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Abstract

In this article, we provide an overview of maximum likelihood methods for phylogenetic inference.
A brief introduction to general maximum likelihood estimation is provided. We define a phylogenetic
likelihood, summarize how to compute this likelihood, and then discuss approaches used to maximize
the phylogenetic likelihood function. We discuss a property of the maximum likelihood estimation,
called consistency, that states that the maximum likelihood phylogeny will converge to the true
phylogenetic tree with as more and more data are added to the analysis. We describe the bootstrap,
a popular technique used to characterize the uncertainty in parameter estimates, and then outline
its use in phylogenetic maximum likelihood estimation. A short example is given to illustrate the
use of phylogenetic maximum likelihood techniques on a real dataset of primate mitochondrial DNA
sequences.
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1 Introduction
Maximum likelihood estimation is an extremely popular statistical inference framework that is used to
estimate the parameters in a probabilistic data generating model. This conceptually simple method pro-
vides parameter estimates that have good statistical properties. Before delving into maximum likelihood
techniques for phylogenetic tree reconstruction, we present a simple example of maximum likelihood
estimation to illustrate how this procedure works.

Suppose we have a coin that has some unknown probability p of landing on heads. We are interested in
estimating this unknown probability based on the outcomes of observed coin flips. For example, one could
imagine flipping this coin independently 10 times, resulting in an observed sequence ofHTTHTHTHTT ,
denoted by D. The maximum likelihood principle suggests that the best guess for p is obtained by
choosing p so that the probability of observing the sequence HTTHTHTHTT is the highest. The
probability of observing the sequence HTTHTHTHTT from this coin is:

L(p) = Pr(D; p) = p(1− p)(1− p)p(1− p)p(1− p)p(1− p)(1− p) = p4(1− p)6. (1)

We are able to take a product of p and 1−p terms because of the independence of the coin flips. Equation
(1) is referred to as the likelihood given parameter p . Because we are picking the value of p that makes
L(p) the largest, this likelihood function is treated as a function of p, not as a function of the data D.
From basic calculus, we know that finding the p that maximizes a differentiable function w.r.t. p is
equivalent to solving the equation L′(p) = 0, which is:

2(−1 + p)5p3(−2 + 5p) = 0. (2)

This results in three roots p = 0, 0.4, 1. A quick inspection of the likelihood function, depicted in Figure 1,
evaluated at all three roots shows that p = 0.4 is the maximum likelihood estimate of p. This is an
intuitive estimate because it is just the proportion of heads observed in the sequence HTTHTHTHTT .
It turns out that this maximum likelihood estimator (MLE) of p tends to the true, unknown value of p
as we observe more and more coin flips — this is called consistency in statistics. Also, this estimator
uses available data in the most optimal way, again as we observe more and more coin flips – this is
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called efficiency in statistics. Under fairly general and reasonable regularity conditions, consistency and
efficiency hold for a large class of maximum likelihood estimators (van der Vaart, 1998). This easy-
to-understand estimation principle along with the associated optimality properties for a wide class of
likelihood models make maximum likelihood an attractive procedure for many parameter estimation
problems, including the problem of estimating phylogenetic relationships from molecular sequence data.

2 Phylogenetic Likelihood

2.1 Likelihood Description
Throughout this presentation, we restrict our attention to DNA sequence data for simplicity (although the
methods we describe are compatible with other discrete character datasets as well). Suppose we observe
m aligned sequences of DNA (potentially corresponding to m distinct species), where each sequence has
nucleotide observations recorded at n distinct sites. Gaps in the alignment are usually treated as missing
data, but more accurate treatment of insertions and deletions is possible (Redelings and Suchard, 2005;
Liu et al., 2012). Just as we considered the likelihood of the observed coin flips as a function of the
unknown parameter p, here we will examine the likelihood of the DNA sequence data as a function of
the unknown tree topology and branch lengths. Given a tree topology with branch lengths, we can
use a substitution model to calculate the probabilities of state changes along the branches of the tree;
substitution models are described in great detail in the “Models and Model Selection” article contained
within this encyclopedia. Specifically if t denotes a branch length on a tree, substitution models allow
us to calculate pij(t), which denotes the probability of going from state i to state j on a branch of length
t, where i, j ∈ {A,G,C, T}. Note that branch lengths are commonly measured in expected number of
substitutions per site, not in clock time, because estimating substitution rates and branch lengths in units
of clock time requires additional information about branching and/or sampling times in the phylogeny
(Drummond et al., 2006).

