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Estimation for General Birth-Death Processes
Forrest W. CRAWFORD, Vladimir N. MININ, and Marc A. SUCHARD

Birth-death processes (BDPs) are continuous-time Markov chains that track the number of “particles” in a system over time. While widely
used in population biology, genetics, and ecology, statistical inference of the instantaneous particle birth and death rates remains largely
limited to restrictive linear BDPs in which per-particle birth and death rates are constant. Researchers often observe the number of particles
at discrete times, necessitating data augmentation procedures such as expectation-maximization (EM) to find maximum likelihood estimates
(MLEs). For BDPs on finite state-spaces, there are powerful matrix methods for computing the conditional expectations needed for the
E-step of the EM algorithm. For BDPs on infinite state-spaces, closed-form solutions for the E-step are available for some linear models,
but most previous work has resorted to time-consuming simulation. Remarkably, we show that the E-step conditional expectations can be
expressed as convolutions of computable transition probabilities for any general BDP with arbitrary rates. This important observation, along
with a convenient continued fraction representation of the Laplace transforms of the transition probabilities, allows for novel and efficient
computation of the conditional expectations for all BDPs, eliminating the need for truncation of the state-space or costly simulation. We
use this insight to derive EM algorithms that yield maximum likelihood estimation for general BDPs characterized by various rate models,
including generalized linear models (GLM). We show that our Laplace convolution technique outperforms competing methods when they
are available and demonstrate a technique to accelerate EM algorithm convergence. We validate our approach using synthetic data and then
apply our methods to cancer cell growth and estimation of mutation parameters in microsatellite evolution.

KEY WORDS: Continuous-time Markov chain; EM algorithm; Maximum likelihood estimation; Microsatellite evolution; MM algorithm.

1. INTRODUCTION

A birth-death process (BDP) is a continuous-time Markov
chain that models a nonnegative integer number of particles
in a system (Feller 1971). The state of the system at a given
time is the number of particles in existence. At any moment
in time, one of the particles may “give birth” to a new par-
ticle, increasing the count by one, or one particle may “die,”
decreasing the count by one. BDPs are popular modeling tools
in a wide variety of quantitative disciplines, such as population
biology, genetics, and ecology (Thorne, Kishino, and Felsen-
stein 1991; Krone and Neuhauser 1997; Novozhilov, Karev, and
Koonin 2006; Renshaw 2011). For example, BDPs can charac-
terize epidemic dynamics (Bailey 1964; Andersson and Britton
2000), speciation and extinction (Nee, May, and Harvey 1994;
Nee 2006), evolution of gene families (Cotton and Page 2005;
Demuth et al. 2006), and the insertion and deletion events for
probabilistic alignment of DNA sequences (Thorne, Kishino,
and Felsenstein 1991; Holmes and Bruno 2001).

Traditionally, most modeling applications have used the “sim-
ple linear” BDP with constant per-particle birth and death rates,
which arises from an assumption of independence among parti-
cles and no background birth and death rates. When individual
birth and death rates instead depend on the size of the popu-
lation as a whole, the model is called a “general” BDP. Previ-
ous statistical estimation in BDPs has focused mainly on es-
timating the constant per-particle birth and death rates of the
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simple linear BDP based on observations of the number of
particles over time. However, the simple linear BDP is often
unrealistic, and nonlinear dependence of the birth and death
rates on the current number of particles provides the means to
model more sophisticated and realistic patterns of stochastic
population dynamics in a wide variety of biological disciplines
(Novozhilov, Karev, and Koonin 2006). For example, popula-
tions sometimes exhibit logistic-like growth as their number
approaches the carrying capacity of their environment (Tan and
Piantadosi 1991). In genetic models, the rate of new offspring
carrying an allele often depends on the proportions of both indi-
viduals already carrying the allele and those who do not (Moran
1958). In coalescent theory, the rate of coalescence changes
with the square of the number of lineages (Kingman 1982). In
addition, researchers may wish to assess the influence of co-
variates on birth and death rates by fitting a regression model
(Kalbfleisch and Lawless 1985; Liu, Beckett, and DeNardo
2007).

Analytic studies of general BDPs have provided insight into
theoretical properties including stationary distributions, mo-
ments, transition probabilities, and other quantities of interest.
Karlin and McGregor (1957a, b) introduce a representation of
BDP transition probabilities using orthogonal polynomials and
spectral measure, but these can be extremely difficult to derive
for general BDPs (Novozhilov, Karev, and Koonin 2006; Ren-
shaw 2011). Several authors have characterized BDP transition
probabilities and passage times in terms of continued fraction
expressions for the Laplace transform of these quantities (Mur-
phy and O’Donohoe 1975; Jones and Magnus 1977; Bordes and
Roehner 1983; Guillemin and Pinchon 1998, 1999; Flajolet and
Guillemin 2000; Crawford and Suchard 2012). However, none
of these authors address the task of statistical inference using
data observed from a general BDP.
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Progress in parameter estimation for general BDPs has also
typically been limited to continuous observation of the pro-
cess (Moran 1951, 1953; Anscombe 1953; Darwin 1956; Wolff
1965; Reynolds 1973; Keiding 1975). However, in practice re-
searchers may observe data from BDPs only at discrete times
through longitudinal observations. Estimating transition rates
in continuous-time Markov processes using discrete observa-
tions is difficult since the state path between observations is
not observed. Furthermore, direct analytic maximization of the
likelihood for general BDPs remains infeasible for partially ob-
served samples since the likelihood usually cannot be written in
closed-form. Despite these challenges, several researchers have
made progress in estimating parameters of the simple linear BDP
under discrete observation (Keiding 1974; Thorne, Kishino, and
Felsenstein 1991; Holmes and Bruno 2001; Rosenberg, Tsolaki,
and Tanaka 2003; Dauxois 2004). However, none of these devel-
opments provides a robust method to find exact maximum like-
lihood estimates (MLEs) of parameters in discretely observed
general BDPs with arbitrary birth and death rates.

A major insight comes from the fact that the likelihood of the
continuously observed process has a simple form which eas-
ily yields expressions for estimation of rate parameters. This
fact is the basis for expectation-maximization (EM) algorithms
for maximum likelihood estimation in missing data problems
(Dempster, Laird, and Rubin 1977). In finite state-space Markov
chains, the relevant conditional expectations (the E-step of the
EM algorithm) can often be computed efficiently (Minin and
Suchard 2008); Hobolth and Jensen (2011) discussed eigende-
composition, uniformization, and integration of matrix expo-
nentials. Using these matrix-algebraic tools, several researchers
have derived EM algorithms for estimating transition rates in
this context (Lange 1995a; Holmes and Rubin 2002; Bladt and
Sorensen 2005; Hobolth and Jensen 2005; Metzner et al. 2007;
Hobolth and Jensen 2011). Unfortunately, finding these condi-
tional expectations for general BDPs poses challenges since the
joint distribution of the states and waiting times (or the corre-
sponding generating function) is usually not available in closed
form. Notably, Holmes and Bruno (2001), Holmes and Rubin
(2002), and Doss et al. (2013) were able to find analytic ex-
pressions or numerical approximations for these expectations
in EM algorithms for certain BDPs whose rates depend lin-
early on the current number of particles. While these develop-
ments are promising, there remains a great need for estimation
techniques that can be applied to more sophisticated infinite
state-space BDPs under a variety of sampling scenarios. In-
deed, more complex and realistic models like those reviewed by
Novozhilov, Karev, and Koonin (2006) may be of little use to
applied researchers if no practical method exists to estimate their
parameters.

Here, we seek to fill this apparent void by providing the first
framework for deriving EM algorithms for estimating the pa-
rameters of a discretely sampled general BDP. We first formally
define the general BDP and give an exact expression for the
Laplace transform of the transition probabilities in the form of
a continued fraction. We then give the likelihood for continu-
ously observed BDPs and outline the EM algorithm. Next, we
describe a novel method to efficiently compute the expectations
of the E-step for BDPs with arbitrary rates. Since these expecta-
tions are convolutions of transition probabilities, we perform the

convolution in the Laplace domain, and then invert the Laplace
transformed expressions to obtain the desired conditional expec-
tation. This technique obviates the costly numerical integration,
matrix computations, or repeated simulation that have plagued
previous approaches. We provide examples of the maximiza-
tion step for several different classes of BDPs and demonstrate
a technique for accelerating convergence of the EM algorithm.
We show that our method for performing the E-step is faster
than competing simulation methods and matrix methods that
require truncation of the state-space. We validate our method
using simulated data and conclude with two applications. First,
we analyze lymphoma cell growth under different treatment
conditions by parameterizing the birth and death rates as a gen-
eralized linear model (GLM). Next, we study the evolution of
DNA microsatellites in humans and chimpanzees to address an
open question in evolutionary genomics.

