the

standard deviation of a tree’s root-to-tip distances.

To generate branch lengths for our simulated trees that preserve the shapes induced by the

beta-splitting topology prior, we independently draw values from a Uniform(0, 2M) distribu-

tion, where M is a constant derived from HIV bnAb lineage trees. Specifically, we ran the

PC64 [40] and VRC01 [41] datasets through partis to obtain augmented CF sequence align-

ments with the partis-inferred naive sequence, inferred approximate maximum likelihood

CF trees using FastTree [42, 43], and set M to be the average across all estimated branch

lengths in the two trees (� 0.0179). Although the two lineages that we use as a template for our

simulated data sets are unusually long, a mean branch length of less than 0.02 will result in

intermediate-length simulated trees for the number of leaves simulated here (80 or fewer tips).

We describe these two datasets in more detail in the next section when we discuss our real-

world dataset applications. In the subsequent parts of this section, we refer to the inferred

FastTree trees described above as the PC64 and VRC01 phylogenies, respectively. We

emphasize that these trees are only used as the basis for a simulation study and their level of

accuracy is not especially important.
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Each simulated phylogeny also receives a root branch length, which is not accounted for by

the above generative processes. We use the mean of the PC64 and VRC01 root branch lengths

(�0.01759) as the default root branch length for simulation and also assign simulated trees

root branch lengths of 0.1 to validate inference in settings with long periods of shared muta-

tional history. For each simulated tree, we draw a naive sequence at the root according to the

partis prior distribution that, as mentioned previously, models the V(D)J rearrangement

process. We use the default settings in partis for human heavy chain data, since this repre-

sents the regime of most common interest.

To simulate DNA sequence data on the selected trees given the partis-generated naive

sequences, we use the simulator in the samm package [44]. A complex collection of enzymes

introduces mutations to affinity-maturing sequences in a random pattern that is known to be

highly sensitive to the sequence motif (i.e. the subsequence of DNA bases surrounding the

mutating position) [45–48]. The samm program estimates these motif mutabilities (i.e. the

probability a position will mutate given the motif at that position) and substitution probabili-

ties (i.e. the probability a position will mutate to a new base given the motif at that position)

using a penalized Cox proportional hazards model and simulates sequence mutations given

these inferred parameters. In our work, we use the S5F parameters inferred for human heavy

chain sequences [10].

In our simulation experiments, we set the beta-splitting “balance” parameter β to −1.5,

−1.25, and −1; the CF sequence count NCF to 40 and 80; and the root branch length t0 to

0.01759 and 0.1. There are thus 12 different parameter combinations, and for each of these, we

simulate 15 trees for a grand total of 180 simulated trees (S1 Table). While 180 simulated trees

does not seem like a large number of Monte Carlo replicates, we are forced to constrain the

number of trees on which we perform inference because the ARPP program has to be run by

hand via a GUI. Using these parameter settings allows for the simulation of both balanced and

imbalanced trees.

Naive sequence validations. For each of the 180 simulated trees, we validate the accuracy

of the naive sequence estimates generated from the linearham, partis, and ARPP pro-

grams by computing the hamming distances (i.e. the number of mismatched characters

between two equal-length strings) between the estimates and the true naive sequence. We did

this for the inferred DNA sequences directly and also for those same sequences translated to

amino acids after inference was complete. The partis and ARPP packages provide naive

sequence point estimates, but linearham samples naive sequences from a posterior distribu-

tion so we take the naive sequence with the highest posterior probability as the linearham
“point estimate”.

We summarize the hamming distance results for all 180 simulated trees described above

and plot this performance metric against the corresponding values of tree imbalance (Fig 1);

for reference, we plot the tree imbalance values for the PC64 and VRC01 trees as well. The per-

formance of partis worsens as trees become more imbalanced, which makes sense given

that partis assumes a star-tree configuration for clonal family evolution. The linearham
and ARPP programs provide accurate naive sequence estimates and perform similarly across

the observed tree imbalance spectrum, which is not too surprising because they both incorpo-

rate phylogenetic information into their estimates. We also show a summary of these results,

split into values for the full-sequence and CDR3 regions, as well as the DNA/amino-acid

sequence types (Table 1). Table 1 suggests that linearham and ARPP both perform better

than partis does by approximately 2-3 nucleotides (1.6-1.8 amino acids) in the whole

sequence and in the CDR3 region. Furthermore, it seems linearham and ARPP perform

similarly across all the different settings in Table 1.
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Fig 1. Naive sequence validation plot. The hamming distances between the simulated naive DNA sequences and their corresponding

linearham, partis, and ARPP estimates versus the tree imbalance values of the simulated trees. Linear regression lines are

superimposed for each method to indicate how the results vary as trees get more imbalanced. For reference, we plot the tree imbalance

values for the PC64 and VRC01 trees.

https://doi.org/10.1371/journal.pcbi.1008030.g001

Table 1. Naive sequence validation table.

Sequence Region Program Sequence Type

DNA Amino-Acid

Full-sequence linearham 1.92 1.17

(3.14) (1.76)

partis 4.81 3.02

(4.91) (2.84)

ARPP 2.24 1.39

(5.06) (3.32)

CDR3-only linearham 1.66 1.08

(2.89) (1.69)

partis 4.17 2.69

(3.70) (2.29)

ARPP 1.27 0.856

(1.78) (1.18)

Mean hamming distances between the simulated naive sequences and their corresponding estimates, where the

hamming distances are averaged over all 180 simulated trees. Results are provided for the linearham, partis,

and ARPP programs; the full-sequence and CDR3 regions; and the DNA/amino-acid sequence types. Standard errors

are also presented in parentheses.

https://doi.org/10.1371/journal.pcbi.1008030.t001
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We now present the mean hamming distance results, averaging over all trees generated

under the different simulation parameter settings. Specifically, we average over the trees

that were simulated using beta-splitting “balance” parameter values β = −1, −1.25, −1.5, CF

sequence counts NCF = 40, 80, and root branch lengths t0 = 0.01759, 0.1. The mean hamming

distance values seem to increase slightly for linearham and ARPP and considerably for

partis as we go from β = −1, −1.25 to β = −1.5 (S2 Table), which is also suggested in Fig 1.

The performance of partis appears to deteriorate somewhat as NCF goes from 40 to 80 (S3

Table). The performance of linearham may worsen slightly and ARPP may improve slightly

as NCF goes from 40 to 80 but these differences are small compared to the standard errors.

With the same caveats, linearham may be slightly better than ARPP at predicting the whole

naive sequence. As the root branch length t0 increases from 0.01759 to 0.1, the mean hamming

distances increase substantially for all three programs (S4 Table), which is intuitive because

we are essentially introducing a higher number of mutations that are shared across all clonal

sequences. While these linearham naive sequence validations did not take advantage of the

full naive sequence posterior distribution, we demonstrate the usefulness of accounting for

phylogenetic uncertainty in our ancestral sequence validations described below.

Intermediate ancestral sequence validations. Our ancestral sequence validation experi-

ments are centered around accurate inference of particular root-to-tip ancestral sequence

lineages of interest because immunologists frequently use ASR to estimate the mutational

pathways associated with antibody development [4, 6]. For each of our simulated trees, we

determine the root-to-tip ancestral lineage of interest by identifying the tip sequence that is

farthest from the naive sequence in terms of branch length distance.

We quantify the results of our ancestral sequence validation by treating it as a machine

learning classification problem: do the posterior probabilities aid us in deciding if the ancestral

lineage sequences are correct? In all our experiments, we measure classification performance

by recording the positive predictive value (i.e. the fraction of sequences in the ancestral lineage
prediction set that are on the true ancestral lineage) and the true positive rate (i.e. the fraction of

sequences on the true ancestral lineage that are in the ancestral lineage prediction set). The “pre-

dicted classification” of these sequences is obtained by applying a decision boundary ρ 2 {0.25,

0.5, 0.75} to the posterior probability. Thus, for example, if ρ = 0.75 and a given ancestral

sequence is on the true ancestral lineage and has posterior probability 0.8, it is considered to

be a “true positive” prediction. This analysis is straightforward for the linearham and

RevBayes programs, that do estimate posterior probabilities. We define dnaml “posterior

probabilities” to be either 0 or 1 depending on whether a lineage sequence is either outside or

inside of the dnaml-inferred set of most probable reconstructed lineage sequences.