Two assumptions are made that are crucial to the rest of the analysis (Felsenstein, 2004):

1. Evolution at different sites (on a given tree) is independent.

2. Conditional on the internal node states, evolution proceeds independently on different branches of
the phylogeny.

Let L(τ, t,θ) be the likelihood corresponding to the m×n DNA sequence alignment matrix y for a given
tree topology τ with branch length vector t and substitution model parameter vector θ. We can write
the likelihood as:

L(τ, t,θ) = Pr(y; τ, t,θ) =
n∏

i=1

P (yi; τ, t,θ) =

n∏
i=1

Li(τ, t,θ), (3)

where yi is the m×1 vector of observed nucleotides at the i’th site and Li(τ, t,θ) is the site i likelihood.
This factorization follows directly from the first independence assumption given above. Thus, we can find
the likelihood of the whole sequence matrix by finding the likelihoods for each of the n sites. Suppose we
observed the nucleotide vector (A, T,C, T ) at a particular site (assuming there were only m = 4 aligned
sequences). We will use the example tree τex given in Figure 2 to help illustrate how to calculate the
likelihood at this site.

Using the tree τex, we can deconstruct the likelihood of this nucleotide vector in the following manner:

Pr(A, T,C, T ; τex, tex,θ) =
∑
x

∑
y

∑
z

Pr(A, T,C, T, x, y, z; τex, tex,θ)

=
∑
x

∑
y

∑
z

πxpxy(t1)pxz(t2)pyA(t3)pyT (t4)pzC(t5)pzT (t6),
(4)

where the summations are over the elements in {A,G,C, T}. We obtain equation (4) by conditioning on
the internal node states and by invoking the assumption of independent evolution across branches. Note
that, following common practice, we assumed that the initial distribution at the root of the phylogeny is
π = (πA, πG, πC , πT )

T , the stationary distribution of the substitution model (Page and Holmes, 2009).
Looking at equation (4), it is clear that we will need to take a sum over 43 = 64 probabilities. For only
m = 4 terminal nodes, this computation is reasonable; asm grows, the computation becomes problematic
because the sum will involve 4m−1 terms over m− 1 internal nodes. In the next section, we describe an
algorithm that can efficiently calculate this site likelihood by eliminating redundant computations.
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2.2 Likelihood Computation
First presented by Felsenstein (1973), the pruning algorithm is a standard technique used to efficiently
compute phylogenetic likelihoods. This algorithm is a particular type of dynamic programming technique
and takes advantage of the distributive law of algebra to achieve efficiency gains. For example, the
expression ab + ac + ad + ae, where a, b, c, d, e are scalars, requires 7 computations (4 multiplications
and 3 additions). By noting the scalar a appears in all 4 multiplications, we can use the distributive
law to re-write the above expression as a(b+ c+ d+ e), which requires 4 computations (3 additions and
1 multiplication). Thus by applying the distributive law to expressions that contain sums of product
terms, like in equation (4), we can reduce the number of computations required to evaluate them.

For the phylogenetic site likelihood given in equation (4), we can utilize the distributive law by
pushing the summations as far right as possible:

P (A, T,C, T |τex, tex,θ) =
∑
x

∑
y

∑
z

πxpxy(t1)pxz(t2)pyA(t3)pyT (t4)pzC(t5)pzT (t6)

=
∑
x

πx

[∑
y

pxy(t1)pyA(t3)pyT (t4)

][∑
z

pxz(t2)pzC(t5)pzT (t6)

]
.