2. GENERAL BDPS AND THEIR EM ALGORITHMS

2.1 Formal Description and Transition Probabilities

Consider a general BDP X(τ ) counting the number of parti-
cles k in existence at times τ ≥ 0. From state X(τ ) = k, tran-
sitions to state k + 1 happen with instantaneous rate λk , and
transitions to state k − 1 happen with instantaneous rate μk .
The transition rates λk and μk may depend on k but are time-
homogeneous. In this article, we assume that X(τ ) is not explo-
sive, that is X(τ ) does not “run away” to infinity in finite time.
As we show below, it is often necessary to evaluate finite-time
transition probabilities to derive efficient EM algorithms for es-
timation of arbitrary birth and death rates in general BDPs. This
proves useful both in completing the E-step of the EM algorithm
and in computing incomplete data likelihoods for validation of
our EM estimates. For a starting state i ≥ 0, the finite-time tran-
sition probabilities Pij (τ ) = Pr(X(τ ) = j | X(0) = i) obey the
system of ordinary differential equations

dPi0(τ )

dτ
= μ1Pi1(τ ) − λ0Pi0(τ ),

and

dPij (τ )

dτ
= λj−1Pi,j−1(τ ) + μj+1Pi,j+1(τ ) − (λj + μj )Pij (τ ),

(1)

for j ≥ 1 with Pii(0) = 1 and Pij (0) = 0 for i �= j (Feller 1971).
For some simple parameterizations of λk and μk , closed-form

solutions exist for the transition probabilities Pij (τ ), but this is
not possible for most models. Karlin and McGregor (1957b)
showed that for any parameterization of λk and μk , it is possible
to express the transition probabilities in terms of orthogonal
polynomials. However, in practice, these special polynomials
are difficult to find, and even when they are available, they
rarely yield solutions in closed-form or expressions that are
amenable to computation (Novozhilov, Karev, and Koonin 2006;
Renshaw 2011). In contrast, the continued fraction method we
outline below does not require additional model-specific insight
beyond specification of λk and μk .

To solve for the transition probabilities, it is advanta-
geous to work in the Laplace domain (Karlin and McGregor
1957b). This transformation also proves essential in maintaining
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numerical stability of transition probabilities in general BDPs
and in computing the conditional expectations necessary for the
EM algorithm derived in a subsequent section. Let

fij (s) = L [Pij (τ )](s) =
∫ ∞

0
esτPij (τ ) dτ (2)

be the Laplace transform of Pij (τ ) and let δij = 1 if i = j and
zero otherwise. Laplace transforming Equation (1) yields

sfi0(s) − δi0 = μ1fi1(s) − λ0fi0(s),

sfij (s) − δij = λj−1fi,j−1(s) + μj+1fi,j+1(s)

− (λj + μj )fij (s). (3)

Letting i = 0 and rearranging (3), we obtain the recurrence
relations

f00(s) = 1

s + λ0 − μ1
(

f01(s)
f00(s)

) ,

and

f0j (s)

f0,j−1(s)
= λj−1

s + μj + λj − μj+1
( f0,j+1(s)

f0j (s)

) . (4)

We can inductively combine these expressions for j =
1, 2, 3, . . . to arrive at the well-known generalized continued
fraction

f00(s) = 1

s + λ0 − λ0μ1

s+λ1+μ1− λ1μ2
s+λ2+μ2−···

. (5)

This is an exact expression for the Laplace transform of
the transition probability P00(τ ). In (5), let a1 = 1 and aj =
−λj−2μj−1, and let b1 = s + λ0 and bj = s + λj−1 + μj−1 for
j ≥ 2. Then, (5) becomes

f00(s) = a1

b1 + a2

b2+ a3
b3+···

. (6)

We can write this more compactly as

f00(s) = a1

b1+
a2

b2+
a3

b3+ · · · . (7)

The kth convergent of f0,0(s) is

f
(k)
00 (s) = a1

b1+
a2

b2+ · · · ak

bk

= Ak(s)

Bk(s)
, (8)

where Ak(s) and Bk(s) are the numerator and denominator of
the rational function f

(k)
0,0 . The transition probabilities Pij (τ ) for

i, j > 0 can be derived in continued fraction form by combining
(3) and (5) to obtain

fij (s)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝ i∏
k=j+1

μk

⎞⎠ Bj (s)

Bi+1(s)+
Bi(s)ai+2

bi+2+
ai+3

bi+3+ · · · for j ≤ i,

(
j−1∏
k=i

λk

)
Bi(s)

Bj+1(s)+
Bj (s)aj+2

bj+2+
aj+3

bj+3+ · · · for i ≤ j ,

(9)

(Murphy and O’Donohoe 1975; Crawford and Suchard 2012).

Although the Laplace transforms of the transition prob-
abilities are generally still not available in closed-form, a
continued fraction representation is desirable for several rea-
sons: (1) continued fraction representations of functions often
converge much faster than equivalent power series; (2) there are
efficient algorithms for evaluating continued fractions to a fi-
nite depth; and (3) there exist methods for bounding the error of
truncated continued fractions (Bankier and Leighton 1942; Wall
1948; Blanch 1964; Lorentzen and Waadeland 1992; Craviotto,
Jones, and Thron 1993; Abate and Whitt 1999; Cuyt et al. 2008).
For an arbitrary BDP, we recover the transition probabilities
through numerical inversion of the Laplace-transformed ex-
pressions. We evaluate the continued fraction to a monitored
depth that controls the overall error and generates stable ap-
proximations to the transition probabilities unattainable by pre-
vious methods (Murphy and O’Donohoe 1975; Parthasarathy
and Sudhesh 2006; Crawford and Suchard 2012). We derive ap-
proximate error bounds for this computation in the Appendix.

The ability to compute transition probabilities for general
BDPs with arbitrary rate parameterizations proves useful in two
ways. First, if we interpret finite-time transition probabilities
as functions of an unknown parameter vector θ , then Pab(t)
given θ returns the likelihood of a discrete observation from a
BDP such that X(0) = a and X(t) = b, where the trajectory in
time t between states a and b is unobserved. Second, transition
probabilities play an important role in computing conditional
expectations of sufficient statistics, as we shall see below.

2.2 Likelihood Expressions and Surrogate Functions

With a formal description of a general BDP and the finite-time
transition probabilities in hand, we now proceed with our task
of estimating the parameters of a general BDP using discrete
observations. Given one or more independent observations of
the form Y = (X(0) = a,X(t) = b, t) from a general BDP, we
wish to find MLEs of the rate parameters λk and μk for k =
0, 1, 2, . . .. We will assume that the birth and death rates at state
k depend on both k and a finite-dimensional parameter vector θ ,
so that the form of λk(θ) and μk(θ) is known for all k.

For a single realization of the process starting at X(0) = a

and ending at X(t) = b, let Tk be the total time spent in state k.
Let Uk be the number of “up” steps (births) from state k, and let
Dk be the number of “down” steps (deaths) from state k. Let the
total number of up and down steps in a realization of the process
be denoted by U = ∑∞

k=0 Uk and D = ∑∞
k=0 Dk respectively.

We also define the total particle time,

Tparticle =
∫ t

0
X(τ ) dτ =

∞∑
k=0

kTk, (10)

that counts the amount of time lived by each particle since time
τ = 0. The total elapsed time is t = ∑∞

k=0 Tk . We demonstrate
these concepts schematically in Figure 1.

The log-likelihood for a continuously observed process takes
a simple form when we sum over all possible states k (Wolff
1965):

�(θ ) =
∞∑

k=0

[Uk log[λk(θ)] + Dk log[μk(θ )]

− [λk(θ ) + μk(θ)]Tk]. (11)
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τ

X(τ)

0 t
0
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2

3

4
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7

T1 =

T2 =

T3 =

T4 =

T5 =

T6 =

U1 =

U2 =

U3 =

U4 =

U5 =

D3 =

D5 =

D6 =

Figure 1. A sample path from a birth-death process (BDP) X(τ ). The process starts at state X(0) = 1 and is at state X(t) = 4 at time t. At right
are schematic representations of the time spent in each state Tk , the number of up steps Uk , and the number of down steps Dk . These quantities
are the sufficient statistics for estimators of rate parameters in general birth-death processes.

However, when a BDP is sampled discretely such that only
X(0) = a and X(t) = b are observed, the quantities Uk , Dk , and
Tk are unknown for every state k, and we cannot maximize the
log-likelihood (11) without them.

We therefore appeal to the EM algorithm for iterative maxi-
mum likelihood estimation with missing data (Dempster, Laird,
and Rubin 1977). In the EM algorithm, we define a surrogate
objective function Q by taking the expectation of the complete
data log-likelihood (11), conditional on the observed data Y
and the parameter values θ (m) from the previous iteration of the
EM algorithm (the E-step). Then, we find the parameter values
θ (m+1) that maximize this surrogate function (the M-step). This
two-step process is repeated until convergence to the MLE of
θ . Taking the expectation of (11) conditional on Y and θ (m), we
form the surrogate function Q:

Q(θ | θ (m)) = E[�(θ) | Y, θ (m)]

=
∞∑

k=0

[E(Uk|Y) log[λk(θ )] + E(Dk|Y) log[μk(θ)]

− E(Tk|Y)[λk(θ ) + μk(θ)]], (12)

where for clarity we have omitted the dependence of the expec-
tations on the parameter value θ (m) from the mth iterate. In gen-
eral, we assume that the maximum likelihood estimator exists;
see Bladt and Sorensen (2005) for a discussion of the issues
of identifiability, existence, and uniqueness. In the following,
we always assume that the BDP is nonexplosive (see Karlin
and McGregor 1957a, b, for details) and that

∑
k λkE(Uk|Y),∑

k μkE(Dk|Y), and
∑

k(λk + μk)E(Tk|Y) are finite.

