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Abstract

Stochastic mapping is a simulation-based method for probabilistically mapping substitution his-
tories onto phylogenies according to continuous-time Markov models of evolution. This technique
can be used to infer properties of the evolutionary process on the phylogeny and, unlike parsimony-
based mapping, conditions on the observed data to randomly draw substitution mappings that do
not necessarily require the minimum number of events on a tree. Most stochastic mapping applica-
tions simulate substitution mappings only to estimate the mean and/or variance of two commonly
used mapping summaries: the number of particular types of substitutions (labeled substitution
counts) and the time spent in a particular group of states (labeled dwelling times) on the tree.
Fast, simulation-free algorithms for calculating the mean of stochastic mapping summaries exist.
Importantly, these algorithms scale linearly in the number of tips/leaves of the phylogenetic tree.
However, to our knowledge, no such algorithm exists for calculating higher-order moments of stochas-
tic mapping summaries. We present one such simulation-free dynamic programming algorithm that
calculates prior and posterior mapping variances and scales linearly in the number of phylogeny tips.
Our procedure suggests a general framework that can be used to efficiently compute higher-order
moments of stochastic mapping summaries without simulations. We demonstrate the usefulness of
our algorithm by extending previously developed statistical tests for rate variation across sites and
for detecting evolutionarily conserved regions in genomic sequences.

Keywords: dynamic programming; posterior predictive diagnostics; evolutionary conservation

1 Introduction
Given a multiple sequence alignment of DNA nucleotides, scientists are often interested in reconstructing
a phylogenetic tree to help them learn more about the ancestral relationships between the sequences and
the underlying evolutionary process (Yang, 2006). However, in some cases, phylogeny estimation by
itself does not provide all the needed information about sequence evolution because we observe data
only at the tips of the phylogeny. We do not have much insight into the evolution taking place on the
different tree branches other than through the estimated branch lengths, which are usually specified
in terms of the expected number of substitutions per site (Felsenstein, 2004, Chapter 13). However,
researchers are often interested in making inferences about the evolutionary process on the phylogeny
because these inferences could be used to answer important scientific questions. For instance, estimates
of non-synonymous/synonymous substitution rate ratios on a phylogeny are commonly used to test for
positive selection on protein-coding genes (Nielsen and Yang, 1998). Stochastic mapping can be used
to accurately estimate these ratios and, more generally, can help us make reliable inferences about the
latent evolutionary process on the phylogeny (Nielsen, 2002; Huelsenbeck et al., 2003; Dimmic et al.,
2005; Zhai et al., 2007; Lemey et al., 2012). Stochastic mapping is a simulation-based technique used to
probabilistically map substitution histories onto phylogenies according to continuous-time Markov chain
(CTMC) models of evolution. This approach was motivated by the need for alternatives to parsimony
mapping, which focuses attention on mappings requiring the fewest substitutions.

Stochastic mapping was first introduced by Nielsen (2002), who described how to sample substitution
mappings from the posterior probability distribution of mappings for a single trait or a site in a multiple
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sequence alignment. By using Nielsen’s sampling procedure, one can compute Monte Carlo estimates
for the posterior mean and/or variance, among other properties of the posterior distribution, of any
mutational mapping summary random variable of interest. The two most popular stochastic mapping
summaries are the number of particular types of substitutions (labeled substitution counts) and the
time spent in a particular group of states (labeled dwelling times) on the tree. In most applications,
substitution mappings are simulated only to estimate the mean and/or variance of the two mapping
summaries discussed above (Minin and Suchard, 2008b). Recognizing this, Minin and Suchard (2008b)
synthesized previous work of Hobolth and Jensen (2005), Dutheil et al. (2005), and Holmes and Rubin
(2002), among others, and developed an efficient algorithm that analytically calculates the expectations
of the aforementioned mapping summaries. The authors compute restricted expectations of CTMC
labeled substitution counts (Ball and Milne, 2005; Minin and Suchard, 2008a) and labeled dwelling times
(Neuts, 1995; Guindon et al., 2004; Minin and Suchard, 2008b) on each tree branch and propagate these
expectations across the phylogeny using a generalized pruning algorithm (Felsenstein, 1981). Similarly
to Felsenstein’s pruning algorithm, the algorithm of Minin and Suchard (2008b) scales linearly in the
number of phylogeny tips. Minin and Suchard (2008b) drew inspiration from the work of Schadt et al.
(1998), who formulated a similar algorithm that computes first derivatives of phylogenetic likelihood
functions. Unfortunately, it is not straightforward to extend the algorithm of Minin and Suchard (2008b)
to efficiently calculate the variances of the previously mentioned mapping summaries; as a result, these
stochastic mapping variances can only be approximated using Monte Carlo simulations.

In this paper, we present a simulation-free dynamic programming algorithm that calculates prior
and posterior mapping variances and scales linearly in the number of phylogeny tips. We draw upon
concepts introduced by Kenney and Gu (2012), who developed a recursive procedure for calculating
second derivatives of phylogenetic likelihood functions. Our procedure suggests a general framework
that can be used to efficiently compute higher-order moments of stochastic mapping summaries without
simulations. The structure of the rest of the paper is as follows. Section 2 introduces notation that is
used throughout the entire paper and discusses our research problem more formally. In Section 3, we give
a description of our algorithm for efficiently calculating these stochastic mapping variances. In Section
4, we demonstrate the usefulness of our algorithm by extending previously developed statistical tests
for rate variation across sites and for detecting evolutionarily conserved regions in genomic sequences.
Concluding remarks are presented in Section 5.

2 Notation and Problem Background
We use much of the notation provided by Minin and Suchard (2008b). Suppose we have a discrete
evolutionary trait X (i.e. DNA base) that takes on m distinct states and that evolves according to
a CTMC on a phylogeny. This evolutionary process, call it ψθ, depends on the parameter set θ =
{τ, t,Q,π}, which consists of a rooted tree topology τ with n tips and Bn = 2n − 2 branches; branch
lengths t = (t1, ..., tBn

); a reversible CTMC rate matrix Q = {qij} for i, j = 1, ...,m; and a CTMC
stationary distribution π = (π1, ..., πm)T . We assume that our evolutionary process starts at stationarity
(i.e. we assume that the root distribution is equal to π). While not necessary, this commonly used
assumption ensures that the stochastic mapping moments will be invariant to the placement of the root
(Minin and Suchard, 2008b). When this assumption is not used, as often is the case in analyses of
morphological traits (Pagel, 1999), our methods still work without modification, but the root of the tree
has to be specified by the user. Matrix P(t) = {pij(t)} = exp(Qt) represents the CTMC transition
probability matrix for a branch of length t.

We define Θ = {1, ..., Bn} to be the set of branch indices of τ . Let Θb = {b∗ ∈ Θ | b∗ � b} denote
the set of branch indices in the subtree relating all descendants of branch b, including b, where b∗ � b for
b, b∗ ∈ Θ if either b∗ is a descendant of b or b∗ is equal to b. Let I ⊂ Θ represent the set of internal branches
(i.e. branches that connect two internal nodes) and E = Θ \ I represent the set of terminal branches
(i.e. branches that connect an internal node to a tip node). Let D = (D1, ..., Dn) denote the trait values
observed at the n tips of τ , D1:L = {D1, ...,DL} signify an alignment of length L, and i = (i1, ..., in−1)
represent the unobserved internal node states of τ . In addition, we let ib be the vector of internal node
states for the subtree strictly beneath branch b. Note that the internal nodes of τ are labeled with
integers {1, ..., n−1} starting from the root of the tree; the corresponding labels of the branches and tips
of τ are assigned arbitrarily. We also introduce i∗ = (i∗1, ..., i

∗
n−1, i

∗
n, ..., i

∗
2n−1) = (i1, ..., in−1, D1, ..., Dn),

which is the concatenation of i and D. For each branch b ∈ Θ, p(b) and c(b) represent the node labels
(in i∗) of the parent and child of branch b, respectively.
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Most stochastic mapping applications infer properties about the evolutionary process on the phy-
logeny through the use of a summary measure H. We restrict attention to additive mapping summaries
of the form:

HΩ ≡ HΩ(M) =
∑
b∈Ω

h({Xbt}), (1)

where M = ({X1t}, ..., {XBnt}) denotes the collection of CTMC trajectories along the branches of τ ,
Ω ⊆ Θ represents a predefined set of branch indices, and h signifies a summary measure applied to a
single CTMC trajectory. Let L ⊂ {1, ...,m}2 be a set of state pairs that labels substitutions of trait X
and w ⊂ {0, 1}m be a set that labels states of trait X. For any given CTMC path {Xt} in [0, t), the two
most popular choices of h are h1({Xt}), which counts the number of substitutions labeled by set L, and
h2({Xt}), which measures the dwelling time in states labeled by set w (Minin and Suchard, 2008b). In
this paper, we work exclusively with the summary function h1 as this summary measure is used in both
of our scientific applications. However, we do note that our algorithmic results hold true regardless of
the specific summary measure used.

Minin and Suchard (2008b) were able to calculate the posterior mapping expectation E(HΩ|D) for
both h1 and h2 in O(n) time and with O(n) storage but were unable to achieve the same space-time com-
plexity when calculating the posterior mapping variance Var(HΩ|D). Before we delve into the difficulties
associated with computing Var(HΩ|D), we refresh our readers on two important quantities:

E(H2
Ω1D) = E(H2

Ω|D)× P(D), (2)

e
[k]
ij (h, t) = E

{
h({Xt})

[
h({Xt})− 1

]
...
[
h({Xt})− k + 1

]
1{Xt=j}

∣∣∣X0 = i
}
, (3)

where 1{·} represents the indicator function; k = 1, 2, ...; i, j = 1, ...,m; and P(D) denotes the phyloge-
netic likelihood defined as the probability of observing the tip sequence D. Equation (2) connects the
restricted mapping second moment E(H2

Ω1D) to the posterior mapping second moment E(H2
Ω|D). As

Minin and Suchard (2008b) state, the restricted expectation in equation (2) integrates over all evolution-
ary mappings consistent with D on the tips of τ . Since P(D) can be easily computed using the pruning
algorithm (Felsenstein, 1981), we focus our attention on calculating E(H2

Ω1D). Quantity e[k]
ij (h, t) de-

notes the kth restricted factorial moment of h({Xt}) for a CTMC path {Xt} in [0, t) that starts in state
i and ends in state j. We let e[k](h, t) = {e[k]

ij (h, t)} represent the corresponding restricted factorial
moment matrix. Minin and Suchard (2008a) derive a simple recurrence relation to calculate e[k](h1, t)
for k = 1, 2, ...; a similar relation exists for h2 as well (Minin and Suchard, 2008b).