(5)

This formulation suggests calculating
∑

y pxy(t1)pyA(t3)pyT (t4) and
∑

z pxz(t2)pzC(t5)pzT (t6) first, caching
these intermediate results for all possible values x, and then computing the final sum over x. Note that
we can visualize this procedure as traversing τex bottom-up because the sums over y and z are evaluated
before the sum over x. Instead of naively summing over 43 = 64 terms, this reformulation requires a
sum over 4 × 3 = 12 terms. For an arbitrary number of terminal nodes m, a similar reformulation will
reduce the number of computations from being exponential in m to being linear in m.

The nested, bottom-up nature of the above computation leads naturally to a recursion for calculating
site likelihoods. We define L(k, i) to be the conditional likelihood of a subtree with root node k being in
state i. Conceptually, it is the likelihood of the observed terminal nodes below node k, conditional on
node k being in state i. For example in τex, L(y, i) represents the likelihood of observing (A, T ) below
node y, conditional on node y being in state i. For any internal node k (in state i) with children v,w
and corresponding branch lengths tv,tw, Felsenstein (1973) defines the recursion to be:

L(k, i) =

 ∑
s1∈{A,G,C,T}

pis1(tv)L(v, s1)

 ∑
s2∈{A,G,C,T}

pis2(tw)L(w, s2)

 (6)

for all states i ∈ {A,G,C, T}. This recursion uses the conditional likelihoods calculated for the children
of node k to compute the conditional likelihoods for node k itself.

The derivation of the above recursion is based on the assumption of independent evolution across
different lineages and the law of total probability. The former justifies decomposition of L(k, i) into
a product of the two terms, enclosed in square brackets, in Equation (6), where each term represents
a conditional likelihood component from one of the two lineages below node k. The component from
child v is computed by summing over all possible states (s1 ∈ {A,G,C, T}) to which state i could have
changed to and for each possible state computes the probability of changing to that state (i.e. pis1(tv))
times the probability of everything that is observed below node v, given that node v’s state is s1. A
similar reasoning can be used to describe the component corresponding the other child of k — node w.

To turn the recursion in Equation (6) into an algorithm, we need to initialize the recursion by defining
the L(k, i) values for all terminal nodes. For any given terminal node k, L(k, i) is set to 1 when state i is
the observed state and 0 otherwise. This initialization process can be adjusted to account for situations
when data are either missing or partially observed at the terminal nodes (Felsenstein, 2004). Once all
of the terminal node L(k, i)’s are initialized, we continue calculating conditional likelihoods for internal
nodes up the tree, computing them only if the corresponding conditional likelihoods for their children have
been computed. The procedure ends after calculating the conditional likelihoods at the root (L(root, i),
for all i); the resulting site likelihood is computed as

∑
i πiL(root, i), where i ∈ {A,G,C, T}.

2.3 Root Invariance and the Pulley Principle
Before discussing the specifics of maximum likelihood phylogeny estimation, it is essential to understand
the types of phylogenetic trees that will be estimated. Even though it may seem like we are estimating
rooted phylogenies, it turns out that under our assumption of substitution model reversibility and without
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further assumptions or external information maximum likelihood methods can only estimate unrooted
trees. This result is a direct consequence of the Pulley Principle, first discussed in (Felsenstein, 1981).
Under the assumptions of a reversible substitution model, unconstrained branch lengths, and a root
nucleotide distribution at equilibrium, the Pulley Principle states that the root may be placed anywhere
on the tree without affecting the likelihood. This implies that the root is unidentifiable using likelihood
methods for phylogeny estimation because the likelihood is invariant to the placement of the root. In
fact, we are not estimating a single rooted tree, but an equivalence class of rooted trees that corresponds
to a unique unrooted tree (Felsenstein, 1981). In Figure 3, we present two rooted trees that lie in the
same equivalence class; the unrooted tree that corresponds to this equivalence class is shown below the
two rooted trees. As we shift the root node associated with x, the tree topology and branch length
parameters change, but the likelihood value remains the same.