2.3 Computing the Expectations of the E-Step

Computing the expectations of Uk , Dk , and Tk in the E-step
is difficult in birth-death estimation since the unobserved state
path and waiting times are not independent conditional on the
observed data Y. In addition, the state-space of a BDP is gener-
ally infinite, so the process may visit states k � max(a, b). It is
tempting to approximate an infinite BDP as a similar process on
the finite state-space {0, 1, . . . , N}, where N is chosen so that
the probability of the process visiting states greater than N is
small. That is, we could choose N and ε so that

Pr(X(s) > N | X(0) = a,X(t) = b, 0 < s < t) < ε. (13)

A priori truncation of the state space would allow one to take
advantage of the methods for matrix-algebraic computation of
conditional expectations such as eigendecomposition and uni-
formization, as developed in Hobolth and Jensen (2011). This
turns out to be infeasible for two reasons. First, it is unclear
how to evaluate (13) and whether knowledge of this probabil-
ity can provide error bounds on expectations of BDP statistics;
this makes the choice of N somewhat arbitrary. Second, as we
demonstrate in Section 3.1 using numerical experiments, ma-
trix methods for computation of expectations can suffer from
catastrophic roundoff error.

Recently, some authors have made analytic progress for infi-
nite state-space BDPs. Doss et al. (2013) adopted an approach
for linear BDPs that combines analytic results with simulations.
For some models, these authors were able to derive the gen-
erating function for the joint distribution of U, D, Tparticle, and
the state path conditional on X(0) = a and can manipulated
this generating function to complete the E-step. For a more
complicated linear model, Doss et al. (2013) resorted to ap-
proximating the relevant conditional expectations by simulating
sample paths, conditional on Y using the method introduced by
Hobolth (2008).

Our solution is to recognize that we do not need to know very
much about the missing data to find the conditional expecta-
tions used in the sufficient statistics above. In fact, the transition
probabilities are all that we require. The following integral rep-
resentations of the conditional expectations in the EM algorithm
will prove useful:

E(Uk|Y) =
∫ t

0 Pak(τ )λkPk+1,b(t − τ ) dτ

Pab(t)
, (14a)

E(Dk|Y) =
∫ t

0 Pak(τ )μkPk−1,b(t − τ ) dτ

Pab(t)
, (14b)

and

E(Tk|Y) =
∫ t

0 Pak(τ )Pkb(t − τ ) dτ

Pab(t)
. (14c)

These formulas have appeared in many types of studies related
to EM estimation for continuous-time Markov chains (Lange
1995a; Holmes and Rubin 2002; Bladt and Sorensen 2005;
Hobolth and Jensen 2005; Metzner et al. 2007). For general
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BDPs whose transition probabilities must be computed numeri-
cally, numerical integration over the product of the densities can
be computationally prohibitive.

However, the numerators in (14) are convolutions of inte-
grable time-domain functions. Since the Laplace transforms
fab(s) of these transition probabilities are available and easy to
compute, we take advantage of the Laplace convolution prop-
erty, arriving at the representations

E(Uk|Y) = λk

L −1[fak(s) fk+1,b(s)](t)

Pab(t)
, (15a)

E(Dk|Y) = μk

L −1[fak(s) fk−1,b(s)](t)

Pab(t)
, (15b)

and

E(Tk|Y) = L −1[fak(s) fkb(s)](t)

Pab(t)
. (15c)

where L −1 denotes inverse Laplace transformation. Although
these formulas are equivalent to (14), they offer substantial
time savings over computing the integral directly, and render
tractable the computation of expectations in the EM algorithm
for arbitrary general BDPs. The Appendix shows how to cal-
culate (15) numerically and control the total error using a dis-
cretized Laplace inversion method popularized by Abate and
Whitt (1992b, 1995). This approach allows us to terminate the
continued fraction evaluation dynamically at a depth that con-
trols the error due to both truncation and discretization of the
inversion integral. We emphasize that we do not need to choose
a truncation index a priori as would be required in matrix trun-
cation approaches.

2.4 Maximization Techniques for Various BDPs

In contrast to the generic technique outlined above for com-
puting the expectations of the E-step, the M-step depends explic-
itly on the functional form of the birth and death rates λk(θ) and
μk(θ). Here, we give several representative examples of BDPs
and techniques for completing the M-step of the EM algorithm,
such as analytic maximization, minorize-maximize (MM), and
Newton’s method.

2.4.1 Simple Linear BDP. In the simple linear BDP, births
and deaths happen at constant per-capita rates, so λk = kλ and
μk = kμ. The unknown parameter vector is θ = (λ,μ), and the
surrogate function becomes

Q(θ) =
∞∑

k=0

[E(Uk|Y) log[kλ] + E(Dk|Y) log[kμ]

− E(Tk|Y)k(λ + μ)]. (16)

Taking the derivative of (16) with respect to the unknown pa-
rameters, setting the result to zero, and solving for λ and μ gives
the M-step updates

λ(m+1) = E(U |Y)

E(Tparticle|Y)
, (17a)

and

μ(m+1) = E(D|Y)

E(Tparticle|Y)
. (17b)

These updates correspond to the usual maximum likelihood es-
timators in the continuously observed process (Reynolds 1973).
Note that the transition probabilities Pab(t) in the denomina-
tors of the expectations in (14) cancel out in (17a) and (17b).
When this is the case, transition probabilities are not necessary
to derive an EM algorithm.

2.4.2 Linear BDP With Immigration. Sometimes popula-
tions are not closed, and new individuals can enter; we call this
action “immigration.” Another interpretation arises in models
of point mutations in DNA sequences. Suppose new mutations
arise in a DNA sequence via two distinct processes: one in-
serts new mutants at a rate proportional to the number already
present, and the other creates new mutations at a constant rate,
regardless of how many already exist. To model this behavior,
we augment the simple linear BDP above with a constant term
ν representing immigration, so that λk = kλ + ν and μk = kμ.
The log-likelihood becomes

�(θ) =
∞∑

k=0

[Uk log(kλ+ν)+Dk log(kμ)−Tk[k(λ + μ) + ν]].

(18)

Unfortunately, if we take the derivative of the log-likelihood
with respect to λ or ν, the unknown appears in the denominator
of the terms of the infinite sum. However, since each summand is
a concave function of the unknown parameters, we can separate
them in a minorizing function M such that for all θ , M(θ |θ (m)) ≤
�(θ) and M(θ (m)|θ (m)) = �(θ (m)) as follows:

�(θ) ≥ M
(
θ |θ (m))

=
∞∑

k=0

[Uk[pk log(pkλ) + (1 − pk) log((1 − pk)ν)]

+ Dk log(μ) − [k(λ + μ) + ν]Tk], (19)

where pk = kλ(m)/(kλ(m) + ν(m)). Then, letting Q(θ | θ (m)) =
E(M(θ) | Y, θ (m)) be the surrogate function, this minorization
forms the basis for an EM algorithm in which a step of the
minorize-maximize (MM) algorithm takes the place of the M-
step, and the ascent property of the EM algorithm is preserved
(Lange 2010). Maximizing Q with respect to λ and ν yields the
updates

λ(m+1) =
∑∞

k=0 pkE(Uk|Y)

E(Tparticle|Y)
, (20a)

and

ν(m+1) = 1

t

∞∑
k=0

(1 − pk)E(Uk|Y). (20b)

Expression (20a) is similar to (17a), the update for λ in the
simple BDP. The difference lies in that each E(Uk|Y) in this
case is weighted by the proportion of additions at state k due to
births, not immigrations. The update for μ is the same as (17b).

2.4.3 Logistic/Restricted Growth. To illustrate an EM algo-
rithm for more complicated rate specifications in which no MM
update is evident and the rates no longer depend on the current
state k in a linear way, we examine a model for restricted pop-
ulation growth. Typical deterministic population models often
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incorporate limitations on population size due to the carrying
capacity K of the environment. One famous example is the logis-
tic model of population growth (Murray 2002). Continuous-time
stochastic analogs have previously required a finite cap on pop-
ulation size (Tan and Piantadosi 1991). These stochastic models
roughly mimic the behavior of the deterministic model for pop-
ulation sizes below K, but are limited because they do not allow
growth beyond K. Here, we present a model which supports
transient growth beyond the carrying capacity, but where the
population size tends to a balance between restricted growth
and death.

Suppose births are cooperative, requiring two parents, but fe-
cundity decays as the number of extant particles increases, and
death remains an independent process such that λk = λk2e−βk

and μk = kμ. Here, we can interpret the carrying capacity
roughly as the population size k > 0 at which λk ≈ μk . Ignoring
irrelevant terms, the surrogate function becomes

Q
(
θ | θ (m)) =

∞∑
k=0

[E(Uk|Y)[log(λ) − βk] + E(Dk|Y) log(μ)

− E(Tk|Y)[λk2e−βk + kμ]]. (21)

Since λ and β appear together, we opt for a numerical Newton
step. Denoting the gradient of Q as F and the Hessian by H, we
update these parameters by(

λ(m+1)

β(m+1)

)
=
(

λ(m)

β(m)

)
− H−1F. (22)

The ascent property is preserved when a Newton step is used in
place of an exact M-step (Lange 1995a). The update for μ is the
same as (17b).