To help us illustrate the computational challenges inherent in calculating Var(HΩ|D), we express
E(H2

Ω1D) in the following manner (suppressing the fact that b, b′ ∈ Ω for brevity):

E(H2
Ω1D) = E

[(∑
b

h({Xbt})
)2

1D

]
(4)

=
∑
b

E
[
h({Xbt})2

1D

]
+
∑
b6=b′

E
[
h({Xbt})h({Xb′t})1D

]
(5)

=
∑
b

∑
i

E
[
h({Xbt})2| i,D

]
P(i,D) +

∑
b6=b′

∑
i

E
[
h({Xbt})h({Xb′t})| i,D

]
P(i,D) (6)

=
∑
b

∑
i

E
[
h({Xbt})2| i∗p(b), i

∗
c(b)

]
πi∗1

∏
b∗∈Θ

pi∗
p(b∗)i

∗
c(b∗)

(tb∗)

+
∑
b6=b′

∑
i

E
[
h({Xbt})h({Xb′t})| i∗p(b), i

∗
c(b), i

∗
p(b′), i

∗
c(b′)

]
πi∗1

∏
b∗∈Θ

pi∗
p(b∗)i

∗
c(b∗)

(tb∗)
(7)

=
∑
b

∑
i

[
e

[2]
i∗
p(b)

i∗
c(b)

(h, tb) + e
[1]
i∗
p(b)

i∗
c(b)

(h, tb)
]
πi∗1

∏
b∗∈Θ\{b}

pi∗
p(b∗)i

∗
c(b∗)

(tb∗) (8)

+
∑
b6=b′

∑
i

e
[1]
i∗
p(b)

i∗
c(b)

(h, tb)e
[1]
i∗
p(b′)i

∗
c(b′)

(h, tb′)πi∗1

∏
b∗∈Θ\{b,b′}

pi∗
p(b∗)i

∗
c(b∗)

(tb∗). (9)
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The single summation over b in (8) can be efficiently computed by utilizing a modified version of the
generalized pruning algorithm presented in (Minin and Suchard, 2008b). However, the straightforward
double summation over b 6= b′ in (9) requires at most O(B2

n) = O((2n − 2)2) = O(n2) computations.
In the next section, we describe how to overcome this computational roadblock via a post-order tree
traversal algorithm that computes E(H2

Ω1D) (and therefore Var(HΩ|D)) in O(n) time and with O(n)
storage.

3 Methods

3.1 Algorithm Setup
To help motivate our procedure and make it easier to understand, we utilize illustrations of various “col-
ored” phylogenies. Figure 1 displays the example “uncolored” tree we use to create all these illustrations.
Note that for a given b 6= b′ where b, b′ ∈ Ω, the corresponding summand in (9) is:∑

i

e
[1]
i∗
p(b)

i∗
c(b)

(h, tb)e
[1]
i∗
p(b′)i

∗
c(b′)

(h, tb′)πi∗1

∏
b∗∈Θ\{b,b′}

pi∗
p(b∗)i

∗
c(b∗)

(tb∗). (10)

If we replace the restricted first moments in (10) with the appropriate transition probabilities, then
expression (10) would represent the phylogenetic likelihood. From equation (5), we know that expression
(10) is equal to the restricted product moment E

[
h({Xbt})h({Xb′t})1D

]
. In Figure 1, we present two

“colored” phylogenies to help visualize the calculation of E
[
h({Xbt})h({Xb′t})1D

]
. Thus, we can visualize

the double sum over b 6= b′ in (9) by imagining the red and blue colorings being permuted across all
branches in Ω. The cached vectors used in our procedure are described in a similar fashion.

i1

i2 i3

i4

D3 D4 D5D1 D2

t1 t2

t3

t4 t5 t6

t7 t8

i1

i2 i3

i4

D3 D4 D5D1 D2

b

b′

i1

i2 i3

i4

D3 D4 D5D1 D2

b

b′

Figure 1: The example phylogenies we use to help motivate our algorithmic procedure. (Top) The
“uncolored” tree used to create all the “colored” phylogenies. This tree has n = 5 tips, Bn = 8 branches
with branch lengths t = (t1, ..., t8), internal node states i = (i1, ..., i4), and tip states D = (D1, ..., D5).
In addition, Θ = {1, 2, 3, 4, 5, 6, 7, 8}, I = {1, 2, 3}, and E = {4, 5, 6, 7, 8}. (Bottom) Two “colored”
phylogenies that illustrate the calculation of E

[
h({Xbt})h({Xb′t})1D

]
. The colored branches specify

the locations of the restricted first moments, while the uncolored branches determine the locations
of the transition probabilities. The first tree (left) and second tree (right) visualize the calculations
of E

[
h({X2t})h({X8t})1D

]
and E

[
h({X3t})h({X5t})1D

]
, respectively, for the “uncolored” tree shown

above.
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Let Fu = (Fu1, ..., Fum)T be the vector of partial likelihoods at node u, where Fui denotes the
probability of the observed data at only the tips that descend from node u, given that the state of node
u is i. We let Sb = (Sb1, ..., Sbm)T denote the vector of directional likelihoods at branch b, where Sbi

represents the likelihood of the observed data at only the tips that descend from branch b, given that the
state of parent node p(b) is i. Minin and Suchard (2008b) utilize these Fu and Sb vectors within their
algorithm for computing the posterior mapping expectation E(HΩ|D).

We also define vectors V
[1]
b =

(
V

[1]
b1 , ..., V

[1]
bm

)T , V[2]
b =

(
V

[2]
b1 , ..., V

[2]
bm

)T , and Wb = (Wb1, ...,Wbm)T .
Elements of vector V[1]

b are defined as follows:

V
[1]
bi =

∑
b†

∑
ib

e
[1]
i∗
p(b†)

i∗
c(b†)

(h, tb†)
∏

b∗∈Θb\{b†}

pi∗
p(b∗)i

∗
c(b∗)

(tb∗), (11)

where the state of parent node p(b) is i and b† ∈ Ωb for the set of branches of interest in the subtree
that is “below” branch b (including b), Ωb = Ω ∩ Θb. An illustration of V[1]

b is given in Figure 2. We
can interpret πTV

[1]
b as the restricted mapping first moment E(HΩb

1D) for the subtree that is “below”
branch b (including b). Kenney and Gu (2012) cache a vector similar to V

[1]
b within their algorithm

for computing second derivatives of phylogenetic likelihood functions. If we replace the restricted first
moment in expression (11) with the appropriate transition probability derivative, then we would recover
this cached vector used in (Kenney and Gu, 2012). Similarly, V [2]

bi is defined the same as V [1]
bi , except in

the case of V [2]
bi , we replace the restricted first moment in expression (11) with the corresponding second

restricted factorial moment e[2]
i∗
p(b†)

i∗
c(b†)

(h, tb†). The visual depiction of V[2]
b is analogous to that of V[1]

b

in Figure 2. Elements of vector Wb are defined as follows:

Wbi =
∑

b† 6=b††

∑
ib

e
[1]
i∗
p(b†)

i∗
c(b†)

(h, tb†)e
[1]
i∗
p(b††)

i∗
c(b††)

(h, tb††)
∏

b∗∈Θb\{b†,b††}

pi∗
p(b∗)i

∗
c(b∗)

(tb∗), (12)

where the state of parent node p(b) is i and b†, b†† ∈ Ωb for Ωb defined as above. A pictorial represen-
tation of Wb is provided in Figure 2. πTWb can be viewed as the sum of restricted product moments
E
[
h({Xb†t})h({Xb††t})1D

]
over b† 6= b†† (b†, b†† ∈ Ωb) for the subtree that is “below” branch b (including

b). In the next subsection, we describe our algorithm in full detail and provide some intuition behind
the recursive formulas used in our procedure.

3.2 Algorithm Recursion

Our post-order tree traversal algorithm recursively computes Fu, Sb, V
[1]
b , V[2]

b , and Wb at all nodes
u ∈ {1, ..., n− 1, n, ..., 2n− 1} and branches b ∈ Θ. Like the pruning algorithm, this procedure starts at
the tips of the tree and continues through all ancestral nodes until it arrives at the root of the tree. We
start by describing how these vectors are initialized at the terminal nodes/branches of τ and then specify
the recursive formulas used to calculate Fu, Sb, V

[1]
b , V[2]

b , and Wb at the internal nodes/branches of τ .
First, we follow standard practice and set Fui = 1{i=i∗u} for all terminal nodes u ∈ {n, ..., 2n − 1}

and i = 1, ...,m. Oftentimes, we have partially observed and/or missing data at the tips of τ and our
initialization of Fui can be adjusted to reflect this information (Felsenstein, 1981). For terminal branches
b ∈ E , we set:

Sbi =

m∑
j=1

pij(tb)Fc(b)j , (13)

for i = 1, ...,m. Using matrix notation, we express the equation in (13) as Sb = P(tb)Fc(b). The
initializations of V[1]

b and V
[2]
b depend on whether or not b ∈ Ω. For all terminal branches b ∈ E , we

define:

V
[1]
bi =

m∑
j=1

e
[1]
ij (h, tb)Fc(b)j1{b∈Ω}, (14)

V
[2]
bi =

m∑
j=1

e
[2]
ij (h, tb)Fc(b)j1{b∈Ω}, (15)
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(A)
ip(b) = i1

i2

i4

D3D1 D2

b†

b = 1

∑
i2,i4

[
e
[1]
i1i2

(h, t1)pi2i4 (t3)pi2D3 (t4)