3 Likelihood Maximization

3.1 Branch Length Optimization
Now that we have described how phylogenetic likelihoods can be computed, we will begin discussing
how to maximize these functions with respect to the tree topology τ , branch lengths t, and substitution
model parameters θ. Phylogenetic maximum likelihood algorithms proceed by iterating between two
major algorithmic steps: 1) for a given tree topology, find optimal branch lengths (i.e. the branch
lengths that make the observed data most likely) and substitution model parameters 2) obtain a tree
topology that maximizes the likelihood given branch lengths and substitution model parameters. We
start with the continuous optimization problem.

The problem of optimizing the phylogenetic likelihood function, or equivalently the log-likelihood,
over branch lengths and substitution model parameters falls into a class of nonlinear, non-convex op-
timization problems. This means that no existing optimization algorithm can guarantee to solve this
problem. However, in practice, such problem can be solved by a myriad of hill climbing optimization
methods, such as Newton-Raphson method and the expectation-maximization (EM) algorithms. Al-
though computational ingredients for the Newton-Raphson (Schadt et al., 1998; Kenney and Gu, 2012)
and the EM algorithm (Holmes and Rubin, 2002; Hobolth and Jensen, 2005) are available, often simpler
methods are preferred. For example, many implementations of the phylogenetic maximum likelihood
estimation update branch lengths one at a time, rather than jointly (Guindon and Gascuel, 2003).

In addition to lack of optimization convergence guarantees, there is no theory that says that a
phylogenetic likelihood will have a unique maximum, although multiple maxima are rarely seen in practice
(Felsenstein, 2004). Steel (1994) provides an example that shows maximum likelihood branch lengths for
a given tree are not necessarily unique. Chor et al. (2000) found sequence alignments that have multiple
branch length optima on the same tree. In contrast, Rogers and Swofford (1999) performed numerous
simulation studies and concludes that it’s extremely unlikely that maximum likelihood estimation results
in multiple local optima for a given phylogenetic tree. Given these intriguing results, it is not surprising
that studying properties of the phylogenetic likelihood function remains an active research area.

3.2 Tree Topology Search
Because there exist finitely many tree topologies, we could, in principle, optimize branch lengths and
substitution parameters for every possible tree topology and choose the tree that had the highest like-
lihood value as the maximum likelihood tree. Unfortunately, the set of possible topologies is extremely
large (Felsenstein, 1981) so naively searching over this tree space is computationally infeasible. Various
heuristics are used to find the topology that has the highest likelihood. All these methods use local
modifications of the previously visited tree topologies to find a new tree with a higher likelihood. For
example, early methods, such as PHYLIP (Felsenstein, 1989) and PAUP* (Swofford, 2003) packages,
traverse the tree topology space greedily by comparing the likelihood values between these modified
trees and by choosing the topology that increases the likelihood the most; the procedure will end if there
are not any trees that increase the likelihood. While this local tree search is faster than the exhaustive
search over all possible trees, it is still inefficient because it has to optimize branch lengths and evaluate
likelihoods for all of the rejected trees (Guindon and Gascuel, 2003).

Many other tree search heuristics have been introduced to improve upon the aforementioned hill-
climbing methods. Salter and Pearl (2001) proposed a stochastic search algorithm that uses simulated
annealing to move through tree space. This stochastic search was found to be faster and less likely to
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become trapped in local optima, when compared to PHYLIP and PAUP, for several simulated and real
data examples. The improvement in speed is largely due to the fact that stochastic search algorithms
gradually optimize branch lengths and other model parameters as the tree search goes on and avoid
the full optimization steps used within hill-climbing methods for every candidate tree (Salter and Pearl,
2001). In addition, Guindon and Gascuel (2003) presented a simple hill-climbing algorithm that adjusts
the tree topology and branch lengths simultaneously. By performing joint optimization, this procedure
tends not to get stuck at local modes of the likelihood and produces extremely accurate estimates of the
tree topology (Guindon and Gascuel, 2003). Although these optimization strategies work well in many
practical situations, it is important to keep in mind that all local hill climbing optimization methods are
prone to getting stuck in local maxima and not returning the true MLE phylogeny as a result.