We report the positive predictive values and the true positive rates for all 180 simulated

trees and plot these performance metrics against the corresponding values of tree imbalance

(Fig 2); for reference, we plot the tree imbalance values for the PC64 and VRC01 trees as well.

Notice that the superimposed linear regression lines have negative slopes close to 0, which sug-

gests that ancestral lineage inference is not sensitive to the “balance” of the tree. We also dis-

play the mean positive predictive values and mean true positive rates aggregated over all 180

trees for the same three programs, the different decision boundaries ρ 2 {0.25, 0.5, 0.75}, and

the DNA/amino-acid sequence types (Table 2). Table 2 indicates that linearham performs

better than RevBayes in every setting, indicating that accounting for naive rearrangement

uncertainty in our posterior distribution rather than conditioning on the partis-inferred

naive sequence leads to more accurate ancestral lineage sequence estimates. At the lowest deci-

sion boundary ρ = 0.25, linearham obtains slightly better positive predictive values and true

positive rates than either RevBayes or dnaml does (Table 2). As the decision boundary ρ
increases to 0.5 and 0.75, linearham and RevBayes achieve higher positive predictive
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values at the expense of lower true positive rates, which makes sense because high values of ρ
imply that only lineage sequences with high posterior probabilities are predicted to be on the

true lineage. In addition, note that the increases in positive predictive values are greater than

the decreases in true positive rates for linearham as ρ increases. dnaml obtains the same

Fig 2. Intermediate ancestral sequence validation plot. The positive predictive values and the true positive rates versus the tree

imbalance values of the simulated trees, stratified by decision boundary ρ. Positive predictive values and true positive rates are computed

on the DNA sequences and for the linearham, RevBayes, and dnaml programs. Linear regression lines are superimposed for each

package to indicate how the results vary as trees get more imbalanced. For reference, we plot the tree imbalance values for the PC64 and

VRC01 trees (vertical dashed lines).

https://doi.org/10.1371/journal.pcbi.1008030.g002

Table 2. Intermediate ancestral sequence validation table.

Performance Metric Program Sequence Type

DNA Amino-Acid

ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 0.25 ρ = 0.5 ρ = 0.75

Positive predictive value linearham 0.561 0.719 0.856 0.613 0.758 0.858

(0.139) (0.157) (0.176) (0.131) (0.145) (0.146)

RevBayes 0.544 0.672 0.734 0.590 0.713 0.774

(0.141) (0.160) (0.166) (0.134) (0.145) (0.139)

dnaml 0.520 0.520 0.520 0.590 0.590 0.590

(0.139) (0.139) (0.139) (0.165) (0.165) (0.165)

True positive rate linearham 0.545 0.428 0.304 0.640 0.533 0.398

(0.146) (0.147) (0.125) (0.139) (0.144) (0.138)

RevBayes 0.517 0.406 0.276 0.606 0.505 0.370

(0.147) (0.144) (0.116) (0.140) (0.144) (0.134)

dnaml 0.521 0.521 0.521 0.584 0.584 0.584

(0.142) (0.142) (0.142) (0.166) (0.166) (0.166)

Mean positive predictive values and mean true positive rates, averaged over all 180 simulated trees. Results are provided for the linearham, RevBayes, and dnaml

programs; the different decision boundaries ρ 2 {0.25, 0.5, 0.75}; and the DNA/amino-acid sequence types. Standard errors are also presented in parentheses.

https://doi.org/10.1371/journal.pcbi.1008030.t002
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positive predictive values and true positive rates regardless of ρ because its “posterior probabil-

ities” are either 0 or 1.

We next discuss the mean positive predictive values and mean true positive rates for deci-

sion boundary ρ = 0.5, averaging over all trees generated under the different simulation param-

eter settings. The validation performance of all the programs seems to decline, albeit slightly,

from β = −1 to β = −1.5 (S5 Table), which makes sense given the trends in Fig 2. For the most

part, mean positive predictive values and mean true positive rates increase for linearham,

RevBayes, and dnaml as NCF goes from 40 to 80 (S6 Table), which seems surprising but for

larger CFs, the root-to-tip lineage becomes larger and may explain this observed pattern. As

the root branch length t0 increases from 0.01759 to 0.1, the ancestral lineage validation results

worsen considerably for all three programs (S7 Table), which is logical because, as we stated

above, we are essentially introducing a higher number of mutations shared across all clonal

sequences when we utilize longer root branch lengths in our simulations.

These results help demonstrate why Bayesian ancestral lineage inference should be favored

over likelihood-based approaches to intermediate lineage inference as the Bayesian posterior

probabilities quantify the uncertainty in our sequence estimates. In a real-life experimental set-

ting, the decision boundary ρ should be chosen based on the desired level of positive predictive

values or true positive rates, and our analysis provides some insight into the mapping between

ρ and these classification metrics. In practice, immunologists are probably more interested in

controlling positive predictive values than true positive rates because synthesizing computa-

tionally-inferred lineage sequences and testing their binding and neutralization abilities is

a laborious and expensive endeavor. Thus, knowing the approximate fraction of inferred

intermediate lineage sequences that are on the true lineage is of the utmost importance to an

immunologist.

PC64/VRC01 ancestral lineage analysis

We illustrate the capabilities of linearham and ARPP/dnaml on real-world datasets by

applying the three methods to subsets of the PC64 and VRC01 datasets. The PC64 dataset

contains a set of clonal sequences with multiple HIV-binding bNAbs that results from a

longitudinal study over 46 months on an African donor (i.e. donor PC64) within the

International AIDS Vaccine Initiative Protocol C cohort [49]. Our VRC01 clonal family

dataset also originates from an HIV-infected donor and contains many bNAb sequences

that are part of a well-known class of HIV-binding antibodies (i.e. the VRC01 class) [41, 50–

52]. The tip sequences of interest for the PC64 and VRC01 datasets are chosen to be PCT64-

35M and NIH45-46, respectively, which are both monoclonal antibody sequences that have

accumulated a large amount of SHM. We use 100 sequences from the PC64 CF dataset

using a pruning strategy discussed in [6] and trim the VRC01 CF dataset to 268 sequences

using the cd-hit sequence clustering program [53] with a 95% sequence identity cutoff.

We perform inference on these subsetted datasets using the same settings as described for

our simulation experiments and have uploaded the PC64 and VRC01 input and output

data on Zenodo (https://doi.org/10.5281/zenodo.3746832). For reference, the linearham
inference pipeline spent approximately 6.6 and 38.5 hours on the PC64 and VRC01 datasets,

respectively. In general, the linearham inference pipeline running time is dominated by

the RevBayes MCMC step, which scales approximately exponentially in the clonal family

size.

The PC64 amino acid naive sequence posterior probability logos suggest that there is little

uncertainty in the naive sequence reconstruction (Fig 3a) and, in fact, the most probable lin-
earham amino acid naive sequence has a probability of approximately 0.92. However, the
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VRC01 naive sequence seems to have considerable uncertainty in the CDR3 region (Fig 3b),

which shows that properly modeling ancestral sequence and phylogenetic uncertainty is

important for real-world datasets with highly-mutated sequences. The most probable line-
arham VRC01 naive sequence estimate has a posterior probability approximately equal to

0.036. It is important to note that the VRC01 CF sequences were first collected 5 years after the

diagnosis of the associated HIV-1 infection, whereas the PC64 CF sequences contain samples

drawn from the corresponding donor as early as 4 months post infection. This indicates that

the VRC01 naive sequence reconstruction inherently has more uncertainty because there are

not any early time-point samples in the corresponding dataset. Furthermore, the most proba-

ble linearham VRC01 naive sequence amino acids do not perfectly match the correspond-

ing ARPP-inferred residues (Fig 3b). In total, these results suggest that in the absence of

uncertainty, linearham and ARPP produce similar naive sequence reconstructions. How-

ever, when there is a significant amount of naive sequence uncertainty, linearham, unlike

ARPP, provides alternate hypotheses that should be considered along with corresponding

uncertainty estimates.