× pi4D1 (t7)pi4D2 (t8)
]

+

ip(b) = i1

i2

i4

D3D1 D2

b = 1

b†

∑
i2,i4

[
pi1i2 (t1)e

[1]
i2i4

(h, t3)pi2D3 (t4)

× pi4D1 (t7)pi4D2 (t8)
]

+

ip(b) = i1

i2

i4

D3D1 D2

b = 1

b†

∑
i2,i4

[
pi1i2 (t1)pi2i4 (t3)e

[1]
i2D3

(h, t4)

× pi4D1 (t7)pi4D2 (t8)
]

(B)
ip(b) = i1

i2

i4

D3D1 D2

b†

b = 1

b††

∑
i2,i4

[
e
[1]
i1i2

(h, t1)e
[1]
i2i4

(h, t3)pi2D3 (t4)

× pi4D1 (t7)pi4D2 (t8)
]

+

ip(b) = i1

i2

i4

D3D1 D2

b = 1

b†

b††

∑
i2,i4

[
pi1i2 (t1)e

[1]
i2i4

(h, t3)e
[1]
i2D3

(h, t4)

× pi4D1 (t7)pi4D2 (t8)
]

+

ip(b) = i1

i2

i4

D3D1 D2

b††

b = 1

b†

∑
i2,i4

[
e
[1]
i1i2

(h, t1)pi2i4 (t3)e
[1]
i2D3

(h, t4)

× pi4D1 (t7)pi4D2 (t8)
]

+ + +
ip(b) = i1

i2

i4

D3D1 D2

b††

b = 1

b†

∑
i2,i4

[
e
[1]
i1i2

(h, t1)e
[1]
i2i4

(h, t3)pi2D3
(t4)

× pi4D1
(t7)pi4D2

(t8)
]

+

ip(b) = i1

i2

i4

D3D1 D2

b = 1

b††

b†

∑
i2,i4

[
pi1i2 (t1)e

[1]
i2i4

(h, t3)e
[1]
i2D3

(h, t4)

× pi4D1 (t7)pi4D2 (t8)
]

+

ip(b) = i1

i2

i4

D3D1 D2

b†

b = 1

b††

∑
i2,i4

[
e
[1]
i1i2

(h, t1)pi2i4 (t3)e
[1]
i2D3

(h, t4)

× pi4D1 (t7)pi4D2 (t8)
]

Figure 2: Visual depictions of the V
[1]
b and Wb vectors. (A) An illustration of the V

[1]
b vector. V

[1]
bi

can be interpreted as the sum over all “single-colored” phylogenies for the subtree defined by Θb and the
predefined set of “colored” branches Ωb = Ω∩Θb, conditional on the state of parent node p(b) being i. We
illustrate V

[1]
1 for the “uncolored” phylogeny given in Figure 1, where Ω1 = {1, 3, 4}. (B) An illustration

of the Wb vector. Wbi can be interpreted as the sum over all “double-colored” phylogenies for the same
subtree and set of “colored” branches as described in (A), conditional on the state of parent node p(b)
being i. We illustrate W1 for the “uncolored” tree displayed in Figure 1, where Ω1 = {1, 3, 4}.
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for i = 1, ...,m. The vectorized representations of equations (14) and (15) areV[1]
b = e[1](h, tb)Fc(b)1{b∈Ω}

and V
[2]
b = e[2](h, tb)Fc(b)1{b∈Ω}, respectively. Finally, Wbi = 0 for all terminal branches b ∈ E and

i = 1, ...,m. Note that the definitions of V[1]
b , V[2]

b , and Wb for b ∈ E are consistent with the illustrations
provided in Figure 2.

Now, we present the recursive formulas that compute Fu, Sb, V
[1]
b , V[2]

b , and Wb for internal nodes
u ∈ {1, ..., n − 1} and internal branches b ∈ I. The recursion for the partial likelihood Fui is the
centerpiece of Felsenstein’s pruning algorithm (Felsenstein, 1981):

Fui =

 m∑
j=1

pij(tb1)Fc(b1)j


︸ ︷︷ ︸

Sb1i

×

 m∑
j=1

pij(tb2)Fc(b2)j


︸ ︷︷ ︸

Sb2i

, (16)

where b1 and b2 represent the two branches connecting node u to its two child nodes and i = 1, ...,m.
In addition, as shown in the brackets above, equation (13) also denotes the recursion for Sbi at internal
branches b ∈ I (Felsenstein, 1981). Thus, the recursive formula for Fui in (16) can be compactly expressed
as Fu = Sb1 ◦ Sb2 , where ◦ symbolizes element-wise multiplication between two vectors. The recursive
equations used to calculate V [1]

bi , V [2]
bi , and Wbi at internal branches b ∈ I are:

V
[1]
bi =

m∑
j=1

[
e

[1]
ij (h, tb)Fc(b)j1{b∈Ω} + pij(tb)

(
V

[1]
b1j
Sb2j + V

[1]
b2j
Sb1j

)]
, (17)

V
[2]
bi =

m∑
j=1

[
e

[2]
ij (h, tb)Fc(b)j1{b∈Ω} + pij(tb)

(
V

[2]
b1j
Sb2j + V

[2]
b2j
Sb1j

)]
, (18)

Wbi =

m∑
j=1

[
2× e[1]

ij (h, tb)
(
V

[1]
b1j
Sb2j + V

[1]
b2j
Sb1j

)
1{b∈Ω}

+ pij(tb)
(

2× V [1]
b1j
V

[1]
b2j

+Wb1jSb2j +Wb2jSb1j

)]
,

(19)

respectively, where b1 and b2 represent the two branches that are “below” branch b and i = 1, ...,m. The
recursive formulas presented in equations (17)-(19) can also be expressed as:

V
[1]
b = e[1](h, tb)Fc(b)1{b∈Ω} + P(tb)

(
V

[1]
b1
◦ Sb2 + V

[1]
b2
◦ Sb1

)
, (20)

V
[2]
b = e[2](h, tb)Fc(b)1{b∈Ω} + P(tb)

(
V

[2]
b1
◦ Sb2 + V

[2]
b2
◦ Sb1

)
, (21)

Wb = 2× e[1](h, tb)
(
V

[1]
b1
◦ Sb2 + V

[1]
b2
◦ Sb1

)
1{b∈Ω}

+ P(tb)
(

2×V
[1]
b1
◦V[1]

b2
+ Wb1 ◦ Sb2 + Wb2 ◦ Sb1

)
,

(22)

respectively. From Figure 2, we know that elements of V
[1]
b can be interpreted as the sum over all

“single-colored” phylogenies for the subtree defined by Θb and for the predefined set of “colored” branches
Ωb = Ω ∩Θb, conditional on the state of parent node p(b). Equation (20) partitions this sum into three
distinct pieces: 1) e[1](h, tb)Fc(b)1{b∈Ω}, 2) P(tb)

(
V

[1]
b1
◦ Sb2

)
, and 3) P(tb)

(
V

[1]
b2
◦ Sb1

)
. The first piece

represents the “single-colored” tree with “colored” branch b (only if b ∈ Ω); the second piece represents a
sum over “single-colored” phylogenies, where the “colored” branch is permuted across all branches in Ωb1 ;
and the third piece represents another sum over “single-colored” phylogenies, where the “colored” branch
is permuted across all branches in Ωb2 . This partitioning allows us to compute V

[1]
b as a function of

previously cached vectors Fc(b), Sb1 , Sb2 , V
[1]
b1
, and V

[1]
b2
. The recursions for V[2]

b and Wb have analogous
interpretations. Note that our algorithm requires O(n) storage because we cache a constant (with respect
to n) number of vectors at all nodes u ∈ {1, ..., n− 1, n, ..., 2n− 1} and branches b ∈ Θ. In addition, our
procedure utilizes O(n) computations because there are O(Bn) = O(n) iterations in the algorithm and
each iteration involves a constant (with respect to n) number of operations.
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3.3 Posterior Mapping Variance Computation
Our tips-to-root tree traversal procedure terminates after computing the vectors Froot, Sroot1 , Sroot2 ,
V

[1]
root1 , V

[1]
root2 , V

[2]
root1 , V

[2]
root2 , Wroot1 , and Wroot2 , where root denotes the root node label and root1

and root2 represent the two branches connecting the root node to its children. We use these cached
vectors to efficiently calculate the posterior mapping variance Var(HΩ|D).

We first describe how to compute the restricted mapping second moment E(H2
Ω1D). We remind our

readers that the double sum over b 6= b′ (b, b′ ∈ Ω) in (9) can be visualized as a sum over all “double-
colored” phylogenies, where Ω denotes the predefined set of “colored” branches. There are four distinct
cases of b 6= b′ that we consider in (9): 1) b � root1, b′ � root1; 2) b � root1, b′ � root2; 3) b � root2, b′ �
root1; and 4) b � root2, b′ � root2. Cases 1) and 4) represent the “double-colored” phylogenies that have
both “colored” branches on the same side of the root, while Cases 2) and 3) denote the “double-colored”
phylogenies that have one “colored” branch on each side of the root. This decomposition of the double
sum in (9) was suggested by Kenney and Gu (2012) in the context of computing second derivatives of
phylogenetic likelihood functions. The sums over all “double-colored” phylogenies in Cases 1), 2), 3), and
4) are mathematically represented as πT

(
Wroot1 ◦ Sroot2

)
, πT

(
V

[1]
root1 ◦V

[1]
root2

)
, πT

(
V

[1]
root1 ◦V

[1]
root2

)
,

and πT
(
Wroot2 ◦ Sroot1

)
, respectively. Thus, the double sum in (9) can be efficiently computed as:

πT
(

2×V
[1]
root1 ◦V

[1]
root2 + Wroot1 ◦ Sroot2 + Wroot2 ◦ Sroot1

)
. (23)

The sum over b ∈ Ω in (8) can also be calculated using the cached vectors mentioned above. We can
visualize the sum in (8) as a sum over all “single-colored” phylogenies, where Ω denotes the predefined
set of “colored” branches. There are two cases of b ∈ Ω that we consider in (8): 1) b � root1 and 2)
b � root2. Using logic similar to that described above, we can calculate the sum in (8) as:

πT
[(
V

[1]
root1 + V

[2]
root1

)
◦ Sroot2 +

(
V

[1]
root2 + V

[2]
root2

)
◦ Sroot1

]
. (24)

We obtain a simple formula for computing the restricted mapping second moment E(H2
Ω1D) by adding

together the expressions in (23) and (24):

E(H2
Ω1D) = πT

[
2×V

[1]
root1 ◦V

[1]
root2 + Wroot1 ◦ Sroot2 + Wroot2 ◦ Sroot1

+
(
V

[1]
root1 + V

[2]
root1

)
◦ Sroot2 +

(
V

[1]
root2 + V

[2]
root2

)
◦ Sroot1

]
.