4 Consistency of Maximum Likelihood Estimates
An important question of interest is whether the maximum likelihood phylogenetic estimation process is
able to reconstruct the true phylogeny as we gather more and more data. More precisely, as we collect
data at more and more sites for a fixed set of sequences, will the maximum likelihood phylogeny estimates
tend to the true phylogenetic tree? As we briefly mentioned before, consistency holds for a wide class
of maximum likelihood estimators under sufficiently broad regularity conditions (van der Vaart, 1998).
Despite this, consistency for maximum likelihood phylogenies has been hard to establish due to the
complex nature of the parameter space.

Felsenstein (1973) suggested that consistency could be proven for maximum likelihood phylogeny
estimates by using a modified version of a general consistency proof found in (Wald, 1949), although the
proof was never explicitly given. Chang (1996) presented one of the earliest proofs of consistency, but did
not consider the branch length parameters in his setup. RoyChoudhury et al. (2015) provide a complete
proof of consistency by verifying the Wald conditions in this setting; their proof is dependent on a previ-
ously constructed metric space for phylogenetic trees (Billera et al., 2001). Thus, RoyChoudhury et al.
(2015) show that consistency will hold for maximum likelihood phylogenies assuming the correct model
of evolution is used. A discussion regarding phylogenetic MLE consistency under model misspecification
can be found in (Felsenstein, 2004).

5 Bootstrap for Phylogenies
In the process of phylogenetic estimation, it is natural to wish to quantify uncertainty about the re-
constructed phylogeny. In this section, we explain how nonparametric bootstrap, a general statistical
technique for assessing sampling variability of an estimator (Efron, 1979), can be used to assign confidence
to phylogenetic MLEs. Before getting into the details of the bootstrap procedure, it is instructive to
imagine what would be a statistically ideal way to estimate phylogenetic uncertainty. Suppose we could
repeatedly “re-run” evolution along the same true phylogenetic history to obtain replicated molecular
sequence alignments. Then, estimating phylogenies based on these alignments via maximum likelihood
would tell us something about sampling variability of our estimation. For example, if the phylogenies
obtained from the replicated re-runs of evolution were nearly identical, we would conclude that our phy-
logenetic estimation is very precise, enjoying low sampling variability. The idea behind bootstrap is to
get around re-running evolution, which is clearly infeasible, by resampling the observed data.

5.1 Bootstrap Description
The bootstrap procedure starts by generating B replicate datasets. Each dataset is obtained by re-
peatedly sampling n alignment sites with replacement (i.e. sampling columns). Maximum likelihood
estimation is then applied to each of these B bootstrapped sequence alignments, and uncertainty is
assessed by summarizing the similarities between the bootstrapped phylogenies (Felsenstein, 1985). Fig-
ure 4 displays some bootstrap datasets drawn from an observed sequence alignment; note that each
dataset consists of randomly sampled columns from this observed alignment. While bootstrap sampling
is conceptually simple, summarizing bootstrapped trees is not an easy task so we devote the next sub-
section to this topic. For a more detailed account of bootstrap sampling, please see the “Measures of
Tree Support” article contained within this encyclopedia.
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5.2 Summarizing Bootstrapped Phylogenies
We are interested in understanding how to summarize the similarities among the B bootstrap trees
because a high degree of similarity corresponds to a low degree of variability. For instance, if a particular
tree split — a bipartition of the species set — appears in most of the bootstrap trees, then we will be
more confident about that tree split being in the true phylogeny. One way to keep track of which tree
splits appear most often in the bootstrap trees is to construct a majority-rule consensus tree — a tree
that is constructed from tree splits that appear in a majority of the bootstrap trees. This is done by
first enumerating all of the tree splits that occur on the bootstrap trees and then retaining only those
splits that appear in more than 50% of the trees. We can then construct the consensus tree using this
remaining collection of splits. In building the consensus tree, the procedure always avoids putting two
splits that might conflict on the same tree because there will always be at least one bootstrap tree where
the two splits coexist (Felsenstein, 1985). Thus, it is guaranteed that a consensus tree can be built from
these tree splits. Once the tree is constructed, it is common to label each split with the percentage of
bootstrap trees it appears in. This helps us understand which parts of the consensus tree we should have
strong or weak confidence in. Figure 5 illustrates how this tree building process works by constructing
a majority-rule consensus tree for a simple collection of trees. For a more comprehensive treatment of
consensus trees, please see the “Consensus Trees” article contained within this encyclopedia.