2.4.4 SIS Epidemic Models. Under a very common epi-
demic model, members of a finite population of size N are
classified as either “susceptible” to a given disease or “infected”
(Bailey 1964; Andersson and Britton 2000). Susceptibles be-
come infected in proportion to the number of currently infected
in the population, and infecteds revert to susceptible status with
a certain rate independent of how many infecteds there are.
This idealized susceptible-infectious-susceptible (SIS) infec-
tious disease model specifies a general birth-death process in
which we track the number of infecteds. Let λk = βk(N − k)/N
be the rate of new infections when there are already k infected
in the population. Let μk = γ k/N be the rate of recovery of
infecteds to susceptibles. Then if θ = (β, γ ), we have

Q
(
θ |θ (m)) =

N∑
k=0

[E(Uk|Y) log(β) + E(Dk|Y) log(γ )

− E(Tk|Y)(k(N − k)β + kγ )/N], (23)

and the updates are

β(m+1) = NE(U |Y)∑N
k=0(N − k)kE(Tk|Y)

,

and

γ (m+1) = NE(D|Y)

E(Tparticle|Y)
. (24)

2.4.5 Generalized Linear Models. Our general framework
allows assessment of the influence of covariates on the rates
of a general BDP in a novel way. Suppose we sample ob-
servations from independent processes Xi(τ ), i = 1, . . . , N

and observe Yi = (Xi(0), Xi(ti)) associated with d covariates
zi = (zi1, . . . , zid )′. These processes may represent different
subjects in a study. We model the birth and death rates λik

and μik for each process/subject Xi as functions of zi and un-
known d-dimensional regression coefficients θλ and θμ in a
GLM framework. We link

log(λik) = g(k, z′
iθλ) and log(μik) = h(k, z′

iθμ), (25)

where g(·) and h(·) are scalar-valued functions. We note the pos-
sibility that covariates may differ between θλ and θμ through
trivial modification; to ease notation, we do not explore this di-
rection. Given N independent processes, we sum log-likelihoods
to arrive at the multiple-subject surrogate function:

Q
(
θ |θ (m))= N∑

i=1

∞∑
k=0

[
E(Uk|Yi)g(k, z′

iθλ) + E(Dk|Yi)h(k, z′
iθμ)

−E(Tk|Yi)
(
eg(k,z′

iθλ) + eh(k,z′
iθμ)
)]

. (26)

Although we cannot usually maximize this surrogate function
for all elements of (θλ, θμ) simultaneously, a Newton step is
often straightforward to derive.

As an example, consider a GLM extension of the simple linear
BDP in which

log(λik) = log(k) + z′
iθλ, and log(μik) = log(k) + z′

iθμ.

(27)

Taking the gradient of the corresponding surrogate function Q
with respect to the parameters θλ yields

∇θλ
Q =

N∑
i=1

E(U |Yi)zi − ez′
iθλE(Tparticle|Yi)zi (28)

and the second differential (Hessian) of Q is

d2
θλ

Q = −
N∑

i=1

ez′
iθλE(Tparticle|Yi)ziz′

i . (29)

Combining these, we arrive at the Newton step for the parameter
vector θλ:

θ
(m+1)
λ = θ

(m)
λ − (

d2
θλ

Q
)−1 ∇θλ

Q. (30)

A similar update can be found for θμ. These updates are ex-
amples of the gradient EM algorithm for regression in Markov
processes described by Wanek et al. (1993) and Lange (1995a).
It is worth noting that the Hessian matrix d2

θλ
Q can become ill-

conditioned, making it difficult to invert for the Newton step in
(30) for some problems. Unfortunately there is no quasi-Newton
option since in general E(Tparticle|Y)ez′

iθλ is unbounded. An al-
ternative to inversion of the Hessian matrix is cyclic coordinate
descent in which a Newton step is performed for each coordinate
θ j individually. This carries the advantage of avoiding matrix
inversion, but convergence is slower and the ascent property
must be checked at each Newton step.
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Figure 2. Effect of quasi-Newton acceleration on iterates of the EM algorithm for a simple linear BDP with birth rate λ and death rate μ.
Contour lines sketch the log-likelihood from N = 50 discrete samples. Iterates are shown with the “+” symbol. On the left, ordinary EM iterates
converge very slowly in the neighborhood of the maximum, for a total of 36 iterations. On the right, EM iterates using quasi-Newton acceleration
make large jumps and converge rapidly in 15 iterations.

2.5 Implementation

2.5.1 E-Step Error and Acceleration. The E-step in these
EM algorithms for BDP estimation usually involves infi-
nite weighted sums of the conditional expectations E(Uk|Y),
E(Dk|Y), and E(Tk|Y). For example, when estimating λ in the
simple linear BDP, we must evaluate

E(U |Y) =
∞∑

k=0

E(Uk|Y)

=
∞∑

k=0

λk

Pab(t)
L −1[fak(s) fk+1,b(s)](t). (31)

We find an increase in computational efficiency by exchang-
ing the order of Laplace inversion and summation. Then, (31)
becomes

E(U |Y) = 1

Pab(t)
L −1

[ ∞∑
k=0

λkfak(s)fk+1,b(s)

]
(t), (32)

In practice, we can only evaluate a finite number of terms in
the series, so we must truncate the infinite sum in (32). This
truncation approach bears some similarity to matrix truncation
methods, described further in Section 3.1 and Figure 2. The
difference is that truncation of the infinite sum in (32) is dynamic
and may depend on the magnitude of the summand at every step.
In particular, we use a series acceleration method to compute
(32) that provides ready approximation of the remaining tail sum
at each step (Levin 1973; Press 2007). In contrast, the matrix
approximation approach requires choosing the truncation index
a priori, and does not allow for dynamic choice of the truncation
index. The Appendix describes bounds for the numerical error
in this computation in greater detail.

2.5.2 Acceleration of EM Iterates. EM algorithms are no-
torious for slow convergence, especially near optima. Although
our purpose in the present article is limited to basic EM
techniques for analyzing general BDPs, we exploit the quasi-
Newton acceleration method introduced by Lange (1995b) in
our implementations. Other acceleration methods exist, and
may give better results, depending on the problem (Louis 1982;
Meilijson 1989; Jamshidian and Jennrich 1993; Liu and Rubin
1994; Lange 1995a; Liu 1998; He and Liu 2012). Figure 3 shows
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Figure 3. Ill-conditioned transition rate matrix causes the eigende-
composition method to fail. In the top panel, we calculate E(Uk|Y)
for Y = (a = 20, b = 31, t = 1), β = 1, γ = 1, and k = 0, 1, . . . , 50.
The open circles denote values calculated by the Laplace method, and
the line represents the values calculated using the EDecomp method.
While not biologically unreasonable, these parameter values cause the
transition rate matrix to become ill-conditioned, and eigendecompo-
sition suffers from catastrophic numerical error. The Laplace method
remains stable and is unaffected by matrix conditioning. In the bottom
panel, we show E(U25|Y) for the same Y as above, computed using the
EDecomp method with different matrix truncation indices. The true
value (approximately 1.038596) is shown in gray. The first group of
inaccurate values is due to truncation of the matrix below states that
are likely to be reached by the chain on its path from 20 to 31. The
second group of inaccurate values (from about 95 to 100) is due to the
numerical instability involved in inverting a large matrix.
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the log-likelihood function and iterates for the basic EM and ac-
celerated EM methods in the simple linear model. Since the
quasi-Newton acceleration method does not guarantee that the
likelihood increases at each step, “step-halving” is occasionally
necessary to achieve ascent. Note that this requires likelihood
evaluation at least once per iteration. Our approach is advanta-
geous in that we can efficiently calculate this likelihood (product
of transition probabilities) for any general BDP (Crawford and
Suchard 2012).

2.5.3 Asymptotic Variance of EM Estimates. Finding the
observed information matrix for an EM estimate can be chal-
lenging. Louis (1982) gives formulas for the observed informa-
tion, which Doss et al. (2013) use to derive analytic expressions
for the observed information for very simple BDPs. Direct cal-
culation of the information matrix via the derivation given by
Oakes (1999) is appealing, but the conditional expectations are
usually only available to us numerically, and hence we cannot
find the necessary analytic expressions. Analytic expressions
for the asymptotic variance are generally hard to find for more
complicated models. In some such cases, Liu (1998) suggested a
normal approximation. We instead turn to the supplemented EM
(SEM) algorithm of Meng and Rubin (1991), which computes
the information matrix of the EM estimate of θ after the MLE θ̂

has been found. Although the SEM algorithm can be slow, it does
not require that the expectations have analytic expressions. The
observed information is I(θ̂) = −d2Q(θ̂ |θ̂ )(I − dM(θ̂ )), where
M(θ) is the EM algorithm map such that θ (m+1) = M(θ (m)). We
numerically approximate the differential dM at the termination
of the EM algorithm.