(25)

Other quantities involved in the calculation of Var(HΩ|D) include the phylogenetic likelihood P(D)
and the restricted mapping first moment E(HΩ1D). From (Felsenstein, 1981), we know that P(D) =
πTFroot. Minin and Suchard (2008b) express E(HΩ1D) in the following manner:

E(HΩ1D) =
∑
b

∑
i

e
[1]
i∗
p(b)

i∗
c(b)

(h, tb)πi∗1

∏
b∗∈Θ\{b}

pi∗
p(b∗)i

∗
c(b∗)

(tb∗), (26)

where b ∈ Ω. Notice that the right-hand side of equation (26) is virtually identical to the sum over b ∈ Ω
in (8). Given our interpretations of the sums in (8) and (9), it is easy to see that:

E(HΩ1D) = πT
(
V

[1]
root1 ◦ Sroot2 + V

[1]
root2 ◦ Sroot1

)
. (27)

Finally, the posterior mapping variance Var(HΩ|D) can be expressed as follows:

Var(HΩ|D) = E(H2
Ω|D)− E(HΩ|D)2 (28)

=
E(H2

Ω1D)

P(D)
−
[
E(HΩ1D)

P(D)

]2

. (29)

We can compute Var(HΩ|D) by first calculating P(D), E(HΩ1D), and E(H2
Ω1D) using our post-order

tree traversal algorithm and then substituting these quantities into equation (29).
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3.4 Prior Mapping Variance Computation
Given our efficient calculation of the posterior mapping variance Var(HΩ|D), it is natural to ask whether
it is possible to extend the tree traversal algorithm described above to the computation of the prior
mapping variance Var(HΩ). There is a plethora of literature in evolutionary biology that discusses
how to calculate the prior mapping variance for a single tree branch (Zheng, 2001; Bloom et al., 2007;
Minin and Suchard, 2008a,b). Siepel et al. (2006) describe a dynamic programming procedure that
approximates the probability distribution of HΘ and use it to estimate Var(HΘ).

It turns out that we can exactly compute prior variances using a modified version of our tree traversal
algorithm. The only changes that need to be made are to the initializations of Fu at all terminal nodes
u. If we set Fui = 1 for all terminal nodes u and i = 1, ...,m, then our recursive procedure will be
able to compute the prior variance Var(HΩ). We also note that all elements of the vectors Fu and Sb

for u ∈ {1, ..., n − 1, n, ..., 2n − 1} and b ∈ Θ are equal to 1 as a result of these modified initializations.
Remember that the initializations of Fu can account for partially observed and/or missing data at the
tips of τ . These modified Fu initializations are intuitive because prior mapping moments average over
all possible observed trait values at the tips of the phylogeny and thus every combination of observed
tip states needs to be accounted for in our Fu initializations. As we will see, the prior mapping variance
Var(HΩ) is essential to one of the applications we present in this paper.

3.5 Prior and Posterior Mapping Covariances
Two other quantities of interest associated with stochastic mapping summaries are the prior mapping
covariance Cov(HΩ1

, HΩ2
) and the posterior mapping covariance Cov(HΩ1

, HΩ2
|D), where Ω1,Ω2 ⊆

Θ are predefined sets of branch indices. Efficient computations of the prior and posterior mapping
covariances are interesting in their own right and utilized in one of the applications we present in this
paper. In the Appendix, we describe another tree traversal algorithm for computing these covariances.
This new algorithm is a generalization of the recursive procedure described above and much of the
intuition provided for our original procedure carries over to this new algorithm. Furthermore, this new
procedure runs in O(n) time and with O(n) storage.

3.6 Implementation
The efficient calculations of the prior and posterior mapping moments discussed above are implemented in
the R package phylomoments, which is available at https://github.com/dunleavy005/phylomoments.
This package also contains our implementation of the stochastic mapping simulation technique put
forth by Nielsen (2002) along with other assorted functions. The computationally intensive parts of
our methods are written in C++ and ported to R using the R packages Rcpp and RcppArmadillo
(Eddelbuettel and François, 2011; Eddelbuettel and Sanderson, 2014). In the next section, we present
two scientific applications that employ stochastic mapping variances.

4 Applications

4.1 Testing for Rate Variation Across Sites
Our first application is centered around an across-site rate variation test proposed by Nielsen (2002).
Nielsen (2002) uses simulated posterior mapping variances within a posterior predictive approach to
model diagnostics. In this subsection, we describe a posterior predictive testing framework that adheres
to the principles outlined by Gelman et al. (1996) and test for across-site rate variation in two real
datasets using exactly computed posterior mapping variances.

4.1.1 Overview of Posterior Predictive Tests

Conceptually, posterior predictive assessments can be seen as Bayesian analogues of classical frequentist
model diagnostics and hypothesis tests. Unlike classical testing procedures, posterior predictive tests
permit the use of “test statistics” that depend on both data and unknown parameters. These “test
statistics” are otherwise known as discrepancy measures (Meng, 1994; Gelman et al., 1996). In this
subsection, we denote the discrepancy measure as T ≡ T (D1:L,θ). Posterior predictive model testing
is based on the following principle: if the assumed model adequately fits the observed data Dobs

1:L, then
simulated datasets Drep

1:L from the assumed model should look like Dobs
1:L. Similarity between Dobs

1:L and

9



Drep
1:L is measured through the discrepancy T . We would like to compare the observed discrepancy

T (Dobs
1:L,θ) to a reference distribution induced by the hypothesized model. The reference distribution

used in posterior predictive diagnostics is derived from the joint posterior distribution of Drep
1:L and θ:

P(Drep
1:L,θ|D

obs
1:L) = P(Drep

1:L|θ)P(θ|Dobs
1:L). (30)

Intuitively, this distribution indicates which datasets and parameter values are most plausible if the
assumed model holds true. Posterior predictive assessments are usually conducted using simulations
as the joint distribution in (30) is often analytically intractable. We summarize posterior predictive
simulations in the following three steps:

1. Sample θ∗ ∼ P(θ|Dobs
1:L);

2. Simulate Drep,∗
1:L ∼ P(Drep

1:L|θ
∗);

3. Calculate T (Dobs
1:L,θ

∗) and T (Drep,∗
1:L ,θ∗).

We repeat these steps N times, where N is a large number, and then compare the N samples of
T (Dobs

1:L,θ
∗) and T (Drep,∗

1:L ,θ∗) by constructing two empirical distributions; a small overlap between these
distributions, which could be visualized with histograms, suggests a poor model fit. We can quantify the
disagreement between the observed and predicted discrepancies by calculating the posterior predictive
p-value (Meng, 1994; Gelman et al., 1996):

ppp = P
[
T (Drep

1:L,θ) > T (Dobs
1:L,θ)

∣∣Dobs
1:L

]
, (31)

where the probability is computed with respect to the joint posterior distribution P(Drep
1:L,θ|Dobs

1:L). Given
N posterior samples of Drep

1:L and θ, we can estimate the posterior predictive p-value by computing:

ppp ≈ 1

N

N∑
i=1

1{
T (D

rep,(i)
1:L ,θ(i))>T (Dobs

1:L,θ(i))
}, (32)

where D
rep,(i)
1:L and θ(i) represent the ith posterior samples of Drep

1:L and θ, respectively, for i = 1, ..., N .

4.1.2 Posterior Predictive Rate Variation Tests

Now, we use the posterior predictive testing framework described above to formulate a test for rate
variation across sites in an alignment. We assume that alignment sites evolve independently according
to the same distribution provided by the continuous-time Markov process ψθ. We focus on selecting
discrepancy measures that can gauge the variability in substitution rates across sites. One possible
discrepancy measure is the variance of the total number of substitutions in the alignment (Nielsen,
2002):

Tvar ≡ Tvar(D1:L,θ) = Var

(
L∑

i=1

H
(i)
Θ

∣∣∣∣∣D1:L

)
=

L∑
i=1

Var(HΘ|Di), (33)

where H(i)
Θ represents the number of substitutions at site i. Note that the second equality in (33) follows

from conditional independence assumptions. Another discrepancy we consider in our analyses is the
posterior dispersion index (i.e. posterior variance-to-mean ratio) for substitution counts:

Tdisp ≡ Tdisp(D1:L,θ) = Var

(
L∑

i=1

H
(i)
Θ

∣∣∣∣∣D1:L

)/
E

(
L∑

i=1

H
(i)
Θ

∣∣∣∣∣D1:L

)

=

[
L∑

i=1

Var(HΘ|Di)

]/[
L∑

i=1

E(HΘ|Di)

]
,

(34)

where H(i)
Θ is specified as above. In the presence of rate variation across sites, the prior dispersion index

for substitution counts is often greater than 1 (Yang, 1996). One way to see this is by assuming that
the number of substitutions occurring on a particular tree branch follows a Poisson distribution, where
the Poisson rate parameter varies across sites according to a gamma distribution. A simple calculation
shows that, marginally, the number of substitutions occurring on this branch follows a negative binomial
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distribution, which has a variance-to-mean ratio that is greater than 1. We can make a similar argument
about the number of substitutions across an entire phylogeny. Even though the above explanation
applies only to the prior dispersion index, it does motivate our use of the posterior dispersion index as
a discrepancy measure for detecting across-site rate variation in an alignment.