6 Maximum Likelihood and more complex models of evolution
So far, we have limited our discussion of phylogenetic maximum likelihood estimation to the very basic
models of molecular evolution. However, assuming more complex models does not significantly change
the maximum likelihood machinery. For example, it is widely recognized that when modeling evolution
of molecular sequences it is important to account for a possibility of different substitution rates across
sites (Yang, 1994). Therefore, most implementations of phylogenetic maximum likelihood estimation
include models that deal with such heterogeneity. Model extensions that relax the assumption of site
independence (Hobolth, 2008) and that impose constraints on substitution rates across branches of the
phylogeny (Rambaut and Bromham, 1998) are also possible. Increasing model complexity may eventually
lead to a situation where maximum likelihood estimation ceases to produce a unique solution, so studying
identifiability of models becomes an important avenue of research (Rhodes and Sullivant, 2012).

7 Example: Primate Phylogeny Estimation
In this section, we present an example of maximum likelihood phylogeny estimation applied to an align-
ment of mitochondrial DNA sequeces from 7 different primate species: human, chimpanzee, bonobo,
gorilla, Bornean orangutan, Sumatran orangutan, and gibbon (Yang et al., 1998). The length of the
alignment is 9,993 sites. We are interested in understanding the ancestral relationships among these
species. We use a general time-reversible (GTR) substitution model, with a gamma distribution used to
model rate variation across sites. After finding the maximum likelihood phylogeny estimate using the
PhyML package (Guindon et al., 2010), we perform the bootstrap and obtain 1000 bootstrapped trees.
We carry out this procedure on the full sequence alignment and on an alignment that we constructed by
randomly subsampling 500 sites from the original alignment.

Figure 6 displays the maximum likelihood trees with corresponding labeled bootstrap percentages;
note that the majority-rule consensus trees have been omitted from Figure 6 as they coincide with the
maximum likelihood trees in this example. However, maximum likelihood trees and bootstrap consensus
trees could be different, which usually happens when maximum likelihood phylogenetic inference is not
very precise. In this example, maximum likelihood trees of both the full and subsampled alignment
share the same topology and have similarly sized bootstrap percentages. However, notice that artificially
reducing the size of the data yields more uncertainty reflected in lower bootstrap support of internal
branches of the reconstructed phylogeny on the righthand side of Figure 6. Our analysis suggests an
accepted relationship among the primates, with bonobos and chimpanzees being most closely related to
humans (Mailund et al., 2014).
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Figure 1: The likelihood of observing 4 heads in 10 coin tosses as a function of the unknown probability of
heads p in a single toss. The likelihood function p4(1−p)6 is maximized at p = 0.4, which corresponds to
the observed proportion of heads. The red dashed lines represent critical points found by differentiating
the likelihood function and setting it equal to 0.
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Figure 2: An example phylogenetic tree. Letters x, y, z represent the unobserved internal node states
where x is associated with the root node, τex specifies the tree topology, and tex = (t1, t2, ..., t6) denotes
the vector of branch lengths. Given the tree topology τex and branch lengths tex, we can calculate the
likelihood of observing the nucleotide vector (A, T,C, T ).
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Figure 3: Three trees with equivalent likelihood values under the assumptions of the Pulley Principle.
The Pulley Principle states that the root of a tree may be placed anywhere on the tree without affecting
the likelihood value. The two rooted trees (top) are contained within a larger equivalence class of rooted
trees that uniquely corresponds to the given unrooted tree (bottom).