Our linearham analysis demonstrates that there are many probable naive-to-tip

sequence paths (Fig 4, S1 Fig), suggesting that intermediate ancestral sequences have high lev-

els of uncertainty; we use 0.04 probability cutoffs in each linearham-inferred lineage

graphic. In particular, the linearham lineage diagram for the PC64 dataset (Fig 4) shows

many possible routes of evolution from the different naive sequences to the PCT64-35M

mature sequence and displays confidence values via posterior probabilities. The VRC01 line-

age graphic in Fig 4 does not display connections between any naive sequences and intermedi-

ate ancestral sequences, which reflects the fact that naive sequence inference is extremely

challenging on this dataset. In summary, there is considerable uncertainty in naive-to-tip

mutational trajectory inference in real-world BCR datasets. This finding contradicts the asser-

tions of [12], which states that ancestral sequence and phylogenetic uncertainty is unimpor-

tant, and proceeds with a single point estimate.

Fig 3. Naive sequence posterior probability logos. The linearham-inferred (top) and ARPP-inferred (middle) amino acid naive

sequence posterior probability logos for (a) the pruned PC64 dataset of 100 sequences and (b) the trimmed VRC01 alignment of 268

sequences. We also display the empirical sequence logo (bottom) for each dataset and highlight the inferred CDR3 regions (black lines).

https://doi.org/10.1371/journal.pcbi.1008030.g003
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Discussion

In this paper, we introduce a novel Bayesian approach to CF phylogenetic inference that is

based on a phylo-HMM. Our phylo-HMM posterior sampling methodology not only allows

for easy quantification of phylogenetic and ancestral sequence uncertainty but also models

the V(D)J recombination process as an informative prior on the root sequence. Specifically,

Fig 4. Naive-to-tip sequence trajectory graphics. The linearham-inferred naive-to-tip amino acid sequence trajectories for the

pruned PC64 dataset of 100 sequences and the trimmed VRC01 alignment of 268 sequences, displaying only the edges that satisfy the

given posterior probability threshold, and only the nodes that contact edges above the threshold. The tip sequences of interest for the

PC64 and VRC01 datasets are chosen to be PCT64-35M and NIH45-46, respectively, and we use 0.04 probability cutoffs for these lineage

graphics (such that any edge with probability less than this threshold is discarded). The nodes correspond to unique ancestral sequences

filled with red color, where the opacity is proportional to the posterior probability of the associated sequence. The directed edges

connecting nodes represent ancestral sequence transitions and are shaded blue with an opacity proportional to the posterior probability

of the associated sequence transition. Nodes without any probable edges connecting them are not displayed in these graphics. The

absence of many nodes for VRC01 indicates that these naive-to-tip sequence trajectories are highly uncertain. A more detailed version of

this graphic, including predicted lineage mutations, is included as S1 Fig.

https://doi.org/10.1371/journal.pcbi.1008030.g004
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our phylo-HMM models both the naive rearrangement and SHM processes by using a

hidden state discrete-time Markov model on naive sequences that explicitly incorporates

V(D)J rearrangement information and an emission distribution generating the clonal

sequences conditional on the naive sequence that is based on phylogenetic likelihoods.

We show that our inference procedure, implemented in the software package linearham,

provides state-of-the-art naive sequence and ancestral sequence estimates and augments

these estimates with relative confidence values by reporting the associated posterior

probabilities.

From our simulation experiments, we see that the partis naive sequence estimates get

substantially worse as trees get more imbalanced. This is in contrast to those of linearham
and ARPP, which is intuitive because partis assumes a star-tree configuration whereas

linearham and ARPP leverage phylogenetic models. The linearham and ARPP programs

perform similarly in our naive sequence validations regarding their most highly supported

inferences, but only linearham is capable of characterizing naive sequence uncertainty.

This is important because, as we see in our VRC01 analysis (and in contrast to the findings

of [12]), real datasets of significant practical importance can have substantial uncertainties

associated with their naive sequence estimates. In addition, we demonstrate that linearham
ancestral lineage inference performs better, via mean positive predictive values and mean true

positive rates, than either RevBayes or dnaml does at the lowest decision boundary ρ =

0.25, which suggests that accounting for naive sequence, phylogenetic, and ancestral sequence

uncertainty does lead to slightly improved ASR performance. Furthermore, our Bayesian ASR

results indicate that ρ can be chosen according to a prespecified trade-off between positive pre-

dictive values and true positive rates, which is an important consideration for immunologists

looking to synthesize computationally-inferred lineage sequences. Finally, we note that we did

not provide a comparison with a phylogenetic inference method in the absence of any V(D)J

rearrangement inferences. This was not necessary because such a method, using a standard

reversible substitution model, would have no information on where to place the root. Thus if

one was to infer the naive ancestor, marginalized over the possible root positions, one would

get a highly uninformative result. Indeed, integration of germline information is essential in

this case to root the tree.

Based on all the evidence in this manuscript, we recommend using linearham to infer

and visualize naive-to-mature mutational pathways in CFs harboring antibodies of particular

interest. Bayesian phylogenetic inference has already been shown to be useful for identifying

different possible routes of evolution from a fixed naive sequence to a bNAb with relative

confidence values [6] and we believe our Bayesian phylo-HMM analysis pipeline in line-
arham can be used to not only infer similarly-styled maturation pathways but also visualize

the uncertainties inherent in the naive sequence and ancestral sequence estimates. Our bio-

logical applications in this manuscript are derived from two highly-mutated BCR lineages

and so the conclusions may not hold true for other human BCR sequence datasets. On the

other hand, in our research we have found that ancestral sequence uncertainty is the rule and

not the exception, and levels of uncertainty shown here (Fig 4) are quite typical [6]. If we are

to trust binding experiments on predicted ancestral sequences, we must know the level of

certainty in those predictions, which can be assessed using the approach described in this

paper.

Our Bayesian phylo-HMM inference procedure admits a number of possible future exten-

sions to enhance the effectiveness of our technique. One drawback of our method is that it

does not sample the parameters of p(Ynaive) and uses partis (and its star-tree assumption)

to estimate them. Ideally, our Bayesian inference procedure would jointly sample all the model
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parameters, but currently this is not practically feasible. In addition, our method implicitly

assumes the CFs have been obtained from partis, which uses the star-tree assumption to

cluster repertoire sequences. It may be possible to, as [16] state, incorporate the phylo-HMM

in the CF clustering procedure within partis to obtain higher-quality CFs, but in our cur-

rent Bayesian implementation that would be computationally costly. Finally we would like

to provide more efficient alternatives than the current approach of MCMC sampling and

resampling.