We note also that since we are able to calculate transition
probabilities directly, the observed data log-likelihood is easily
computed as

�(θ ) =
N∑

i=1

log Paibi
(ti), (33)

where ai = Xi(0) and bi = Xi(ti). As an alternative to the ap-
proaches outlined above, we can calculate the Hessian using
purely numerical techniques. If H(θ̂ ) = d2�(θ̂ ) is the numerical
Hessian evaluated at the estimated value θ̂ , then Î ≈ −H(θ̂ ).

3. RESULTS

3.1 Laplace Convolution E-Step Comparison

To illustrate the computational speedup that the Laplace con-
volution formulas (15) and their acceleration in section 2.5.1
achieve over existing methods, we calculate conditional expec-
tations of the number of births using six different methods for
various BDP models and report computing times in Table 1. The
Reject method employs rejection sampling of trajectories where
we condition on the starting state, and reject based on the end-
ing state (Bladt and Sorensen 2005). The Endsim method uses
an endpoint-conditioned simulation algorithm to sample trajec-
tories on a truncated state space (Hobolth 2008; Hobolth and
Stone 2009). In both the simulation methods, we repeated the
simulation until the Monte Carlo error became small enough that
we obtained the true value of the statistic to a certain accuracy
with high probability. We terminated the simulation when a 95%
confidence interval for the true value of the statistic has width
less that 0.1. The TConv method involves naı̈ve numerical time-
domain convolution (Equation (14)) using the integrate func-
tion in R. The EDecomp method uses an eigendecomposition of
the truncated rate matrix to compute the conditional expectation
(Minin and Suchard 2008; Hobolth and Jensen 2011). The Unif
method uses uniformization to compute the conditional expec-
tations (Jensen 1953; Hobolth and Jensen 2011). Finally, the
Laplace method uses our Laplace-domain convolution method
outlined in Section 2.3.

To adapt finite state space methods to the problem of com-
puting the number of births in a BDP, we choose a truncated
rate matrix dimension of 100. We are aware that the size of
the rate matrix affects the speed of the simulation routine, so

Table 1. Compute times (s) to perform the E-step for birth-death statistics using six different methods for four different BDP models

Compute times (s)
Value

Model E(U |Y) Reject EndSim TConv EDecomp Unif Laplace

Simple linear (2.4.1) 13.51 81.95 851.22 9.28 0.23 5.04 0.18
λ = 0.5, μ = 0.3
Y = (a = 19, b = 27, t = 1)

Immigration (2.4.2) 13.35 78.29 883.87 9.40 0.24 5.03 0.19
λ = 0.5, μ = 0.3, α = 0.2
Y = (a = 19, b = 27, t = 1)

Logistic (2.4.3) 5.67 12.21 571.28 2.85 * 2.29 0.09
λ = 0.5, μ = 0.3, α = 0.2
Y = (a = 10, b = 12, t = 1)

SIS (2.4.4) 7.05 0.17 11.66 3.47 * 2.23 0.06
β = 0.5, γ = 0.3
Y = (a = 10, b = 17, t = 1)

NOTE: We report text section numbers in which the models are described in parentheses. The “Value” column reports the true value of the statistic E(U |Y) = ∑
k E(Uk |Y) for the

simple linear, logistic, and SIS models, and
∑

k pkE(Uk |Y ) for the immigration model. Each E-step method obtained the same value up to at least two decimal places. Compute times
are given for rejection simulation (Reject), endpoint-conditioned simulation (EndSim), numerical time-convolution (TConv), eigendecomposition (EDecomp), uniformization (Unif),
and our Laplace convolution method (Laplace). In all cases, the Laplace method takes substantially less time. Eigendecomposition fails for the logistic and SIS models because the rate
matrix becomes computationally singular.
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we wish to keep the matrix as small as possible. On the other
hand, the matrix must remain large enough to include states that
may be visited with high probability in a path from a to b over
time t. However, it is not practical to dynamically choose the
dimension of the truncated rate matrix a priori. For example,
we might choose the dimension d such that the process visits
states greater than d > b with low probability, so Pak(t) < ε

for k > d. However, rules for choosing the dimension of the
truncated matrix that themselves depend on computation of
transition probabilities can dramatically increase computational
time.

In our implementation of all methods, we have made every
effort to reuse as much shared R code as possible, with the aim of
making the routines comparable in numerical accuracy and com-
putational time. We consider four different BDPs: for the simple
linear BDP and linear BDP with immigration, we use the discrete
observation Y = (a = 19, b = 27, t = 1). Under the logistic
and SIS models, the observation is Y = (a = 10, b = 12, t = 1)
and Y = (a = 10, b = 17, t = 1). We list all model parameter
values in Table 1.

In these examples, the Laplace convolution method generally
outperforms other methods and remains stable even when the
truncated rate matrix becomes ill-conditioned. The EDecomp
and Uniformization methods perform reasonably well, but as
we show in the next section, matrix decomposition methods can
suffer from catastrophic numerical error when the rate matrix
becomes large or nearly singular, as is often the case for the
SIS model. While the simulation methods Reject and EndSim
can provide quick estimates of the relevant expectations, the
Monte Carlo error decays extremely slowly and therefore a large
number of simulations are necessary to obtain convergence to a
small interval about E(U |Y) with high probability. For example,
in the simple linear model, the Reject method required more that
6000 successful simulants to achieve a Monte Carlo standard
error small enough to terminate the simulation.

Finally, we give an example to illustrate one important bene-
fit of our Laplace convolution method: since it does not depend
explicitly on a decomposition of the transition rate matrix, the
method is much more stable when this matrix is ill-conditioned.
Consider the SIS model with N = 50 individuals and transi-
tion rates β = 1 and γ = 1. The top panel of Figure 2 shows
the values of E(Uk|Y) for Y = (a = 20, b = 31, t = 1), with
k = 0, 1, . . . , 50, calculated using the Edecomp and Laplace
methods. The eigendecomposition produces catastrophic nu-
merical error for larger states because the transition rate matrix
becomes ill-conditioned. The parameter values β and γ cor-
respond to unit rates per unit time of susceptible individuals
becoming ill, and ill individuals reverting to susceptible status.
These values are not biologically unreasonable, and do not result
in a process that is degenerate or ill-defined. The Laplace method
handles rate specifications like these that result in ill-conditioned
rate matrices without issue, and the continued fraction evalua-
tion remains numerically stable. The bottom panel shows the
computed value of E(U25|Y) as above, but with different trun-
cations of the rate matrix. It can be very difficult to determine
a priori which truncations of the matrix will result in poor ap-
proximations. In contrast, the Laplace method allows evaluation
of the terms of the sum (32) until the desired numerical accuracy
has been reached.

Table 2. Point-estimates and their standard errors (SE) for simulated
observations under various BDPs

Model Parameter True Estimate SE

Simple linear (N = 500) λ 0.5 0.5039 0.0269
(2.4.1) μ 0.2 0.1981 0.0254

Immigration (N = 800) λ 0.2 0.2182 0.0129
(2.4.2) ν 0.1 0.1016 0.0213

μ 0.25 0.2488 0.0231

Logistic (N = 1500) λ 0.3 0.2917 0.0035
(2.4.3) α 0.5 0.4942 0.0397

μ 0.05 0.0456 0.0633

SIS (N = 1000) β 0.1 0.1025 0.0048
(2.4.4) γ 2.0 2.1374 0.0367

GLM (N = 1000) θλ,1 0.25 0.2585 0.0393
(2.4.5) θλ,2 0.1 0.1143 0.0402

θμ,1 0.2 0.1973 0.0457
θμ,2 0.05 0.0877 0.0457

NOTE: We report the text section describing each of the models in parentheses. The method
for generating the rates in the generalized linear model (GLM) BDP is described in the
text.

3.2 Synthetic Examples

To evaluate the performance of our EM algorithms, we sim-
ulate discrete observations from several of the BDPs outlined
above. For each sample, we draw starting points Xi (0) uniformly
from the integers 0 to 20, and times ti uniformly from 0.1 to 3.
We then simulate a trajectory of the BDP and record the state
Xi(ti). For the GLM, we employ the simple linear parameteriza-
tion with a log link with d = 2 covariates. We specify the covari-
ates zi = (zi,1, zi,2) as follows: zi,1 ∼ N (1, σ 2), zi,2 ∼ N (2, σ 2)
for i = 1, . . . , N/2, zi,1 ∼ N (2, σ 2) and zi,2 ∼ N (1, σ 2) for
i = N/2 + 1, . . . , N , where σ 2 = 0.1.

Table 2 reports the number of simulated observations, true
parameter values, point-estimates, asymptotic standard error es-
timates for all model parameters. It is important to note that the
MLEs can differ substantially from the parameter values used to
perform the simulation, regardless of the algorithm used to find
the MLEs. This is due to several factors, including: (1) missing
state paths; (2) stochasticity of the BDP generating the state
paths; (3) arbitrary choice of starting states Xi(0); and (4) fi-
nite sample sizes. Despite these limitations inherent in learning
from partially observed stochastic processes, the point-estimates
match the true parameter values rather well.