The posterior predictive simulations for our rate variation test can be summarized using the same
three steps described above. We can sample θ∗ ∼ P(θ|Dobs

1:L) using a Bayesian phylogenetic inference
software package; in our examples, we use the computer program MrBayes (Huelsenbeck and Ronquist,
2001) to perform the posterior sampling of θ. For every posterior sample of θ, we can simulate a
replicate alignment Drep,∗

1:L ∼ P(Drep
1:L|θ

∗) by independently generating Drep,∗
1 , ...,Drep,∗

L according to ψθ∗ ;
we simulate tip data from ψθ∗ using the standard discretized CTMC approach (Yang, 2006, Chapter
9). We can then analytically calculate the observed and predicted discrepancies (i.e. T (Dobs

1:L,θ
∗) and

T (Drep,∗
1:L ,θ∗)) for T = Tvar, Tdisp using the algorithm presented in the previous section. Nielsen (2002)

also used the discrepancy Tvar in posterior predictive rate variation tests but could only obtain Monte
Carlo estimates of Tvar. Monte Carlo estimation of Tvar is computationally intensive because it uses
simulations to estimate Var(HΘ|Di) for i = 1, ..., L. The tree traversal algorithm proposed in this paper
not only eliminates the Monte Carlo error associated with estimating the variance Tvar but also speeds
up the computation of this quantity.

4.1.3 Testing for Rate Variation in Two Sequence Alignments

We analyze the two sequence alignments used by Nielsen (2002) to demonstrate the effectiveness of
our posterior predictive testing scheme. Our first dataset contains β-globin sequences for 17 vertebrate
species, where each sequence is 432 base pairs long. Our second dataset comprises 28 sequences of the
hemagglutinin (HA) gene of human influenza virus A; each sequence has 987 base pairs. In all our analy-
ses, we use a general time-reversible (GTR) substitution model (Tavaré, 1986) with a Dirichlet(1,1,1,1,1,1)
prior for the GTR exchangeability rates and a Dirichlet(1,1,1,1) prior for the base frequencies π. Fur-
thermore, we assume a uniform prior on all possible tree topologies τ and let all branch lengths in t be
a priori uniformly distributed on the interval [0, 100]. For each dataset, we generate N = 1000 posterior
samples of Drep

1:L and θ using the simulation procedure described previously and calculate the observed
and predicted values of Tvar and Tdisp. The 1000 posterior samples of θ are obtained by running the
Markov chain Monte Carlo (MCMC) procedure in MrBayes for 1,100,000 iterations and storing values of
θ every 1000 iterations from iteration 100,001 to iteration 1,100,000. We use trace plots (not shown in
this paper) to assess convergence of the MCMC samplers and find that using 1,100,000 MCMC iterations
is sufficient for our purposes.

We summarize the observed and predicted discrepancies in Figure 3, which demonstrates that the
observed distributions of Tvar do not deviate much from the corresponding predicted distributions of Tvar.
The posterior predictive p-values that were computed using the discrepancy Tvar are approximately 0.60
and 0.80 for the β-globin and influenza datasets, respectively. Thus, it seems that our posterior predictive
test based on Tvar fails to detect across-site rate variation in the two datasets. We note that our posterior
predictive test results based on Tvar do not corroborate the findings by Nielsen (2002), who concluded
that there is rate variation across sites in the β-globin and influenza datasets. However, Nielsen (2002)
used the posterior variance of substitution counts in a slightly different way without clearly specifying
all predictive distributions. We believe our analyses are better aligned with the posterior predictive
principles outlined by Gelman et al. (1996).

In Figure 3, the observed and predicted distributions of Tdisp do not completely overlap and appear
more separated than the observed and predicted distributions of Tvar. For both datasets, the observed
values of Tdisp are, on average, greater than the predicted values of Tdisp. This suggests that the
discrepancy Tdisp is able to detect observed rate variation that is not accounted for by our hypothesized
model. The posterior predictive p-values that were computed using Tdisp are approximately 0.17 and
0.031 for the β-globin and influenza datasets, respectively; note that these p-values are smaller than
the corresponding p-values that were computed using Tvar and as a result provide stronger evidence in
support of the rate variation hypothesis.

A popular frequentist approach to modeling rate variation among sites employs a discrete gamma
distribution with a fixed number of rate classes (Yang, 1994, 1996). We check our posterior predictive
test results by performing likelihood ratio tests that compare discrete gamma models with one rate
category (H0) and four rate categories (Ha). We perform the likelihood ratio tests using the PhyML
package (Guindon et al., 2010) and obtain p-values close to 0; these tests also suggest the presence of
across-site rate variation in the β-globin and influenza datasets. The posterior predictive p-values that

11



Tvar

140 160 180 200 220 240

0

0.01

0.02

0.03
D

en
si

ty

Tdisp

0.16 0.18 0.20 0.22 0.24 0.26

D
en

si
ty

0

10

20

30

Tvar

4 5 6 7 8

0

0.2

0.4

0.6

0.8

D
en

si
ty

Tdisp

0.015 0.020 0.025

D
en

si
ty

0

100

200

300 Predicted
Distribution

Observed
Distribution

Figure 3: Observed and predicted distributions of the discrepancies Tvar and Tdisp. In each plot, we
superimpose the observed distribution (grey) on top of the predicted distribution (black). The top two
plots display the observed and predicted distributions for the β-globin dataset, while the bottom two
plots show the observed and predicted distributions for the influenza dataset. These distributions were
constructed using N = 1000 posterior samples of Drep

1:L and θ.

were computed using Tdisp are not as small as the likelihood ratio p-values, but this should not be
surprising because posterior predictive p-values tend to be more conservative than classical frequentist
p-values (Meng, 1994). Our posterior predictive analyses suggest that the posterior dispersion index
Tdisp is better than the posterior variance Tvar at detecting observed rate variation among sites.

4.1.4 Monte Carlo Error and Timing Analyses

To assess the efficiency gains from using our tree traversal algorithm in this setting, we approximate
Monte Carlo standard errors and running times associated with simulation-based Tvar estimates. For
each dataset, we compute these standard errors and running times on randomly subsampled align-
ments of length L using m Monte Carlo replicates per site, where L = 50, 100, 200, 400 and m =
100, 500, 1000, 10000; the Monte Carlo standard errors are approximated using well-known formulas
for the moments of the sample variance (Mood et al., 1974, Chapter VI). We account for the posterior
uncertainty in θ by first calculating Monte Carlo errors and running times for 200 randomly subsampled
posterior θ’s and then averaging these metrics across the θ samples; the same 200 samples of θ are used
in all our simulations. For each setting of L, we also compute the exact values of Tvar and track the
corresponding running times for the 200 posterior samples of θ and then average these results over the
subsampled θ’s.

Tables 1 and 2 present the running time comparisons and Monte Carlo error approximations, respec-
tively, for the β-globin and influenza datasets; Table 2 can be found in the Appendix. Based on the
results shown in Table 2, it seems that the Monte Carlo error has a convergence rate of O

(√
L/m

)
.

This can be justified using a Central Limit Theorem argument if L and m are large; remember that the
Monte Carlo estimator of Tvar is a sum of L independent, non-identically distributed sample variances,
where each sample variance is calculated using m independent Monte Carlo replicates. Furthermore, the
Monte Carlo error percentages range from 0.15% to 28% across the two datasets. Table 1 suggests that
the Monte Carlo running time increases linearly in L and m as we might expect. We can also see that our
exact computations of Tvar are at least an order of magnitude faster than the Monte Carlo estimates of
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Tvar. Thus, it is clear that our tree traversal algorithm improves the computational efficiency of posterior
predictive rate variation tests that utilize Monte Carlo discrepancy estimates.

Running times (β-globin) Running times (influenza)
L = 50 L = 100 L = 200 L = 400 L = 50 L = 100 L = 200 L = 400

m = 100 0.70 1.4 3.1 6.1 1.0 2.0 4.1 8.0
m = 500 3.3 6.5 15 28 4.7 9.3 19 37
m = 1000 7.2 13 28 57 9.0 18 37 74
m = 10000 72 140 290 570 93 180 370 740

Exact 0.0040 0.0059 0.0097 0.017 0.0061 0.0091 0.015 0.026

Table 1: Monte Carlo running times associated with simulation-based Tvar estimates for the β-globin
and influenza datasets. We compute these running times on randomly subsampled alignments of length
L using m Monte Carlo replicates per site. Each table entry, excluding the entries on the bottom row,
represents an averaged Monte Carlo running time (in seconds), where the averaging is done over 200
randomly subsampled posterior θ’s. Each table entry on the bottom row denotes an average over running
times (in seconds) associated with exact calculations of Tvar, where the averaging is done over the same
200 posterior samples of θ mentioned previously. All table entries are rounded to two significant digits.

4.2 Detecting Evolutionarily Conserved Regions in Genomic Alignments
Our second application focuses on the detection of conserved elements in genomic alignments; in this
setting, conservation refers to evolution that is slower than expected. Detection of conserved DNA
sites is of prime interest in comparative genomics because most of the conserved elements in genome-
wide sequence alignments are believed to be caused by negative selection and to have evolutionarily
important biological functions (Siepel et al., 2005). Computational methods for detecting conserved
genomic regions are essential because they are used to flag candidate functional elements, which can
then be further examined experimentally (Siepel et al., 2006).

In this subsection, we analyze two statistical tests of conservation presented by Siepel et al. (2006).
One test is used to detect conservation across all lineages in a phylogeny, while the other is used to identify
lineage-specific conservation; both tests are referred to as SPH conservation tests and implemented in the
computer program phyloP (Pollard et al., 2010). Our exact calculations of prior and posterior mapping
moments can be used to make the SPH conservation tests more powerful. We present some modifications
to these conservation tests and demonstrate the efficacy of our proposed changes via simulations.