Methods

Overview

The immune system is able to generate a diverse set of naive BCR sequences due to the V(D)J

rearrangement process (Fig 5a). In this process, the B cell first randomly selects V, D, and J

gene segments (i.e. DNA sequences) from the respective gene pools in the body. Before joining

the gene segments together, the B cell randomly deletes nucleotides at both ends of the V-D and

D-J junction regions and randomly inserts nucleotides in the same junction regions (i.e. non-

Fig 5. Model overview. (A) A schematic representation of the naive rearrangement process from [11]. First, V (green), D

(orange), and J (purple) genes are randomly selected from the respective gene pools in the body. Then, nucleotides are

randomly deleted (red X’s) from both ends of the V-D and D-J junction regions and random bases (blue) are added to the

same junction regions before the V, D, and J germline genes can be joined together. The BCR sequences can be

partitioned into framework (FWK) and complementarity-determining (CDR) regions. (B) Our Bayesian phylo-HMM

jointly models V(D)J recombination at the root of the tree (using an HMM) and then subsequent diversification (via a

phylogenetic tree). We do posterior inference conditioning on the observed sequence alignment in a clonal family, but

not on a fixed inferred naive sequence.

https://doi.org/10.1371/journal.pcbi.1008030.g005
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templated insertions). BCRs comprise both heavy chain and light chain sequences, where the

former goes through the VDJ rearrangement process described above while the latter undergoes

VJ recombination, a process similar to VDJ recombination without D germline genes; in this

paper, we focus solely on heavy chain inference, but our methods and implementation extend

to light chain inference too. Although the V(D)J rearrangement process samples germline

genes from the same gene pools for all the naive BCRs in a given individual, different people

may have different collections of germline genes [15]. BCR sequences can be partitioned into

framework (FWK) and complementarity-determining (CDR) regions. The BCR binding affin-

ity is largely determined by the sequence segments in the CDR regions, and among all the CDR

regions the CDR3 region contributes the most to antigen-binding specificity and has the highest

amount of sequence variability. The partis software program [11, 16] treats the naive

sequence generative process as a discrete-time Markov chain (DTMC) going from left to right

across the sequence bases and also permits maximum likelihood inference of the associated

model parameters, which are defined according to the V(D)J rearrangement dynamics. We

emphasize that the “time” of this DTMC represents position along the sequence, in contrast to

the continuous time Markov chain described below modeling the substitution process through

chronological time.

As we attempt to characterize the affinity maturation process in GCs, we use the concept of

a clonal family (CF) to help analyze BCR repertoire datasets that result from high-throughput

sequencing experiments. A clonal family consists of a set of BCR sequences that originate from

the same naive rearrangement event; in practice, it is simpler to define these families as groups

of BCR sequences that share the same naive sequence [16]. In this work, we use the latter defi-

nition of a CF. The CF definition used here relies on the basic assumption that the unmutated

common ancestor of a collection of clonally related sequences can only be identified by the

corresponding DNA sequence. There is a chance that two different naive B cells with identical

BCR sequences could seed multiple GCs and form their own lineages, but the observed clones

from the two GCs would be collapsed into a single CF because both lineages share the same

naive sequence. Thus, a correctly inferred CF under this definition will be a cluster of

sequences that derive from naive B cells with the same BCR sequence; because GC mutation

and selection occur at the sequence level, all sequences in a CF go through the same mutation

and selection processes. Using this CF definition, [16] describe how to cluster BCR sequences

from large-scale repertoire datasets into CFs with high accuracy using partis. We want to

emphasize that repertoire datasets can be clustered and pre-processed in many different ways,

but partis provides one way to cluster repertoire sequences and produce CF-specific multi-

ple sequence alignments (MSAs) which also provides us with estimates for a probabilistic

recombination model for BCRs.

As mentioned in the opening section, naive sequences accumulate mutations via SHM and

the corresponding B cells undergo cellular replication. Phylogenetic tree models provide a real-

istic and mathematically convenient way to represent the aforementioned B cell evolutionary

dynamics of a CF. In particular, these models define a likelihood at each MSA position/site

as a function of unknown parameters. These parameters consist of a tree topology, branch

lengths, and continuous-time Markov chain (CTMC) substitution model parameters. While B

cell evolution in a CF is not independent across the different site positions, site-specific phylo-

genetic likelihoods provide a convenient first approximation in modeling this phenomenon.

To help us illustrate how these phylogenetic models work, we provide an example tree visuali-

zation for 4 sequences (S2 Fig).

Given a tree topology with branch lengths, we use a CTMC substitution model to calculate

the probabilities of state changes along the branches of the tree. Specifically if t denotes a
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branch length on a tree, CTMC substitution models allow one to calculate pij(t), which denotes

the probability of going from state i to state j on a branch of length t, where i, j 2 {A, G, C, T}.

It is common to use a reversible CTMC substitution model on a tree [17]; a reversible substitu-

tion model is a Markov substitution model that, if started at stationarity, can be run backwards

in time, with the resulting backward Markov model following the same probability law as the

original forward model. The standard phylogenetic generative process can be described at

each alignment site as follows: 1) a DNA state at the root node is drawn independently accord-

ing to the same 4-state discrete distribution and 2) the states at the other nodes are sampled in

a pre-order traversal using the computed CTMC probabilities at each branch pij(t); this model

is a special case of a directed graphical model [18] that probabilistically generates sequence

alignments.

Standard phylogenetic models do not account for naive rearrangement dynamics at the

root because, as we discussed above, the root state at each sequence position is sampled inde-

pendently according to an identical distribution. Instead, if we draw root sequence states from

the DTMC mentioned earlier, we would obtain a phylogenetic model that more accurately

describes B cell evolutionary dynamics. Thus, we formulate our phylo-HMM to consist of a

hidden state DTMC model for naive sequences that explicitly incorporates V(D)J rearrange-

ment information, and an emission distribution that generates sequence alignments condi-

tional on the naive sequence that is based on phylogenetic likelihoods. This phylo-HMM

hopefully leads to more accurate naive sequence estimates and, as a result of that, higher-qual-

ity intermediate ancestral sequence estimates. We introduce a pictorial representation of our

Bayesian phylo-HMM to make clear our target of inference (Fig 5b).

Notation and assumptions

We now introduce some notation and assumptions that will be used throughout this paper.

Let D ¼ fDðjÞi gi¼1:m;j¼1:n denote the MSA of m clonal DNA sequences of length n. We define

Ynaive ¼ fY
ðjÞ
naivegj¼1:n and Ŷnaive ¼ fŶ

ðjÞ
naivegj¼1:n to be the corresponding length-n naive sequence

random variable and point estimate, respectively. We let τ represent a tree topology with m
tips and a root branch length; in total, this topology has m internal nodes and 2m − 1 branch

lengths. We assume that the ancestral sequence at the root of τ is Ynaive. Furthermore, we

define t = {ti}i=1:(2m−1) to be the branch lengths associated with τ. Let Yint ¼ fY
ðjÞ
i gi¼1:ðm� 1Þ;j¼1:n

denote the internal nodes of τ excluding the naive sequence Ynaive. For convenience, we let

DðjÞ ¼ fDðjÞi gi¼1:m and YðjÞint ¼ fY
ðjÞ
i gi¼1:ðm� 1Þ symbolize the observed sequence data and unob-

served ancestral sequence data, respectively, at MSA site j 2 {1, . . ., n}. Conditioned on the

root sequence Ynaive, we assume that the ancestral states at each site in the MSA evolve inde-

pendently along the phylogeny τ according to a general time-reversible (GTR) substitution

model [19]. Let e = {eAC, eAG, eAT, eCG, eCT, eGT} and π = {πA, πC, πG, πT} represent the GTR

exchangeability rates and equilibrium base frequencies, respectively. We also account for phy-

logenetic rate variation among sites by employing a discrete gamma distribution with a fixed

number of rate classes K [20, 21] and define α to be the associated gamma shape parameter,

denote r = {r1(α), . . ., rK(α)} as the set of discrete rates deterministically induced by α, and

let r� ¼ fr�
ðjÞgj¼1:n

represent the discrete rates chosen at each site in the MSA. In theory, we

would like to compute phylogenetic likelihoods with branch lengths scaled by r�
ðjÞ and mix over

r�
ðjÞ � Gammaða; aÞ for j 2 {1, . . ., n}. However, these integrals are generally intractable so [20]

suggested dividing the Gamma(α, α) distribution into K equal-probability rate classes, with
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the mean rate in each class used to represent all rates in that class. In practice, we use the Cate-

gorical(r, p) distribution to define the models on r�
ðjÞ for j 2 {1, . . ., n}, where p is a, possibly

unnormalized, probability vector; in addition, this model is used to represent more general

discrete distributions.