3.3 Application to Lymphoma Cell Growth

Cancer researchers often use in vitro experiments to evaluate
the efficacy of novel therapies. They subject cultured cancer
cells to treatment and count the number of cells that survive.
Liu, Beckett, and DeNardo (2007) studied the effect of a mix-
ture of two monoclonal antibodies, chLym-1 and rituximab, on
proliferation of human lymphoma cells. These antibodies ex-
hibit strong antitumor cell effects (Liu et al. 2004; DeNardo
2005). The data of Liu, Beckett, and DeNardo (2007) consist of
repeated experiments in which the outcome is the number of vi-
able tumor cells in a test tube. They counted the number of lym-
phoma cells at antibody concentrations 0, 0.025, 0.25, 2.5, and
10 μml and studied the effects over incubation times of 1, 2, and
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3 days. The data consist of observations Yi = (Xi(0), Xi(ti), ti),
where Xi(0) is the number of viable cells at the beginning of
the ith experiment, and Xi(ti) is the number of viable cells at
time ti ∈ {1, 2, 3} days. Liu, Beckett, and DeNardo (2007) fit a
model for the mean behavior of a simple linear BDP using the
antibody concentration as a covariate through a quasi-likelihood
approach that models conditional expected count at time ti :

E(Xi(ti) | Xi(0) = x) = x exp[(λ − μ)ti]

= x exp[z′
i(θλ − θμ)ti]. (34)

Modeling the mean behavior of the BDP allows only the dif-
ference of θλ and θμ to be estimated. The resulting log-linear
model for the deterministic mean behavior of the BDP is lim-
iting because it is essentially equivalent to Poisson regression,
and does not capture the stochastic branching structure of the
underlying BDP.

We now extend the work of Liu, Beckett, and DeNardo (2007)
by using a full stochastic BDP model instead of fitting the deter-
ministic mean behavior. Although in the experiments described
by Liu, Beckett, and DeNardo, Xi(0) is unknown, they esti-
mated its mean as 23 under one model. To avoid condition-
ing on a random variable, we also follow Liu, Beckett, and
DeNardo (2007) and treat Xi(0) = 23 as fixed in our analysis.
Since the concentration covariates vary nonlinearly, we trans-
form them as log(1 + ci), where ci is the concentration in the
ith observation. Consider a GLM for the rates of a simple linear
BDP, as described in section 2.4.5. The rates for the ith obser-
vation are log λin = log n + z′

iθλ and log μin = log n + z′
iθμ.

Here, the covariate vector is zi = (1, log(1 + ci))′, consisting
of an intercept and the log-transformed antibody concentration.
The surrogate function is given by (26). Table 3 shows the re-
sults of fitting this model, and Table 4 shows the estimated
birth and death rates for cells grown under each each antibody
concentration.

We draw several tentative conclusions from our stochastic
BDP analysis of these data. First, both baseline birth and death
rates, in the absence of antibody, are large. Birth rate is dramat-
ically decreased by higher concentrations of antibody. Interest-
ingly, death rate also decreases slightly with antibody concen-
tration. At the highest experimental antibody concentration, the
death rate becomes larger than the birth rate, resulting in dra-
matic reduction in cell counts. These observations agree with the
known properties of cancer cells in general—that they reproduce
very rapidly when uninhibited by therapeutic agents. However,
since we are able to estimate the effect of antibody concentration
on both birth and death rates separately, our method provides

Table 3. Parameter estimates and asymptotic standard errors for the
cancer cell model

θλ θμ

Parameter Estimate SE Estimate SE

Intercept 1.4719 0.1614 1.2038 0.2134
log(1 + ci) −0.1190 0.0753 −0.0018 0.0927

NOTE: We fit the simple linear BDP to the data of Liu, Beckett, and DeNardo (2007) using
the regression framework outlined in Section 2.4.5. The covariate ci is the concentration
of antibody added to the lymphoma cell culture. Standard errors were obtained using the
numerical Hessian of the log-likelihood.

Table 4. Birth and death rates stratified by different concentrations of
antibody, where λ = ez′

i θλ and μ = ez′
i θμ

λ μ
Antibody
concentration Estimate SE Estimate SE

0 4.357 0.703 3.333 0.711
0.025 4.345 0.696 3.333 0.705
0.25 4.243 0.643 3.331 0.66
2.5 3.754 0.478 3.325 0.488
10 3.276 0.494 3.319 0.505

NOTE: We obtained asymptotic standard errors by applying the delta method to the asymp-
totic variance matrix of our estimate of θ . Note that the birth rate λ decreases much more
rapidly than death rate μ as antibody concentration increases.

additional insight into the branching nature of the underlying
process.

3.4 Application to Microsatellite Evolution

Microsatellites are short tandem repeats of characters in
a DNA sequence (Schlötterer 2000; Ellegren 2004; Richard,
Kerrest, and Dujon 2008). The number of repeated “motifs”
in a microsatellite often changes over evolutionary timescales.
The molecular mechanism responsible for changes in repeat
numbers is known as “polymerase slippage” (Schlötterer 2000).
Several researchers have proposed linear BDPs for use in an-
alyzing evolution of microsatellite repeat numbers (Calabrese
and Durrett 2003; Whittaker et al. 2003; Sainudiin et al. 2004).
However, many investigations demonstrate that microsatellite
mutability depends on the number of repeats already present,
motif size, and motif nucleotide composition (Chakraborty et al.
1997; Kelkar et al. 2008; Eckert and Hile 2009; Amos 2010).
Exactly how these factors affect addition and deletion rates re-
mains an open question (Bhargava and Fuentes 2010). To our
knowledge, no previous study formulates or fits a general BDP
in which motif size and composition are treated as a covariates
in a generalized regression framework, despite the scientific
interest in examining such effects on microsatellite evolution.

Webster, Smith, and Ellegren (2002) studied the evolution
of 2467 microsatellites common (orthologous) to both humans
and chimpanzees, providing an ideal dataset for studying the
influence of repeat number and motif size on addition and dele-
tion rates. For each of these observed microsatellites, Webster,
Smith, and Ellegren (2002) recorded the motif nucleotide pattern
and the number of repeats of this motif found in chimpanzees
and humans, and estimate a mutability parameter that controls
the rate of addition and deletion. We now apply our BDP infer-
ence technique to chimpanzee-human microsatellite evolution,
drawing on the data in Table S6 of the supplementary infor-
mation in Webster, Smith, and Ellegren (2002). We introduce
several novel modeling and inferential techniques relevant to
the study of microsatellites, and deduce the effect of motif size
and composition on microsatellite addition and deletion rates.
While the likelihood takes a slightly more complicated form,
our BDP regression technique is straightforward to implement,
yielding insight into the complicated process of microsatellite
evolution.

To analyze the data as realizations from a BDP, we must ac-
knowledge the evolutionary relationship between chimpanzees
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and humans. Suppose the most recent common ancestor of chim-
panzees and humans lived at time t in the past, so that an evo-
lutionary time of 2t separates contemporary humans and chim-
panzees. We note that under mild conditions, general BDPs are
reversible Markov chains (Renshaw 2011). Therefore, assum-
ing stationarity of the chimpanzee microsatellite length distri-
butions, we stand justified in reversing the evolutionary process
from the ancestor to chimpanzee, so that for estimation purposes
we may regard humans as direct descendants of modern chim-
panzees (or vice-versa) over an evolutionary time of 2t . If c is
the number of repeats in a chimpanzee microsatellite and h is the
number of repeats in the corresponding human microsatellite,
then the likelihood of the observation Y = (c, h, t) is

Pr(Y) =
∞∑

k=0

πkPkc(t) Pkh(t) = πc

∞∑
k=0

Pck(t) Pkh(t)

= πcPch(2t), (35)

where πk is the equilibrium probability of the microsatellite hav-
ing k repeats. The second equality follows by reversibility and
the third by the Chapman–Kolmogorov equality. Therefore, the
log-likelihood of the observation Y is now log πc(θ) + �(θ ; Y).
Figure 4 shows a schematic representation of this reversibility
argument.

The observed data for microsatellite i are Yi =
(Xi(0), Xi(1), 1), where Xi(0) is the number of repeats ob-
served in chimpanzees, Xi(1) is the number of repeats observed
in humans, and the evolutionary time separating humans and
chimpanzees is scaled to unity. In addition to the evolutionary
relationship explained above, there are other complications: in
the Webster, Smith, and Ellegren (2002) dataset, it is evident that
microsatellites with small numbers of repeats are not detected.
Rose and Falush (1998) argued that there is a minimum number
of repeats necessary for microsatellite mutation via polymerase
slippage. Sainudiin et al. (2004) interpreted this finding as jus-
tification for truncating the state-space of BDP at xmin, so that
X(τ ) ≥ xmin. To avoid questions of ascertainment bias (see, e.g.,

?

Ancestor

(AAC)2
Chimp

T

(AAC)3
Human

T

(AAC)2

Chimp

(AAC)3
Human

2T

Figure 4. Reversibility of the BDP implies that the evolutionary
relationship between contemporary chimpanzees and the most recent
common ancestor can be inverted. On the left, the most recent common
ancestor of chimpanzees and humans lived at time T in the past. At
a certain locus, chimpanzees have a microsatellite consisting of two
repeats of the motif AAC, and at an orthologous locus, humans have
theee repeats of the motif. The number of repeats in the ancestor is
unknown. On the right, using a probabilistic justification explained
in the text, we may interpret the evolutionary relationship between
chimpanzees and humans as unidirectional, while “integrating out” the
number of repeats at the ancestral locus.