A A G T C A T C T C
G C T A A G G T C A
T C A T T T G A G T
T A G C T C A G G G

Observed sequence alignment (m = 4, n = 10)

C T A C T T A T G C
A C G A G A C G T T
T G T T G T C G A A
T G T T A C A A G G

Bootstrap sample #1

C A A A T A A C C T
T G C G C G C T A A
A T C T G T C A T T
G C A T G T A G G C

Bootstrap sample #2

Figure 4: An example of bootstrap sampling for sequence alignment data. We obtain bootstrap datasets
by randomly sampling n = 10 sites (i.e. columns) with replacement from the observed sequence alignment
(top). We provide two examples of possible bootstrap datasets (bottom).
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Figure 5: Consensus tree example with 5 species {B,C,D,E, F}. At the top of the figure, we display
a sample collection of trees from which we’ll build a consensus tree. A table enumerating all possible
tree splits from this collection and their respective counts is given in the middle of the figure. At the
bottom of the figure, we display the only consensus tree that can be constructed from the majority tree
splits, which are {C,D}|{B,E, F} and {B,C,D}|{E,F}. Note that we label each tree split with the
corresponding percentage of the tree collection it appears in.
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Figure 6: Maximum likelihood phylogenies with corresponding bootstrap percentages for the primate
example using both the full sequence alignment and a randomly subsampled alignment containing 500
sites.
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Glossary
Dynamic programming: A general method for solving complex problems by breaking them down into
a collection of simpler subproblems that are similar in structure to the original problem.

Hessian matrix: A square matrix of second order partial derivatives of a real-valued function. It
is often needed within numerical optimization techniques.

Hill climbing: A generic optimization strategy that relies on local searches when trying to find the
global maximum of a given function. Hill climbing procedures incrementally modify variables in an op-
timization problem and check to see if the modified variables have achieved a higher function value (i.e.
“climbed the hill”).

Law of total probability: A probability formula that states how to calculate the probability of an
event given a partition of the sample space.

Metric space: A set of objects (i.e. real numbers, phylogenies, etc.) equipped with a distance be-
tween any two elements.

Reversible substitution model: A Markov substitution model that, if started in equilibrium dis-
tribution, can be run backwards in time, with the resulting backward Markov model following the same
probability law as the original forward model.

Simulated annealing: A probabilistic method for approximating the global maximum of a given
function. It is a useful technique for avoiding getting stuck in local maxima.

Stationary distribution: A marginal probability distribution over the states of a substitution model
that can be interpreted as a long-run steady state distribution as evolution occurs over time.

Substitution model: A model that specifies probabilities of state changes for DNA (or amino acid)
sequence data along the branches of a given phylogeny.

Relevant Software
PhyML: http://www.atgc-montpellier.fr/phyml/. This software tool was used to estimate the phy-
logenies in our primate example. This program works with both nucleotide and protein sequence data,
has an easy-to-use online interface, and can handle a wide variety of substitution models, rate hetero-
geneity across sites, and the phylogenetic bootstrap.

RAxML: http://sco.h-its.org/exelixis/web/software/raxml/. This program uses parallel pro-
cessing and a simulated annealing algorithm to find maximum likelihood phylogenies. It also allows for
parsimony reconstruction and bootstrapping.

PHYLIP: http://evolution.gs.washington.edu/phylip/. This phylogeny program, written by Joe
Felsenstein, is one of the oldest and most popular maximum likelihood software packages. Supported
data types include DNA sequences, RNA sequences, protein sequences, discrete characters, and con-
tinuous characters (i.e. gene frequencies). This package also includes programs to carry out parsimony
analysis and distance matrix methods.
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