From a statistical point of view, it is common to assume the naive sequence root node is a

leaf node holding naive sequence bases connected to a “virtual root node” (i.e. what we call

“root” node for our phylogenetic model described in the previous subsection) via a branch

length of 0. Even though it may seem like we have described a rooted tree model above, it

turns out that under the assumptions of a reversible substitution model and a nucleotide distri-

bution at the virtual root starting at stationarity, the Pulley Principle, first discussed in [22],

states that the virtual root may be placed anywhere on the tree without affecting the likelihood.

This implies that the model described above does not correspond to a single rooted tree, but

an equivalence class of rooted trees that maps to a unique unrooted tree. This is an important

distinction as our phylo-HMM will in fact use an unrooted tree model, which will be justified

when we describe our posterior sampling approach.

Phylo-HMM description

Phylo-HMMs are special cases of directed graphical models [18] and treat evolution as a com-

bination of two Markov processes: one across the sites in the MSA and one down the phylog-

eny. They are commonly used for sequence-level segmentation problems such as gene

prediction and detection of highly-conserved regions [14]. In fact, a phylo-HMM is similar in

structure to a standard HMM; the main difference between the two model classes is that a

phylo-HMM uses a phylogenetic likelihood as its emission probability distribution, while stan-

dard HMMs usually specify simpler emission distributions. Our BCR-specific phylo-HMM

specifies a Markov process along Ynaive and, conditional on Ynaive, a phylogenetic evolutionary

process down the given tree. Phylo-HMMs have not been applied to BCR sequence analysis

before and we believe this biologically realistic probabilistic model is uniquely suited to pro-

vide higher-quality naive sequence and ancestral sequence estimates compared to those

obtained under current state-of-the-art methods.

To help us describe the phylo-HMM generative process, we provide an illustration of the

associated graphical model diagram for an example alignment with m = 3 sequences and n = 3

sites (Fig 6). The naive sequence “hidden state” prior distribution p(Ynaive) decomposes to

pðY ð1ÞnaiveÞ
Qn

j¼2
pðY ðjÞnaive jY

ðj� 1Þ

naive Þ and the bases are generated sequentially; these prior probabilities

depend on hyperparameters that can be set using the partis software package [11, 16].

For the tree topology τ, we assume that a tree is drawn from the Uniform distribution over

(m + 1)-tip unrooted trees; this seems like a strange choice given that we described τ as a

rooted topology above, but this decision will be justified when we discuss how to perform

Bayesian inference under the phylo-HMM. The branch lengths t and the gamma shape param-

eter α are assumed to be a priori independent and to follow Exponential(λ) distributions,

where λ is some prespecified rate. The GTR exchangeability rates e and equilibrium base fre-

quencies π are usually assumed to come from six-dimensional and four-dimensional Dirichlet

distributions, respectively.

For each MSA site j 2 {1, . . ., n}, r�
ðjÞ a priori follows the Categorical r; 1

K ; . . . ; 1

K

� �� �
distribu-

tion. Then, at each site j 2 {1, . . ., n}, we assume that YðjÞint and D(j) are generated by drawing

DNA states from CTMC transition probability matrices based on augmented branch lengths
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Fig 6. A graphical model representation of our phylo-HMM for an example alignment with m = 3 sequences and

n = 3 sites. The τ, t, π, and e nodes represent the 4-tip unrooted tree topology, the associated 5 branch lengths, the

GTR exchangeability rates, and GTR equilibrium base frequencies, respectively. The parameter α denotes the gamma

shape parameter associated with the K-class discrete gamma distribution, which is used to model phylogenetic rate

variation among sites; r symbolizes the vector of K discrete rates that is deterministically induced by α. The set of nodes

r� ¼ fr�
ð1Þ
; r�
ð2Þ
; r�
ð3Þ
g defines the rates that are drawn from r at each particular site. The Ynaive ¼ fY

ð1Þ

naive;Y
ð2Þ

naive;Y
ð3Þ

naiveg

“hidden state” node collection represents the Markov process that stochastically generates the naive sequence in our

phylo-HMM. The node sets fYðjÞi gi¼1:2;j¼1:3 and D ¼ fDðjÞi gi¼1:3;j¼1:3 denote the internal nodes of τ excluding the naive

sequence Ynaive and the observed MSA, respectively. We draw plates around the YðjÞint and D(j) node sets for j 2 {1, 2, 3}

to indicate that any directed edges touching a plate apply to all nodes in the plate (except for edges that originate from

t, which apply element-wise to the nodes in the plate).

https://doi.org/10.1371/journal.pcbi.1008030.g006
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t� r�
ðjÞ. For example, in Fig 6, we first sample Y ðjÞ1 from pðY ðjÞ1 jY

ðjÞ
naiveÞ, which is a row vector

distribution in the CTMC transition probability matrix for the “branch length” t1 � r�
ðjÞ, where

j 2 {1, . . ., n}. Once we have sampled YðjÞ1 for j = 1, . . ., n, we can draw Y ðjÞ2 and DðjÞ3 using similar

row vector distributions from CTMC transition probability matrices for the “branch lengths”

t2 � r�
ðjÞ and t3 � r�

ðjÞ, respectively. We can recursively continue this process until we generate

states at DðjÞ1 and DðjÞ2 for j 2 {1, . . ., n}.

Posterior distribution inference

We are interested in sampling from the posterior distribution p(τ, t, π, e, α, r, r�, Ynaive, Yint|D):

pðt; t; π; e; a; r; r�;Ynaive;Yint jDÞ

/ pðt; t; π; e; a; r; r�;Ynaive;Yint;DÞ

¼ pðr�;Yint;D j t; t; π; e; a; r;YnaiveÞpðtÞpðtÞpðπÞpðeÞpðaÞpðr j aÞpðYnaiveÞ

¼

�
Yn

j¼1

pðDðjÞ
�
�
� t; t; π; e; r�ðjÞ;Y

ðjÞ
intÞpðY

ðjÞ
int

�
�
� t; t; π; e; r�ðjÞ;Y

ðjÞ
naiveÞpðr�ðjÞ j rÞ

�

� pðtÞpðtÞpðπÞpðeÞpðaÞpðr j aÞpðYnaiveÞ;

where this model decomposition results from the definition of a directed graphical model. We

also factorize the posterior distribution in the following way:

pðt; t; π; e; a; r; r�;Ynaive;Yint jDÞ

¼ pðt; t; π; e; a; r jDÞ

� pðYnaive j t; t; π; e; a; r;DÞ

� pðr�;Yint j t; t; π; e; a; r;Ynaive;DÞ:

This formulation is useful because it suggests that we can generate draws from the posterior dis-

tribution by sampling sequentially from three conditional probability distributions. Conceptu-

ally, to sample from the posterior, we have to draw in-order: 1) the phylogeny-related

parameters, 2) the naive sequence, and 3) the ancestral sequences. We describe how to perform

these three sampling steps in the following subsections and provide a complete summary of the

sampling process in Algorithm 1.

Algorithm 1: Posterior Sampling of p(τ, t, π, e, α, r, r�, Ynaive, Yint|D)
Input: CF multiple sequence alignment D, number of discrete rates K

Npool, Nfinal (Npool/Nfinal � 20)
Output: Nfinal samples of

(τ, t, π, e, α, r, r�, Ynaive, Yint)� p(τ, t, π, e, α, r, r�, Ynaive,
Yint|D)
Tree Sampling—p(τ, t, π, e, α, r|D)
1. Run partis on input data D.
) D� ¼ fD; Ŷpartis

naiveg; p̂ðYnaiveÞ

2. Run RevBayes MCMC on the augmented MSA D�.
) Npool samples of (τ, t, π, e, α, r) � q(τ, t, π, e, α, r|D�)
3. Run the SIR algorithm without replacement on the Npool (τ, t, π, e,
α, r) proposal samples with weights w ¼ pðt;t;π;e;a;r j DÞ

qðt;t;π;e;a;r j D�Þ.