4.2.1 Modifying the SPH Conservation Tests

Let ψθneut denote the baseline neutral evolutionary model that is assumed to be given; neutral models are
commonly estimated using fourfold degenerate sites extracted from genome-wide sequence alignments of
interest (Pollard et al., 2010). As in (Pollard et al., 2010), we define ψ(ρ, λ; Θb) to be a scaled evolutionary
model that is identical to ψθneut except that it has all its branch lengths scaled by the factor ρ ∈ [0, 1]
and the branch lengths in the subtree defined by Θb additionally scaled by the factor λ ∈ [0, 1]. For
convenience, we let ψ(ρ) ≡ ψ(ρ, λ = 1; Θb) for all b ∈ Θ and ρ ∈ [0, 1]. Throughout this subsection, we
assume that D1, ...,DL are independent and identically distributed according to ψ(·). The two tests of
conservation described in (Siepel et al., 2006) reduce to tests of the models that constrain parameters ρ
and λ to particular values.

The SPH “all-branch” conservation test examines conservation across all branches of the phylogeny.
Specifically, it tests the null hypothesis H0 : ρ = 1 against the alternative hypothesis Ha : ρ < 1 for the
evolutionary model ψ(ρ). Siepel et al. (2006) use the following test statistic to distinguish between the
two hypotheses:

Tall ≡ Tall(D1:L) = E

(
L∑

i=1

H
(i)
Θ

∣∣∣∣∣D1:L

)
=

L∑
i=1

E(HΘ|Di), (35)

where H(i)
Θ represents the number of substitutions at site i. The test statistic in (35) serves as a proxy

for the “observed” number of substitutions in the genomic alignment D1:L. The prior distribution of∑L
i=1H

(i)
Θ is taken to be the null distribution, and the p-value of this test is obtained by first comparing

the observed value of Tall to this prior distribution and then computing the corresponding left-tail prob-
ability. It turns out that the p-values obtained from this testing procedure are not uniformly distributed
and tend to be conservative under the null hypothesis (Siepel et al., 2006).
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To understand why this occurs, we must examine the null distribution chosen for this test. Notice first
that Tall is a sum of independent and identically distributed random variables with mean E[E(HΘ|D)] =
E(HΘ) and variance Var[E(HΘ|D)] = Var(HΘ)−E[Var(HΘ|D)]. For L large, we can invoke the Central
Limit Theorem and approximate the sampling distribution of Tall with a normal distribution having
mean L×E(HΘ) and variance L×Var(HΘ)−L×E[Var(HΘ|D)]. Using a similar asymptotic argument
as above, we can also approximate the null distribution of

∑L
i=1H

(i)
Θ — an unobserved quantity — with

a normal distribution having mean L × E(HΘ) and variance L × Var(HΘ). Siepel et al. (2006) use the
exact version of this distribution, which results in the conservative nature of their all-branch test, because
the correct null distribution of Tall, at least asymptotically, has a variance that is smaller than the one
assumed by the authors. For a given significance level, an overdispersed null distribution causes the
critical value for rejecting H0 to be more extreme than it would be for a proper null distribution. This is
of practical importance because more extreme critical values make it harder to correctly flag conserved
genomic elements.

The SPH all-branch conservation test can be corrected and made more powerful by using the correct
asymptotic distribution of Tall as the null distribution. The dynamic programming algorithm discussed
in this paper can be used to calculate the mean and variance of this asymptotic distribution. The
quantities E(HΘ) and Var(HΘ) are easily computed using our results for prior mapping moments. Given
our efficient computation of the posterior mapping variance Var(HΘ|D), we estimate E[Var(HΘ|D)] using
Monte Carlo simulation of sequence data D. Even though we need Monte Carlo simulations to calculate
the asymptotic variance of Tall, our approach is still more efficient than directly estimating Var[E(HΘ|D)]
via Monte Carlo sampling.

Siepel et al. (2006) also describe two testing procedures that are used to detect lineage-specific
conservation. Both procedures analyze conservation at the subtree level and are referred to as SPH
“subtree” tests. Formally, these two approaches test the null hypothesis H0 : λ = 1, ρ ∈ [0, 1] against the
alternative hypothesis Ha : λ < 1, ρ ∈ [0, 1] for the evolutionary model ψ(ρ, λ; Θb). The following test
statistic is used in both procedures:

Tsub ≡ Tsub(D1:L) = E

(
L∑

i=1

H
(i)
Θb

∣∣∣∣∣D1:L

)
=

L∑
i=1

E(HΘb
|Di), (36)

where H(i)
Θb

denotes the number of substitutions in the subtree defined by Θb at site i. Note that the
statistic in (36) is the subtree equivalent of that shown in (35). The SPH “marginal” subtree test compares
the observed value of Tsub to the marginal distribution of

∑L
i=1H

(i)
Θb

, while the SPH “conditional” subtree
test compares the observed value of Tsub to the conditional distribution of

∑L
i=1H

(i)
Θb

given
∑L

i=1H
(i)
Θ

is equal to the observed value of Tall. Conceptually, the marginal subtree test examines whether the
number of substitutions in the subtree is less than would be expected under the null model, whereas the
conditional subtree test analyzes whether the number of substitutions in the subtree is surprising given
the total number of substitutions in the tree. Even though these subtree tests are intuitively appealing,
they suffer from the same problems discussed previously for the all-branch test (Siepel et al., 2006).

The SPH marginal subtree test can be corrected and made more powerful by using the correct
asymptotic distribution of Tsub as the null distribution; this asymptotic distribution is obtained using
reasoning similar to that used for the asymptotic distribution of Tall. We propose our own conditional
subtree test based on the following test statistic:

Tratio ≡ Tratio(D1:L) =
Tsub(D1:L)

Tall(D1:L)
= E

(
L∑

i=1

H
(i)
Θb

∣∣∣∣∣D1:L

)/
E

(
L∑

i=1

H
(i)
Θ

∣∣∣∣∣D1:L

)

=

[
L∑

i=1

E(HΘb
|Di)

]/[
L∑

i=1

E(HΘ|Di)

]
,

(37)

where H(i)
Θb

and H
(i)
Θ are defined as previously. This test statistic serves as a proxy for the “observed”

proportion of substitutions in the subtree defined by Θb across the alignment D1:L. Using the Cen-
tral Limit Theorem and the Delta Method, we approximate the sampling distribution of Tratio with
a normal distribution whose moments depend on E(HΘb

), E(HΘ), Var[E(HΘb
|D)], Var[E(HΘ|D)], and

Cov[E(HΘb
|D),E(HΘ|D)]; we omit the exact forms of the mean and variance of this asymptotic dis-

tribution for brevity. By the Laws of Total Variance and Covariance, we can express Var[E(HΘb
|D)],

Var[E(HΘ|D)], and Cov[E(HΘb
|D),E(HΘ|D)] as follows:

Var[E(HΘb
|D)] = Var(HΘb

)− E[Var(HΘb
|D)], (38)
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Var[E(HΘ|D)] = Var(HΘ)− E[Var(HΘ|D)], (39)
Cov[E(HΘb

|D),E(HΘ|D)] = Cov(HΘb
, HΘ)− E[Cov(HΘb

, HΘ|D)]. (40)

The prior moments E(HΘb
), E(HΘ), Var(HΘb

), Var(HΘ), and Cov(HΘb
, HΘ) are efficiently computed

using the post-order tree traversal algorithm outlined in the Appendix. The quantities E[Var(HΘb
|D)],

E[Var(HΘ|D)], and E[Cov(HΘb
, HΘ|D)] are approximated using Monte Carlo replicates of D and our

exact calculations of posterior mapping variances and covariances. For both of our lineage-specific
conservation tests, we estimate the global scale parameter ρ by numerically maximizing the observed
log-likelihood function. In the next subsubsection, we present simulation results that demonstrate the
utility of our modified SPH conservation tests.

4.2.2 Simulation Experiments

We evaluate the power and false positive rates of the original and modified SPH conservation tests using
simulated alignments. The neutral evolutionary model used by Pollard et al. (2010) is also employed in
all our simulation experiments. This model was estimated using fourfold degenerate sites extracted from
alignments of the 44 ENCODE regions (Birney et al., 2007) for 36 vertebrate species. For the all-branch
and subtree tests, we simulate replicate alignments by independently generating L alignment columns
according to ψ(ρ) and ψ(ρ, λ; Θprimates), respectively, where primates denotes the branch above the pri-
mates subtree in the neutral phylogeny. We consider L = 1, 2, 4, ..., 48, 50 and ρ = 0.1, 0.3, 0.5, 0.7, 0.9, 1
in our all-branch simulations and L = 1, 5, 10, ..., 45, 50; ρ = 0.1, 0.25, 0.4, ..., 1; and λ = 0.1, 0.25, 0.4, ..., 1
in our subtree simulations. We keep the alignment length L relatively small because the primary ap-
plication of SPH tests is scanning whole genomes in search of short ultra-conserved genetic elements.
For each simulation setting under Ha, we generate 1000 replicate datasets, compute the conservation p-
values for each dataset using the original and modified SPH tests, and estimate the power by calculating
the proportion of p-values less than the given significance level; we construct power curves by varying
the significance threshold between 0 and 1. False positive rates are similarly estimated for each simu-
lation setting under H0. Note that these power curves should not be confused with receiver operating
characteristic (ROC) curves; in our simulations, we plot the power (i.e. true positive rates) against the
significance levels, whereas ROC curves plot the power against the false positive rates.
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Figure 4: Power and false positive rate plots from our all-branch simulation experiments. The power and
false positive rate curves for the original SPH all-branch test are shown in red, while the corresponding
performance curves for the modified SPH all-branch test are displayed in black. In this figure, we present
performance plots for L = 1, 4, 10 and ρ = 0.3, 0.5, 0.7, 1.