Vowles and Amos 2006), and to make our results comparable
to those of past researchers, we define a microsatellite to be a
collection of more than xmin repeated motifs, where xmin is 9 for
repeats of size 1, 5 for repeats of size 3 and 4, and 2 for repeats
of size 5. Researchers have also observed that microsatellites do
not tend to grow indefinitely (Kruglyak et al. 1998). The max-
imum number of repeats in the Webster, Smith, and Ellegren
(2002) dataset is 47. This suggests a finite nonzero equilibrium
distribution of microsatellite lengths. To achieve such an equi-
librium distribution, we preliminarily view the evolution as a
linear BDP with immigration on a state-space that is truncated
below xmin. It is reasonable to assume that rates of addition
and deletion depend linearly on how many repeats are already
present. Then for a microsatellite that currently has k repeats,
the birth and death rates are

λk =
{

kλ + λ k ≥ xmin

0 k < xmin

and μk =
{

kμ k > xmin

0 k ≤ xmin.

(36)

This gives a geometric equilibrium distribution for the number
of repeats:

πk =
⎧⎨⎩
(

1 − λ

μ

)(
λ

μ

)k−xmin−1

k ≥ xmin

0 k < xmin,

(37)

when λ < μ (Renshaw 2011). We choose this simple model
so that the BDP has a simple closed-form nonzero equilib-
rium solution that is easy to incorporate into the log-likelihood.
Note that the constraint λ < μ does not mean that the rate of
microsatellite repeat addition is always less than the rate of
deletion, since it is possible that λk > μk for small k. Addi-
tionally, λ < μ does not mean that the number of repeats in a
microsatellite tends to zero over long evolutionary times—the
equilibrium distribution (37) assigns positive probability to all
repeat numbers greater than or equal to xmin. Now we augment
the log-likelihood with the log-equilibrium probability of ob-
serving Xi(0) chimpanzee repeats

F (θ) =
N∑

i=1

log[πXi (0)(θ )] + �(θ ; Yi), (38)

where �(θ ; Yi) is equivalent to (11). Including the influence
of the equilibrium distribution is similar to imposing a prior
distribution on λ and μ.

To incorporate and evaluate the influence of motif size and
composition heterogeneity, we now treat λ and μ in the ith
observation as functions of the covariate vector zi in a general
BDP. Suppose microsatellite i has motif size ri . We code the
vectors zi as follows:

zi =

⎧⎪⎪⎨⎪⎪⎩
(0, 0, pa, pc, pt )′ ri = 1

(1, 0, pa, pc, pt )′ ri = 2

(1, 1, pa, pc, pt )′ ri ≥ 3,

(39)

where px is the proportion of x nucleotides per repeat. We de-
fine a single parameter α that controls the difference between λ

and μ. Then in the ith microsatellite, the complete model
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Table 5. Maximum likelihood estimates of parameters in the
microsatellite evolution model and their asymptotic standard errors

Parameter Covariate Estimate SE

α birth −0.132 0.007
θ 1 ri = 2 0.063 0.107
θ2 ri ≥ 3 −1.390 0.127
θ 3 pa 0.224 0.261
θ 4 pc −1.510 0.370
θ 5 pt −0.355 0.054

NOTE: The first two elements of θ correspond to the motif size ri , and the last three
correspond to the motif nucleotide composition. The parameter α controls the difference
between the birth and death rates. The ith microsatellite birth rate is then λ = exp(α +
z′
iθ) and the death rate is μ = exp(z′

iθ ). Estimated birth and death rates are higher for
dinucleotide repeats than for mononucleotide repeats or microsatellites whose motifs have
3, 4, or 5 nucleotides. Microsatellites whose motif consists, for example, of A nucleotides
have higher birth and death rates compared to C and T nucleotides.

becomes

log(λk,i) = log(k + 1) + α + z′
iθ and

log(μk,i) = log(k) + z′
iθ . (40)

Therefore (α, θ )′ is the 6 × 1 vector of unknown parameters.
Putting all this together, the surrogate function becomes

Q
(
θ |θ (m)) ∝

(
N∑

i=1

(Xi(0) − xmin,i − 1)α + log (1 − eα)

+
[ ∞∑

k=0

E(Uk|Yi)(α + z′
iθ ) + E(Dk|Yi)z′

iθ

−E(Tk|Yi)
(
(k + 1)eα+z′

iθ + kez′
iθ
)])

(41)

where α < 0 since λ < μ. We use a gradient EM algorithm to
find the MLE of (α, θ ).

Table 5 reports the parameter estimates, along with asymp-
totic standard errors. From these results, we infer that motifs
of different sizes and composition have different characteristics
under our evolutionary model. As an example, a microsatel-
lite consisting of AAC repeats has z = (1, 1, 0.667, 0.333, 0),
λ = 0.163 (0.082) and μ = 0.186 (0.087) where the standard
errors obtained by the delta method are given in parenthesis.
Specifically, λ and μ are greatest for dinucleotide repeats, as
compared to motifs with one or at least three repeats. Motifs
consisting mostly of A nucleotides also give rise to higher λ and
μ than those consisting of C and T nucleotides. These conclu-
sions are largely consistent with the descriptive results obtained
by Webster, Smith, and Ellegren (2002). Our analysis also pro-
vides a natural probabilistic justification for the existence of a
finite nonzero equilibrium distribution of microsatellite repeat
numbers and a formal statistical framework for deducing the
effect of motif size and repeat number on mutation rates.

4. DISCUSSION

Application of stochastic models in statistics requires a flex-
ible and general approach to parameter estimation, without
which even the most realistic model becomes unappealing to
researchers who wish to learn from the data they have collected.
Estimation for continuously observed BDPs is straightforward
and well-established. For partially observed BDPs, our approach

is unique because it requires only two simple ingredients: the
functional form of the birth and death rates λk(θ) and μk(θ) for
all k, and an exact or approximate M-step. A third ingredient is
optional: the Hessian of the surrogate function is useful when
asymptotic standard errors are desired. However, this matrix
can often be approximated numerically upon convergence of
the EM algorithm, since the observed-data likelihood is avail-
able numerically via (33). With these ingredients in hand, even
elusive general BDPs become tractable.

In previous work on estimation for BDPs, completion of the
E-step typically relies on rate matrix truncation, time-domain
numerical integration or simulation of BDP trajectories. As
we show in Table 1, both rejection sampling and endpoint-
conditioned simulation can occasionally perform satisfactorily,
especially in comparison to time-domain convolution. However,
endpoint-conditioning is designed for finite state-space Markov
chains, and it relies on a rate matrix eigendecomposition to cal-
culate transition probabilities. In the logistic and SIS models,
this matrix can become nearly singular, causing the both sim-
ulation and matrix exponentiation methods to fail, even when
we choose parameter values that are not biologically unreason-
able. Matrix-algebraic approaches provide powerful methods
for computing conditional expectations in finite state-space pro-
cesses, but have serious drawbacks when used to approximate
processes on infinite state-spaces. The Laplace convolution in
the E-step of our algorithm for BDPs is more generic and flexible
than matrix methods, and provides equivalent or better perfor-
mance. This is partly due to the dynamic nature of the continued
fraction evaluation—we can descend in the fraction to a depth
that achieves acceptable truncation error without needing to
specify this depth a priori. In addition, continued fraction eval-
uation is numerically more stable than eigendecomposition or
uniformization operations on truncated rate matrices. For this
reason, a variation on our Laplace convolution method for com-
puting the E-step may offer further use in estimation for non-
BDP finite Markov chains as well, such as nucleotide or codon
substitution models. For some linear BDPs, the availability of a
generating function furnishes analytic E- and M-steps yielding
very fast parameter updates in closed-form (Doss et al. 2013).
For some models, these tools provide the asymptotic variance
of the MLE in closed-form. However, for the majority of BDPs,
we must return to the Laplace convolution method outlined in
this article.

If one cannot find analytic parameter updates in the M-step,
several options remain available. With a minorizing function
as in Section 2.4.2, an EM-MM algorithm is viable. Further,
one or more numerical Newton steps offers an alternative, as in
Sections 2.4.3 and 2.4.5. One may employ other gradient-based
methods as well. Although the MM update derived for the BDP
with immigration (Section 2.4.2) is appealing in its simplicity,
multiple minorizations of the likelihood can result in very slow
convergence, since the surrogate function lies far from the true
likelihood for most values of θ . In addition, Newton steps that
require matrix inversion may suffer since the Hessian of the
surrogate can become ill-conditioned.