) Nfinal samples of (τ, t, π, e, α, r) � p(τ, t, π, e, α, r|D)
Naive Sequence Sampling—p(Ynaive|τ, t, π, e, α, r, D)
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For each sample (τ, t, π, e, α, r)�p(τ, t, π, e, α, r|D):
For each site j 2 {n, . . ., 1}:
1. Draw YðjÞnaive using our phylo-HMM-based backward sampling procedure.

)Nfinal samples of (τ, t, π, e, α, r, Ynaive)�p(τ, t, π, e, α, r,
Ynaive|D)
Intermediate Ancestral Sequence Sampling—p(r�, Yint|τ, t, π, e, α, r,
Ynaive, D)
For each sample (τ, t, π, e, α, r, Ynaive) � p(τ, t, π, e, α, r,
Ynaive|D):
For each site j 2 {1, . . ., n}:
1. Sample r�

ðjÞ according to probabilities proportional to

pðDðjÞ j t; t; π; e;YðjÞnaive; r�ðjÞÞ.

2. Sample YðjÞint in a pre-order fashion using the standard ASR distri-
bution at internal nodes on a r�

ðjÞ-scaled tree.
) Nfinal samples of (τ, t, π, e, α, r, r�, Ynaive, Yint) � p(τ, t, π, e,
α, r, r�, Ynaive, Yint|D)

Tree sampling. Our strategy for sampling from p(τ, t, π, e, α, r|D) is to first draw a large

pool of observations from an easy-to-sample proposal distribution q and then perform

weighted bootstrap with weights
p
q on those samples to obtain approximate draws from the cor-

rect distribution. This “sampling-importance-resampling” (SIR) algorithm is a sample filtering

method that finds use in a wide variety of statistical applications [23–25]. The original SIR

algorithm resampled observations with replacement, but there are theoretical and practical

considerations that make resampling without replacement more attractive [26, 27]. A thor-

ough review of SIR sampling can be found in [28, Chapter 24]. We use the SIR algorithm to

sample from p(τ, t, π, e, α, r|D) because we want to take advantage of already-existing software

programs for Bayesian phylogenetic inference while incorporating biologically-realistic details

into our phylo-HMM.

Our phylogeny proposal distribution q comes from the RevBayes software package [46]

because this is a proposal that is close to the target distribution p while also being easy to sam-

ple from. In short, this q is traditional Bayesian phylogenetic analysis with a point estimate of

the naive sequence. In more detail, we first input the MSA D into the partis package, obtain

a naive sequence point estimate Ŷpartis
naive , and create an augmented MSA D� ¼ fD; Ŷpartis

naiveg. This

allows us to generate Markov chain Monte Carlo (MCMC) samples from q(τ, t, π, e, α, r|D�)

and provides a convenient way to sample trees that have m tips and an informative root branch

length emanating from the naive sequence. In our RevBayes analysis, we require that the

prior components of q(τ, t, π, e, α, r|D�) be defined as we discussed in the previous subsection

for p(τ, t, π, e, α, r|D) and as we will see, this assumption is critical to the validity of our

technique.

For the purposes of this discussion, let us assume that we sample a large number (say

Npool) of parameter values from q(τ, t, π, e, α, r|D�) in RevBayes. As we briefly mentioned

above, we resample Nfinal times without replacement from the set of Npool q(τ, t, π, e, α, r|D�)

draws. Each q(τ, t, π, e, α, r|D�) sample is assigned a sampling weight w = p(τ, t, π, e, α, r|D)/

q(τ, t, π, e, α, r|D�). While it seems odd to use the ratio of posterior probabilities that are

conditional on different datasets as bootstrap weights, the only technical requirement on p
and q is that the parameters of interest (i.e. τ, t, π, e, α, and r) have the same support, which

is indeed the case in our situation. Smith and Gelfand [23] suggest picking Npool and Nfinal so
Npool
Nfinal
� 10 while Rubin [30] proposed a safe rule-of-thumb to be

Npool
Nfinal
¼ 20; we use

Npool
Nfinal
¼ 20

in all the applied experiments conducted in this paper. It may not be immediately clear

how one would efficiently compute the numerator in w so we express w in the following
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form:

w ¼
pðt; t; π; e; a; r jDÞ
qðt; t; π; e; a; r jD�Þ

¼
pðt; t; π; e; a; r;DÞ=pðDÞ
qðt; t; π; e; a; r;D�Þ=qðD�Þ

¼
pðD j t; t; π; e; a; rÞ
qðD� j t; t; π; e; a; rÞ

qðD�Þ
pðDÞ

¼

P
Ynaive

pðD j t; t; π; e; a; r;YnaiveÞpðYnaive j t; t; π; e; a; rÞ
qðD� j t; t; π; e; a; rÞ

qðD�Þ
pðDÞ

¼

P
Ynaive

pðD j t; t; π; e; r;YnaiveÞpðYnaiveÞ

qðD� j t; t; π; e; a; rÞ
qðD�Þ
pðDÞ

¼

P
Ynaive

n
pðY ð1ÞnaiveÞ

Qn
j¼2

pðY ðjÞnaive
�
�
�Yðj� 1Þ

naive Þ
Qn

k¼1
pðDðkÞ

�
�
� t; t; π; e; r;Y ðkÞnaiveÞ

o

qðD� j t; t; π; e; a; rÞ
qðD�Þ
pðDÞ

;

where the transition from the second line to the third line is due to the priors on τ, t, π, e, α,

and r for both p and q being equal and the decomposition between the fourth and sixth lines

is a result of d-separation conditional independencies [18] as follows. Specifically, Ynaive?

{τ, t, π, e, α, r} (here? denotes independence) because every undirected path in the graphical

model between Ynaive and {τ, t, π, e, α, r} does not contain any “conditioned” child nodes

and D? α|{τ, t, π, e, r, Ynaive} as all paths between D and α are “blocked” by the intermediate

node r. The final denominator term above q(D�|τ, t, π, e, α, r) is the usual phylogenetic likeli-

hood, here calculated by RevBayes. Note that the marginal likelihood ratio
qðD�Þ
pðDÞ does not

affect the bootstrap sampling because the sampling probabilities are proportional to w and

the likelihood ratio is a constant with respect to τ, t, π, e, α, and r in the Npool sampling

weights. The numerator term in the final equation for w looks complicated, but is actually

the phylo-HMM likelihood with the “hidden state” probabilities pðY ð1ÞnaiveÞ and pðY ðjÞnaive jY
ðj� 1Þ

naive Þ

for j 2 {2, . . ., n} and the “emission probabilities” pðDðkÞ j t; t; π; e; r;Y ðkÞnaiveÞ that marginalize

over the site-wise rates r�
ðkÞ for k 2 {1, . . ., n}. We can efficiently calculate the phylo-HMM

likelihood using the forward algorithm [31], but this approach requires us to be able to com-

pute the phylo-HMM emission probabilities in a straightforward manner. The computation

of the emission probabilities is of interest because the hidden state probabilities in p(Ynaive)

can be easily inferred using partis, which we now call p̂ðYnaiveÞ.