In Figure 4, we display some of the power and false positive rate plots from our all-branch simulation
experiments. Specifically, we present performance plots for L = 1, 4, 10 and ρ = 0.3, 0.5, 0.7, 1. These
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plots suggest that the modified SPH all-branch test is more powerful than the original SPH all-branch
test. The gap between the power curves for the two tests is negligible for large L and small ρ but increases
as we examine shorter alignments with lower levels of conservation. This latter result is surprising because
the null distribution used in the modified SPH all-branch test is based on an asymptotic approximation.
The false positive rate plots seem to indicate that the p-values obtained from the modified all-branch
test are approximately uniformly distributed under the null hypothesis, even for small L. In addition, it
is apparent that the original SPH all-branch p-values are conservative under H0, confirming the results
found in (Siepel et al., 2006).
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(a) Power and false positive rate curves for ρ = 0.25
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(b) Power and false positive rate curves for ρ = 0.85

Figure 5: Power and false positive rate plots from our subtree simulation experiments. The power
and false positive rate curves for the original SPH conditional subtree test are shown in red, while the
corresponding performance curves for the modified SPH conditional subtree test are displayed in black.
In this figure, we present performance plots for L = 5, 15, 30; ρ = 0.25, 0.85; and λ = 0.1, 0.4, 0.7, 1.
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Figure 5 presents power and false positive rate plots from our subtree simulations. We provide per-
formance plots for L = 5, 15, 30; ρ = 0.25, 0.85; and λ = 0.1, 0.4, 0.7, 1. The modified SPH subtree tests
are more powerful than the original SPH subtree tests in all our simulation experiments. Furthermore,
we find that the power curves for the two modified subtree tests are nearly identical; the power curves for
the two original subtree tests are similar as well. We only display the power curves for the conditional
subtree tests in Figure 5; the full set of power curves is shown in Figure 6 (see Appendix).

Our subtree simulation experiments suggest that the presence of strong phylogeny-wide conservation
(as measured by ρ) makes it more difficult to correctly identify lineage-specific conservation. For ρ close
to 1, the separation between the power curves for the original and modified subtree tests is minimal when
L is large and λ is small but widens as we analyze shorter elements with lower levels of primate-specific
conservation. However, for ρ close to 0, the power curves differ quite substantially for all settings of
L and λ. The power of the modified subtree tests is more robust to changes in ρ, while the power of
the original subtree tests diminishes greatly as ρ decreases. Thus, it appears that the modified subtree
tests can more accurately detect lineage-specific conservation in the presence of strong phylogeny-wide
conservation.

Our results show that testing for conservation in a subtree of interest is more difficult than testing
for conservation across the entire phylogeny. This is not too surprising because we have to account for
the uncertainty associated with estimating ρ in the subtree tests and the modified subtree test statistics
achieve asymptotic normality under H0 at a rate slower than is observed for the modified all-branch
test statistic. The latter can be seen by comparing the false positive rate plots in Figures 4 and 5;
additionally, these plots indicate that the original SPH subtree p-values are more conservative than the
original SPH all-branch p-values.

5 Discussion
In this paper, we present a post-order tree traversal algorithm that computes prior and posterior stochas-
tic mapping variances with space and time complexity linear in the number of tips on the phylogeny; prior
and posterior mapping covariances are efficiently calculated using a generalized version of this algorithm
(see Appendix). In many applications, including the ones presented in this paper, the posterior distribu-
tion of stochastic mapping summaries can be approximated by a normal distribution. Since the normal
distribution is fully specified by its mean vector and covariance matrix, our new stochastic mapping
(co)variance computation together with an already available efficient way of computing the stochastic
mapping mean enables access to the full posterior distribution of stochastic mapping summaries without
resorting to costly simulations. Our methodology builds upon the results of Minin and Suchard (2008b)
and is inspired by the work of Kenney and Gu (2012), who devised a dynamic programming procedure
for calculating second derivatives of phylogenetic likelihood functions.

In fact, our algorithm for computing prior and posterior mapping moments can be adapted to provide
a more straightforward description of the Kenney and Gu (2012) algorithm. If we replace the restricted
factorial moments in the recursive equations of our algorithm with the appropriate derivatives of CTMC
transition probabilities, then we would obtain an algorithm that computes the second derivatives of
interest. Even though this reformulation is equivalent to the approach of Kenney and Gu (2012), we
believe our presentation is more streamlined and easier to follow. We also point out that our algorithm
and the work by Kenney and Gu (2012) can be viewed as extensions of analogous calculations for hidden
Markov models (Lystig and Hughes, 2002; Cappé and Moulines, 2005).

The exact calculations of prior and posterior mapping moments allow us to construct more efficient
posterior predictive rate variation tests and more accurate tests of genomic conservation. From our
analyses of the β-globin and influenza datasets, we find that the posterior dispersion index for substitution
counts is a useful discrepancy measure for detecting observed rate variation across sites. We motivate our
use of the posterior dispersion index as a discrepancy measure by alluding to the prior dispersion index
for substitution counts often being greater than 1 in the presence of rate variation among sites. The
observed and predicted distributions of the posterior dispersion index in Figure 3 do not have support
outside the interval (0, 1), but this is not entirely inconsistent with the reasoning given above because a
simple limiting argument shows that the posterior dispersion index for long sequence alignments is less
than or equal to the prior dispersion index, even in the presence of across-site rate variation. From our
all-branch and subtree simulation experiments, we see that the modified SPH tests are better than the
original SPH tests at correctly identifying phylogeny-wide and lineage-specific conservation in genomic
sequence alignments. Specifically, we observe that the differences in power between the original and
modified conservation tests are greatest when we analyze short elements with low levels of conservation.

17



Similarly to the techniques found in (Kellis et al., 2003), our modified tests of conservation could aid in
the discovery of new transcriptional regulatory motifs in the human genome.

The work presented here can be extended in several different directions. One obvious extension is
to generalize our post-order tree traversal algorithm to calculate higher-order moments of stochastic
mapping summaries, such as the (co)skewness and (co)kurtosis. These higher-order moments could then
be used to construct more complex discrepancy measures for posterior predictive model diagnostics.
Similarly to the test of rate variation among sites, it is of interest to develop a posterior predictive
approach to testing for rate variation among branches of the phylogeny. Posterior predictive tests of
this type could serve as useful diagnostic tools to assess the appropriateness of relaxed molecular clock
models (Drummond et al., 2006). In addition, it would also be beneficial to establish a posterior predictive
framework for testing the stationarity and homogeneity assumptions implicit in reversible substitution
models. These tests could be used to determine the suitability of nonreversible substitution models
(Boussau and Gouy, 2006). Our dynamic programming algorithm can be easily altered to compute the
posterior mapping variance of labeled dwelling times, which could be employed as a discrepancy measure
in these posterior predictive tests. Finally, another potential avenue for future research is to improve the
two tests of genomic acceleration discussed by Pollard et al. (2010), where acceleration refers to evolution
that is faster than expected. Pursuing this line of research could lead to the detection of new “human
accelerated regions” in our genome (Pollard et al., 2006a,b). Based on the results in this paper and the
promising directions for further study, we think stochastic mapping is and will continue to be essential
to making reliable inferences about the latent evolutionary process on the phylogeny.
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Appendix

Monte Carlo Summary Tables

Standard errors (β-globin) Standard errors (influenza)
L = 50 L = 100 L = 200 L = 400 L = 50 L = 100 L = 200 L = 400

m = 100 0.91 1.3 1.8 2.5 0.094 0.13 0.19 0.26
m = 500 0.41 0.57 0.82 1.2 0.042 0.060 0.086 0.12
m = 1000 0.29 0.41 0.58 0.82 0.030 0.042 0.061 0.085
m = 10000 0.092 0.13 0.18 0.26 0.0097 0.013 0.019 0.027

(a) Monte Carlo standard errors for the β-globin and influenza datasets

L = 50 L = 100 L = 200 L = 400
β-globin 22 41 84 170
influenza 0.34 0.54 1.3 2.3

(b) Exact calculations of Tvar for the β-globin and influenza datasets

Table 2: Monte Carlo summary tables for the β-globin and influenza datasets. (a) Monte Carlo standard
errors associated with simulation-based Tvar estimates. We compute these standard errors on randomly
subsampled alignments of length L using m Monte Carlo replicates per site. Each table entry represents
an averaged Monte Carlo standard error, where the averaging is done over 200 randomly subsampled
posterior θ’s. (b) Exact computations of Tvar. Each table entry denotes an average over exact values of
Tvar, where the averaging is done over the same 200 posterior samples of θ mentioned above. All table
entries in (a) and (b) are rounded to two significant digits.

Prior and Posterior Mapping Covariance Computation
In this subsection, we describe how to efficiently compute prior and posterior mapping covariances. We
generalize the post-order tree traversal algorithm discussed in the main part of the paper and present
the necessary formulas for calculating these covariances. Much of the intuition provided for our original
tree traversal algorithm carries over to this generalized procedure.

Let Cov(HΩ1
, HΩ2

) and Cov(HΩ1
, HΩ2

|D) denote the prior and posterior mapping covariances, re-
spectively, where Ω1,Ω2 ⊆ Θ are predefined sets of branch indices. We consider first the calculation of
the posterior mapping covariance Cov(HΩ1 , HΩ2 |D). The vectors Fu and Sb are defined and computed
as in our original tree traversal procedure for all nodes u ∈ {1, ..., n − 1, n, ..., 2n − 1} and branches
b ∈ Θ. We introduce the m-long vectors V(Ω1,[1])

b , V(Ω1,[2])
b , V(Ω2,[1])

b , V(Ω2,[2])
b , V(Ω1∩Ω2,[1])

b , V(Ω1∩Ω2,[2])
b ,

W
(Ω1)
b , W(Ω2)

b , and W
(Ω1,Ω2)
b for all b ∈ Θ. The ith entries in V

(Ω1,[1])
b and V

(Ω1,[2])
b are mathematically

defined as: ∑
b†

∑
ib

e
[1]
i∗
p(b†)

i∗
c(b†)

(h, tb†)
∏

b∗∈Θb\{b†}

pi∗
p(b∗)i

∗
c(b∗)

(tb∗), (41)

∑
b†

∑
ib

e
[2]
i∗
p(b†)

i∗
c(b†)

(h, tb†)
∏

b∗∈Θb\{b†}

pi∗
p(b∗)i

∗
c(b∗)

(tb∗), (42)

respectively, where the state of parent node p(b) is i and b† ∈ Ω1,b for Ω1,b = Ω1 ∩ Θb. The entries in
V

(Ω2,[1])
b and V

(Ω2,[2])
b and V

(Ω1∩Ω2,[1])
b and V

(Ω1∩Ω2,[2])
b are defined analogously by replacing Ω1 with Ω2

and Ω1 ∩ Ω2, respectively, in the above definitions. The ith element of the vector W(Ω1)
b is equal to:∑

b† 6=b††

∑
ib

e
[1]
i∗
p(b†)

i∗
c(b†)

(h, tb†)e
[1]
i∗
p(b††)

i∗
c(b††)

(h, tb††)
∏

b∗∈Θb\{b†,b††}

pi∗
p(b∗)i

∗
c(b∗)

(tb∗), (43)

where the state of parent node p(b) is i and b†, b†† ∈ Ω1,b for Ω1,b defined as above. The elements inW
(Ω2)
b

and W
(Ω1,Ω2)
b are similarly defined, except that b†, b†† ∈ Ω2,b and b† ∈ Ω1,b, b

†† ∈ Ω2,b, respectively, for
the same Ω1,b and Ω2,b = Ω2 ∩Θb.

For all terminal branches b ∈ E , we define:

V
(Ω1,[1])
b = e[1](h, tb)Fc(b)1{b∈Ω1}, (44)
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V
(Ω1,[2])
b = e[2](h, tb)Fc(b)1{b∈Ω1}, (45)

V
(Ω2,[1])
b = e[1](h, tb)Fc(b)1{b∈Ω2}, (46)

V
(Ω2,[2])
b = e[2](h, tb)Fc(b)1{b∈Ω2}, (47)

V
(Ω1∩Ω2,[1])
b = e[1](h, tb)Fc(b)1{b∈Ω1∩Ω2}, (48)

V
(Ω1∩Ω2,[2])
b = e[2](h, tb)Fc(b)1{b∈Ω1∩Ω2}. (49)

All entries in W
(Ω1)
b , W(Ω2)

b , and W
(Ω1,Ω2)
b for b ∈ E are set to 0. The recursive formulas for calculating

these vectors at internal branches b ∈ I are:

V
(Ω1,[1])
b = e[1](h, tb)Fc(b)1{b∈Ω1} + P(tb)

(
V

(Ω1,[1])
b1

◦ Sb2 + V
(Ω1,[1])
b2

◦ Sb1

)
, (50)

V
(Ω1,[2])
b = e[2](h, tb)Fc(b)1{b∈Ω1} + P(tb)

(
V

(Ω1,[2])
b1

◦ Sb2 + V
(Ω1,[2])
b2

◦ Sb1

)
, (51)

V
(Ω2,[1])
b = e[1](h, tb)Fc(b)1{b∈Ω2} + P(tb)

(
V

(Ω2,[1])
b1

◦ Sb2 + V
(Ω2,[1])
b2

◦ Sb1

)
, (52)

V
(Ω2,[2])
b = e[2](h, tb)Fc(b)1{b∈Ω2} + P(tb)

(
V

(Ω2,[2])
b1

◦ Sb2 + V
(Ω2,[2])
b2

◦ Sb1

)
, (53)

V
(Ω1∩Ω2,[1])
b = e[1](h, tb)Fc(b)1{b∈Ω1∩Ω2} + P(tb)

(
V

(Ω1∩Ω2,[1])
b1

◦ Sb2 + V
(Ω1∩Ω2,[1])
b2

◦ Sb1

)
, (54)

V
(Ω1∩Ω2,[2])
b = e[2](h, tb)Fc(b)1{b∈Ω1∩Ω2} + P(tb)

(
V

(Ω1∩Ω2,[2])
b1

◦ Sb2 + V
(Ω1∩Ω2,[2])
b2

◦ Sb1

)
, (55)

W
(Ω1)
b = 2× e[1](h, tb)

(
V

(Ω1,[1])
b1

◦ Sb2 + V
(Ω1,[1])
b2

◦ Sb1

)
1{b∈Ω1}

+ P(tb)
(

2×V
(Ω1,[1])
b1

◦V(Ω1,[1])
b2

+ W
(Ω1)
b1
◦ Sb2 + W

(Ω1)
b2
◦ Sb1

)
,

(56)

W
(Ω2)
b = 2× e[1](h, tb)

(
V

(Ω2,[1])
b1

◦ Sb2 + V
(Ω2,[1])
b2

◦ Sb1

)
1{b∈Ω2}

+ P(tb)
(

2×V
(Ω2,[1])
b1

◦V(Ω2,[1])
b2

+ W
(Ω2)
b1
◦ Sb2 + W

(Ω2)
b2
◦ Sb1

)
,

(57)

W
(Ω1,Ω2)
b = e[1](h, tb)

(
V

(Ω2,[1])
b1

◦ Sb2 + V
(Ω2,[1])
b2

◦ Sb1

)
1{b∈Ω1}

+ e[1](h, tb)
(
V

(Ω1,[1])
b1

◦ Sb2 + V
(Ω1,[1])
b2

◦ Sb1

)
1{b∈Ω2}

+ P(tb)
(
V

(Ω1,[1])
b1

◦V(Ω2,[1])
b2

+ V
(Ω1,[1])
b2

◦V(Ω2,[1])
b1

+ W
(Ω1,Ω2)
b1

◦ Sb2 + W
(Ω1,Ω2)
b2

◦ Sb1

)
,

(58)

where b1 and b2 represent the two branches that are “below” branch b. This generalized tree traver-
sal algorithm terminates after computing Fu, Sb, V

(Ω1,[1])
b , V(Ω1,[2])

b , V(Ω2,[1])
b , V(Ω2,[2])

b , V(Ω1∩Ω2,[1])
b ,

V
(Ω1∩Ω2,[2])
b , W(Ω1)

b , W(Ω2)
b , and W

(Ω1,Ω2)
b for u = root and b ∈ {root1, root2}, where root denotes the

root node label and root1 and root2 represent the two branches connecting the root node to its children.
The restricted mapping moments of interest are calculated as follows:

E(HΩ1
1D) = πT

(
V

(Ω1,[1])
root1 ◦ Sroot2 + V

(Ω1,[1])
root2 ◦ Sroot1

)
, (59)

E(HΩ21D) = πT
(
V

(Ω2,[1])
root1 ◦ Sroot2 + V

(Ω2,[1])
root2 ◦ Sroot1

)
, (60)
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E(H2
Ω1
1D) = πT

[
2×V

(Ω1,[1])
root1 ◦V(Ω1,[1])

root2 + W
(Ω1)
root1 ◦ Sroot2 + W

(Ω1)
root2 ◦ Sroot1

+
(
V

(Ω1,[1])
root1 + V

(Ω1,[2])
root1

)
◦ Sroot2 +

(
V

(Ω1,[1])
root2 + V

(Ω1,[2])
root2

)
◦ Sroot1

]
,

(61)

E(H2
Ω2
1D) = πT

[
2×V

(Ω2,[1])
root1 ◦V(Ω2,[1])

root2 + W
(Ω2)
root1 ◦ Sroot2 + W

(Ω2)
root2 ◦ Sroot1

+
(
V

(Ω2,[1])
root1 + V

(Ω2,[2])
root1

)
◦ Sroot2 +

(
V

(Ω2,[1])
root2 + V

(Ω2,[2])
root2

)
◦ Sroot1

]
,

(62)

E(HΩ1HΩ21D) = πT
[
V

(Ω1,[1])
root1 ◦V(Ω2,[1])

root2 + V
(Ω1,[1])
root2 ◦V(Ω2,[1])

root1

+ W
(Ω1,Ω2)
root1 ◦ Sroot2 + W

(Ω1,Ω2)
root2 ◦ Sroot1

+
(
V

(Ω1∩Ω2,[1])
root1 + V

(Ω1∩Ω2,[2])
root1

)
◦ Sroot2

+
(
V

(Ω1∩Ω2,[1])
root2 + V

(Ω1∩Ω2,[2])
root2

)
◦ Sroot1

]
.

(63)

We also know that P(D) = πTFroot (Felsenstein, 1981). Our efficient computations of the above re-
stricted mapping moments allow us to calculate the associated posterior mapping moments using the
following equations:

E(HΩ1
|D) =

E(HΩ1
1D)

P(D)
, (64)

E(HΩ2
|D) =

E(HΩ2
1D)

P(D)
, (65)

Var(HΩ1
|D) = E(H2

Ω1
|D)− E(HΩ1

|D)2 =
E(H2

Ω1
1D)

P(D)
−
[
E(HΩ11D)

P(D)

]2

, (66)

Var(HΩ2
|D) = E(H2

Ω2
|D)− E(HΩ2

|D)2 =
E(H2

Ω2
1D)

P(D)
−
[
E(HΩ2

1D)

P(D)

]2

, (67)

Cov(HΩ1 , HΩ2 |D) = E(HΩ1HΩ2 |D)− E(HΩ1 |D)E(HΩ2 |D)

=
E(HΩ1HΩ21D)

P(D)
−
[
E(HΩ11D)

P(D)

][
E(HΩ21D)

P(D)

]
.

(68)

The prior mapping moments can be obtained by modifying the tree traversal procedure discussed in
this subsection. The only changes that need to be made are to the initializations of Fu at all terminal
nodes u. If we set Fui = 1 for all terminal nodes u ∈ {n, ..., 2n− 1} and i = 1, ...,m, then our algorithm
will be able to compute the prior moments of interest. In this case, equations (64)-(68) are used to
calculate the prior mapping moments. Thus, the prior and posterior mapping covariances are computed
in a similar fashion, but according to different initializations of the Fu vectors at the tips of the phylogeny.
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(a) Power and false positive rate curves for ρ = 0.25
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(b) Power and false positive rate curves for ρ = 0.85

Figure 6: Power and false positive rate plots from our subtree simulation experiments. The power
and false positive rate curves for the original SPH marginal (conditional) subtree test are shown in
green (blue), while the corresponding performance curves for the modified SPH marginal (conditional)
subtree test are displayed in black (red). In this figure, we present performance plots for L = 5, 15, 30;
ρ = 0.25, 0.85; and λ = 0.1, 0.4, 0.7, 1.
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