It turns out that we can, again, leverage existing software tools to help us efficiently compute

the emission probabilities pðDðkÞ j t; t; π; e; r;Y ðkÞnaiveÞ for k 2 {1, . . ., n}. The key point is to recog-

nize that pðDðkÞ j t; t; π; e; r;Y ðkÞnaiveÞ is an entry in the Felsenstein likelihood vector at the Y ðkÞnaive

node, which denotes the probability of the observed data at only the tips that descend from

node Y ðkÞnaive, given the conditioned state of node Y ðkÞnaive. These vectors are commonly used within

a post-order tree traversal algorithm to compute standard phylogenetic likelihoods [22]. Let

Fu = (Fu1, . . ., Fum)T be the vector of partial likelihoods at node u, where Fui denotes the proba-

bility of the observed data at only the tips that descend from node u, given that the state of

node u is i. Because we utilize an unrooted tree model in our phylo-HMM, we can use a Pulley

Principle argument [22] to show that a standard phylogenetic likelihood on our tree can be

represented as pðDðkÞ j t; t; π; e; r;Y ðkÞnaiveÞpYðkÞnaive
. Thus, we can compute the phylo-HMM emis-

sion probabilities by first calculating the standard site-wise phylogenetic likelihoods on the
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same tree and then dividing out the Y ðkÞnaive stationary probabilities. To compute these stan-

dard site-specific phylogenetic likelihoods, we make use of the libpll C library [32],

which is a versatile high-performance software library for phylogenetic analysis. We could

have instead used a rooted tree with a non-reversible substitution model in our phylo-

HMM, performed our own post-order tree traversal algorithm for likelihood computations,

and extracted out the appropriate entries in the site-wise Felsenstein likelihood vectors.

However, using libpll allowed us to focus on the novel core of our work: combining phy-

logenetic and HMM likelihood calculations in a Bayesian inference. In the next subsection,

we describe how to generate naive sequence draws given the approximate phylogenetic tree

samples from p(τ, t, π, e, α, r|D).

Naive sequence sampling. To sample naive sequences, we exploit the fact that our

phylo-HMM is essentially a standard HMM with a naive-conditional phylogenetic likelihood

as its emission distribution. We draw the “hidden state” naive sequence Ynaive from p(Ynaive|

τ, t, π, e, α, r, D) by adapting the hidden state posterior sampling technique for standard

HMMs to be used for our specialized phylo-HMM [33]. Just as we perform the forward algo-

rithm by recursively computing and caching intermediate phylo-HMM likelihoods (i.e. for-

ward probabilities) going left to right across the MSA, we can sample Ynaive by doing a

backward pass through the phylo-HMM and drawing the YðjÞnaive states starting at site n and

ending at the first alignment site. In fact, the maximum a posteriori probability (MAP) esti-

mate of the hidden state sequence Ynaive is obtained using a similar procedure called the

Viterbi algorithm [31, 33]. This backward sampling procedure can actually use the previously

cached forward probabilities in the calculation of the sampling probabilities at each site,

which is convenient because we already had to run the forward algorithm to sample the phy-

logeny-related parameters from p(τ, t, π, e, α, r|D). Once Ynaive has been sampled, we can

proceed to draw the intermediate ancestral states Yint from the conditional distribution

p(r�, Yint|τ, t, π, e, α, r, Ynaive, D).

Intermediate ancestral sequence sampling. Just as we did for our naive sequence sam-

pling, we sample the intermediate ancestral states Yint by utilizing a modified version of the

standard ancestral sequence reconstruction (ASR) technique used in phylogenetics [34]. It is

important to note that sampling from p(r�, Yint|τ, t, π, e, α, r, Ynaive, D) can be reduced to draw-

ing ðr�
ðjÞ;Y

ðjÞ
intÞ pairs from pðr�

ðjÞ;Y
ðjÞ
int j t; t; π; e; a; r;Y

ðjÞ
naive;DðjÞÞ for each MSA site j 2 {1, . . ., n},

which is justified by d-separation conditional independencies [18]. At each site j 2 {1, . . ., n},

we first sample r�
ðjÞ and then YðjÞint according to the previously-described distribution:

pðr�
ðjÞ;Y

ðjÞ
int j t; t; π; e; a; r;Y

ðjÞ
naive;DðjÞÞ

¼ pðr�
ðjÞ j t; t; π; e; a; r;Y

ðjÞ
naive;DðjÞÞ pðY

ðjÞ
int j t; t; π; e; a; r;Y

ðjÞ
naive; r�ðjÞ;D

ðjÞÞ;

where the above decomposition is based on the definition of conditional probability. We draw

the site-specific rates before the site-wise intermediate ancestral states because conditioning on

the rates allows for simpler and more efficient ancestral state sampling using an already-existing

software package.

It turns out that we can draw r�
ðjÞ values from r with probabilities proportional to

pðDðjÞ j t; t; π; e;Y ðjÞnaive; r�ðjÞÞ, which makes intuitive sense because it implies rates should

be sampled according to the site-specific likelihoods with branch lengths scaled by the

corresponding rates. To understand why the above statement holds true, we express
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pðr�
ðjÞ j t; t; π; e; a; r;Y

ðjÞ
naive;DðjÞÞ as follows:

pðr�
ðjÞ j t; t; π; e; a; r;Y

ðjÞ
naive;DðjÞÞ

/ pðr�
ðjÞ;D

ðjÞ j t; t; π; e; a; r;Y ðjÞnaiveÞ

¼ pðr�
ðjÞ j t; t; π; e; a; r;Y

ðjÞ
naiveÞ pðDðjÞ j t; t; π; e; a; r;Y

ðjÞ
naive; r�ðjÞÞ

¼ pðr�
ðjÞ j rÞ pðD

ðjÞ j t; t; π; e;Y ðjÞnaive; r�ðjÞÞ

/ pðDðjÞ j t; t; π; e;Y ðjÞnaive; r�ðjÞÞ;

where the transition from the second line to the third line stems from the definition of condi-

tional probability, the transition from the third to fourth line is a result of d-separation [18],

and the fourth-to-fifth line transition is due to the fact that r�
ðjÞ j r � Categorical r; 1

K ; . . . ; 1

K

� �� �

by assumption. These site-specific likelihoods are in fact almost identical to the naive-condi-

tional phylogenetic likelihoods discussed in the previous two subsections with the only differ-

ence being that we now condition on the site-wise rates instead of marginalizing over them.

To illustrate why sampling YðjÞint from pðYðjÞint j t; t; π; e; a; r;Y
ðjÞ
naive; r�ðjÞ;D

ðjÞÞ is similar to draw-

ing ASRs according to the procedure outlined by [34], we derive the sampling distribution of

YðjÞ1 , the most recent common ancestor of D(j). The distribution

pðY ðjÞ1 j t; t; π; e; a; r;Y
ðjÞ
naive; r�ðjÞ;D

ðjÞÞ can be decomposed in the following manner:

pðY ðjÞ1 j t; t; π; e; a; r;Y
ðjÞ
naive; r�ðjÞ;D

ðjÞÞ

/ pðY ðjÞ1 ;DðjÞ j t; t; π; e; a; r;Y
ðjÞ
naive; r�ðjÞÞ

¼ pðY ðjÞ1 j t; t; π; e; a; r;Y
ðjÞ
naive; r�ðjÞÞ pðD

ðjÞ j t; t; π; e; a; r;Y ðjÞnaive; r�ðjÞ;Y
ðjÞ
1 Þ

¼ pðY ðjÞ1 j t; t; π; e;Y
ðjÞ
naive; r�ðjÞÞ pðD

ðjÞ j t; t; π; e; r�
ðjÞ;Y

ðjÞ
1 Þ;

where, as before, the transition between the second and third lines are due to the definition of

conditional probability and the transition from the third line to the fourth line is a result of d-

separation [18]. The first term in the resulting expression above, pðY ðjÞ1 j t; t; π; e;Y
ðjÞ
naive; r�ðjÞÞ, is

the CTMC transition probability between YðjÞnaive and Y ðjÞ1 on a scaled branch length t1 � r�
ðjÞ and

the second term, pðDðjÞ j t; t; π; e; r�
ðjÞ;Y

ðjÞ
1 Þ, is an entry in the Felsenstein likelihood vector at

the YðjÞ1 node on the given tree with r�
ðjÞ-scaled branch lengths. This expression for the sampling

distribution of YðjÞ1 corresponds with the standard ASR distribution at internal nodes described

in [34]. Thus, by conceptually treating Y ðjÞnaive as a sampled root node and scaling the branch

lengths by r�
ðjÞ, we can draw Y ðjÞ1 � pðY ðjÞ1 j t; t; π; e; a; r;Y

ðjÞ
naive; r�ðjÞ;D

ðjÞÞ using equation (10) pre-

sented by [34]. By recursively using d-separation arguments [18], we can use similar logic to

that described above to sample states at the other internal nodes YðjÞint Y
ðjÞ
1 in a pre-order fashion

as well. Once we have drawn YðjÞint at each alignment site j 2 {1, . . ., n}, our three-stage sampling

process of p(τ, t, π, e, α, r, r�, Ynaive, Yint|D) is completed.

Implementation

The entire Bayesian phylo-HMM sampling process is implemented in a pipeline called line-
arham, which is available at https://github.com/matsengrp/linearham. We developed our

phylo-HMM data structure in C++ and, as mentioned before, used the tree structures from

the libpll C library [32] to ensure our phylogenetic likelihood computations were as fast as
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possible. We have provided a Docker container (https://quay.io/repository/matsengrp/

linearham) so users can try out the software without installation, as well have an authenticated

record of the installation dependencies and an example command in a Dockerfile.

Our linearham program also provides an interface to partis to obtain p̂ðYnaiveÞ. It

accepts a repertoire FASTA file as input and can infer the hidden state transition probabilities

assuming either the repertoire needs to be partitioned into individual CFs before phylogenetic

inference or the “repertoire” is a single CF already, which is useful for researchers that want to

run linearham inference on a hand-curated CF. It is also possible to specify an external set

of p(Ynaive) parameters.

In addition, linearham summarizes its phylogenetic inference output in a user-friendly

format. It provides an output FASTA file that contains each sampled amino acid naive

sequence and its associated posterior probability, creates a FASTA-like file that maps each

sampled amino acid naive sequence to its corresponding set of DNA naive sequences and pos-

terior probabilities, and generates an amino acid naive sequence posterior probability logo

using WebLogo [35] to visualize the per-site uncertainties. Furthermore, we provide visualiza-

tions for particular naive-to-tip tree lineages of interest by tabulating the posterior probabilities

of sampled naive sequences and intermediate ancestral sequences on the lineage. For naive-to-

tip lineage analysis, we also create a posterior probability lineage graphic using Graphviz
[36] that summarizes the different inferred naive-to-tip sequence trajectories and their relative

confidences [37].

Supporting information

S1 Fig. Naive-to-tip sequence trajectory graphics. The linearham-inferred (left) and

dnaml-inferred (right) naive-to-tip amino acid sequence trajectories for the pruned PC64

dataset of 100 sequences and the trimmed VRC01 alignment of 268 sequences, displaying only

the edges that satisfy the given posterior probability threshold, and only the nodes that contact

edges above the threshold. The tip sequences of interest for the PC64 and VRC01 datasets are

chosen to be PCT64-35M and NIH45-46, respectively, and we use 0.04 probability cutoffs

for these lineage graphics (such that any edge with probability less than this threshold is dis-

carded). The nodes correspond to unique ancestral sequences filled with red color, where

the opacity is proportional to the posterior probability of the associated sequence. Each node

has a label that denotes whether the associated sequence is a naive or intermediate ancestral

sequence, the posterior probability rank of the sequence among all sampled naive or interme-

diate ancestral sequences, and the sequence-specific posterior probability itself. The directed

edges connecting nodes represent ancestral sequence transitions, are shaded blue with an

opacity proportional to the posterior probability of the associated sequence transition, and are

annotated with the site-specific mutations between the two sequences. The absence of many

nodes for VRC01 indicates that these naive-to-tip sequence trajectories are highly uncertain.

(PDF)

S2 Fig. An example phylogenetic tree. Letters x, y, z, w represent the unobserved internal

node states where w is associated with the root node, t0 defines the root branch length, and

(t0, t1, t2, . . ., t6) denotes the entire vector of branch lengths. Given this tree topology and set of

branch lengths, we can calculate the likelihood of observing the nucleotide vector (A, T, C, T)

by marginalizing probabilities over the unobserved states x, y, z, w.

(PNG)

S1 Table. Simulation parameter settings. A table summarizing the various parameter settings

used in our simulation experiments. The beta-splitting “balance” parameter β controls how
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“comb-like” (i.e. imbalanced) our simulated trees look, NCF represents the number of sequences

simulated in each clonal family, and t0 denotes the root branch length. We simulate 15 trees for

each combination of parameter values, which results in 180 simulated trees.

(PNG)

S2 Table. Naive sequence validation table, subdivided by β. Mean hamming distances

between the simulated naive sequences and their corresponding estimates, where the ham-

ming distances are averaged over all trees generated under the different beta-splitting “bal-

ance” parameter value settings. Results are provided for the linearham, partis, and

ARPP programs; the full-sequence and CDR3 regions; and the DNA/amino-acid sequence

types. Standard errors are also presented in parentheses.

(PNG)

S3 Table. Naive sequence validation table, subdivided by NCF. Table analogous to S2 Table,

but varying the CF sequence count NCF.

(PNG)

S4 Table. Naive sequence validation table, subdivided by t0. Table analogous to S2 Table,

but varying the root branch length t0.

(PNG)

S5 Table. Intermediate ancestral sequence validation table, subdivided by β. Mean positive

predictive values and mean true positive rates for decision boundary ρ = 0.5, where we average

over all trees generated under the different beta-splitting “balance” parameter value settings.

Results are provided for the linearham, RevBayes, and dnaml programs and the DNA/

amino-acid sequence types. Standard errors are also presented in parentheses.

(PNG)

S6 Table. Intermediate ancestral sequence validation table, subdivided by NCF.

Table analogous to S5 Table, but varying the CF sequence count NCF.

(PNG)

S7 Table. Intermediate ancestral sequence validation table, subdivided by t0.

Table analogous to S5 Table, but varying the root branch length t0.

(PNG)
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19. Tavaré S. Some Probabilistic and Statistical Problems in the Analysis of DNA Sequences. Lectures on

Mathematics in the Life Sciences. 1986; 17:57–86.

20. Yang Z. Maximum Likelihood Phylogenetic Estimation from DNA Sequences with Variable Rates over

Sites: Approximate Methods. Journal of Molecular Evolution. 1994; 39(3):306–314. https://doi.org/10.

1007/BF00160154 PMID: 7932792

21. Yang Z. Among-Site Rate Variation and Its Impact on Phylogenetic Analyses. Trends in Ecology & Evo-

lution. 1996; 11(9):367–372. https://doi.org/10.1016/0169-5347(96)10041-0

22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of

Molecular Evolution. 1981; 17(6):368–376. https://doi.org/10.1007/BF01734359 PMID: 7288891

23. Smith AF, Gelfand AE. Bayesian statistics without tears: a sampling–resampling perspective. The

American Statistician. 1992; 46(2):84–88. https://doi.org/10.2307/2684170

24. Gordon NJ, Salmond DJ, Smith AF. Novel approach to nonlinear/non-Gaussian Bayesian state estima-

tion. In: IEE Proceedings F (Radar and Signal Processing). vol. 140. IET; 1993. p. 107–113.

25. Andrieu C, Doucet A, Holenstein R. Particle Markov chain Monte Carlo methods. Journal of the Royal

Statistical Society: Series B (Statistical Methodology). 2010; 72(3):269–342. https://doi.org/10.1111/j.

1467-9868.2009.00736.x

26. SkareØ, Bølviken E, Holden L. Improved sampling-importance resampling and reduced bias impor-

tance sampling. Scandinavian Journal of Statistics. 2003; 30(4):719–737. https://doi.org/10.1111/1467-

9469.00360

27. Gelman A, Stern HS, Carlin JB, Dunson DB, Vehtari A, Rubin DB. Bayesian Data Analysis. Chapman

and Hall/CRC; 2013.

28. Gelman A, Meng XL. Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspec-

tives. John Wiley & Sons; 2004.
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