Even with the substantial speedup offered by our Laplace con-
volution method for performing the E-step and quasi-Newton
acceleration of the EM iterates, our algorithms can move slowly
toward the MLE. Here, naı̈ve numerical optimization of the
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incomplete data likelihood can sometimes run computationally
faster. However, such techniques perform very poorly when the
number of parameters increases and they often require specifi-
cation of tuning constants to reach the global optimum. For BDP
estimation problems, EM algorithms offer several other advan-
tages over naı̈ve numerical optimization, and these benefits are
especially stark when the M-step is available in closed-form.
First, when the log-likelihood is locally convex, the EM al-
gorithm is robust with respect to the initial parameter values
near the maximum, and EM algorithms generally do not need
tuning parameters. Further, the ascent property ensures the it-
erates will approach a maximum. Perhaps the most important
reason to consider EM algorithms is that they can accommo-
date higher-dimensional parameter spaces without substantially
increasing the computational complexity of the algorithm. This
is especially useful in models with many unknown parameters
when performing regression with covariates (Section 2.4.5), or
our microsatellite example. Maximum likelihood approaches
to regression can suffer in high-dimensional regression prob-
lems, and the resulting estimates of the information matrix can
be inaccurate (DasGupta and Lahiri 2012). One way to allevi-
ate to this problem is regularization of parameter estimates via
L1 or L2 penalties, which may be interpreted equivalently as
maximum a priori estimation in a Bayesian context. Penalties
or prior distributions can easily be accommodated in our BDP
regression formulation via modification of the M-step (Green
1990). We also note the potential for substantial computational
speedup by parallelizing the E-step. When discrete observations
from a BDP are independent, the E-step may be performed in
parallel for every observation. For example, E(U |Yi) can be
computed simultaneously for i = 1, . . . , N . When speed is an
issue, graphics processing units may prove useful in reducing
the computational cost of EM algorithms (Zhou, Lange, and
Suchard 2010).

With regard to our examples, we present a novel way of
studying the dynamics of count data in laboratory experiments
and the evolution of microsatellite repeats using a GLM. Previ-
ous efforts often ignore the branching nature of the underlying
process, use incomplete or equilibrium models of counts, or
fit separate models for experiments or observations of differ-
ent types. In our lymphoma analysis, we use a realistic simple
linear birth-death model with covariates to discern the relation-
ship of antibody concentration to per-cell birth and death rates.
This results in parameter estimates that have a natural biological
interpretation. In our microsatellite application, we treat motif
size as a categorical variable and incorporate motif nucleotide
composition, allowing us to fit a single regression model to all
the microsatellite observations simultaneously. Although our
microsatellite example is limited in scope, it is easy to imagine
a more comprehensive study. For example, incorporating more
sophisticated motif nucleotide composition covariates and lo-
cation of the microsatellite on the chromosome might provide
additional insight into the evolutionary process. Our EM frame-
work is nearly ideal for these types of studies, since the number
of unknown parameters does not substantially increase the com-
putational burden of the M-step, and the E-step is completely
unaffected by the number of parameters.

Interestingly, we attempted to use the generic nonlinear re-
gression R function nlm to validate the MLEs obtained by our

EM algorithm for the microsatellite evolution problem, starting
at a variety of initial values, including the MLE found by our
EM algorithm. This naı̈ve optimizer failed to converge in every
case. We speculate that this is because the small numerical er-
rors in the likelihood evaluation have similar order of magnitude
as the curvature of the likelihood function near the maximum.
Our EM algorithms take advantage of analytic derivatives of the
surrogate function instead of the likelihood, and hence are less
susceptible to small errors in the numerical gradient.

5. SOFTWARE

The R package birth.death, available at http://crawford.
research.yale.edu/software provides functions to calculate tran-
sition probabilities and conditional expectations used in this
article.

APPENDIX A: CONTROL OF NUMERICAL ERROR IN
THE E-STEP

Completing the E-step in our EM algorithms requires several levels
of numerical approximation. Fortunately, the error in these computa-
tions can be controlled dynamically to achieve the necessary numerical
accuracy under fairly general conditions. In this Appendix, we derive
error bounds for transition probabilities Pab(t) and conditional expec-
tations E(Uk|Y) and E(U |Y) = ∑

k E(Uk|Y) where Y = (a, b, t), and
show how the overall error can be controlled to provide accurate cal-
culations for use in the EM algorithms outlined in this article. The
bounds for conditional expectations of Tk and Dk are essentially the
same. Throughout this Appendix, we assume that the BDP is nonexplo-
sive and that the expectations of the sufficient statistics are finite. We
begin by stating several results that will be useful in deriving overall
error bounds.

In practice, infinite continued fractions such as (5) can only be eval-
uated computationally to finite depth M. For such continued fractions,
we have the following truncation bound.

Lemma 1. Without loss of generality, suppose a = 0 and b = 0, and
f

(M)
00 (s) = AM (s)/BM (s) converges to f00(s) as M → ∞. Then

∣∣f00(s) − f
(M)

00 (s)
∣∣ ≤

∣∣ BM (s)
BM−1(s)

∣∣∣∣Im( BM (s)
BM−1(s)

)∣∣ ∣∣f (M)
00 (s) − f

(M−1)
00 (s)

∣∣, (A.1)

when the denominator is nonzero (Craviotto, Jones, and Thron 1993).

Suppose we have a continuous real-valued function g(t) with
Laplace transform G(s) and let

s0 = A

2t
and sj = A + 2jπi

2t
(A.2)

for j ≥ 1, where i = √−1. The general inversion formula we will use
is

g̃(t) = eA/2

2t
Re(G(s0)) + eA/2

t

∞∑
j=1

(−1)j Re(G(sj )), (A.3)

where Re(s) is the real part of the complex variable s and A is a positive
tuning constant that we will set to control the error. When there is
no error in the evaluation of the Laplace transform G(s), we have the
following bound for the discretization error.
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Lemma 2. The discretization error in (A.3) is

|g(t) − g̃(t)| ≤
∞∑

j=1

e−jAg((2j + 1)t)

≤
∞∑

j=1

e−jA

= e−A

1 − e−A
(A.4)

since g(t) ≤ 1 (Abate and Whitt 1992a).

When computing infinite sums, acceleration methods can be useful
if the series is slow to converge. When the terms in the summand of
(A.3) are alternating in sign and rapidly decreasing in magnitude, a
reasonable estimate of the remainder ωJ after J terms in (A.3) is the
first term in the tail sum (Levin 1973; Weiger 1989; Abate and Whitt
1992a; Press 2007). We assume that there exists a J large enough that

|ωJ | =
∣∣∣∣∣∣

∞∑
j=J+1

(−1)j Re(g(sj ))

∣∣∣∣∣∣ ≤ |Re(g(sJ ))|. (A.5)

We now analyze the error that arises when evaluating BDP likeli-
hoods and expectations in the EM algorithms developed in this article.

A.1 Transition Probability Error

To find the transition probability Pab(t), we set G(s) = fab(s) in
(A.3). We can only evaluate the infinite continued fraction fab(s) to a fi-
nite depth, so we approximate fab(sj ) by the Mj th convergent f

(Mj )
ab (sj ).

Here, Mj is a positive integer chosen dynamically so that the error due

to truncation is |fab(sj ) − f
(Mj )
ab (sj )| ≤ ε using Lemma 1, where we

have selected ε > 0 in advance. Let

P̃ab(t) = eA/2

2t
Re (fab(s0)) + eA/2

t

∞∑
j=1

(−1)j Re(fab(sj )) (A.6)

be the discretized Laplace inversion (A.3) computed using the infinite
continued fraction fab(s). The discretization error is

|Pab(t) − P̃ab(t)| ≤
∞∑

j=1

e−jAPab((2j + 1)t)

≤ e−A

1 − e−A
(A.7)

by Lemma 2. Let

P̂ab(t) = eA/2

2t
Re
(
f

(M0)
ab (s0)

)+ eA/2

t

J∑
j=1

(−1)j Re
(
f

(Mj )
ab (sj )

)
(A.8)

be the inversion sum computed using the continued fraction truncated at
depth Mj in the jth term in the sum. The infinite sum in (A.6) has been
replaced by a J-term sum in (A.8), where the maximum summation
index J is also chosen dynamically based on an estimate of the tail
sum (A.5). Now we consider the error due to truncation of the infinite
continued fraction and termination of the infinite sum after J terms,

where J is chosen so that the remainder |ωJ | ≤ δ.

|P̃ab(t) − P̂ab(t)| ≤ eA/2

t

⎡⎢⎣ ∣∣∣∣12 Re
(
fab(s0) − f

(M0)
ab (s0)

)∣∣∣∣
+
∣∣∣∣∣∣

J∑
j=1

(−1)j Re
(
fab(sj ) − f

(Mj )
ab (sj )

)∣∣∣∣∣∣
+
∣∣∣∣∣∣

∞∑
j=J+1

(−1)j Re(fab(sj ))

∣∣∣∣∣∣
⎤⎦

≤ eA/2

t

[
1

2
ε + Jε + ωJ

]
≤ eA/2

t

[(
1

2
+ J

)
ε + δ

]
(A.9)

by Lemma 2 and (A.5). Both types of truncation occur dynamically: the
continued fraction in the jth term in the sum is terminated at depth Mj

when the error given by Lemma 1 is less than ε; likewise, truncation of
the infinite sum happens when the estimated tail sum remainder ωJ is
smaller than δ. Putting these bounds together, we find that the overall
error is, by the triangle inequality,

|Pab(t) − P̂ab(t)| ≤ |Pab(t) − P̃ab(t)| + |P̃ab(t) − ̂Pabab(t)|
≤ e−A

1 − e−A
+ eA/2

t

[(
1

2
+ J

)
ε + δ

]
. (A.10)

Following Abate and Whitt (1995), a simple way to choose the constant
A is to approximate e−A/(1 − e−A) ≈ e−A and put ε = δ = e−3A/2,
resulting in

e−A

[
1 + 1

t

(
3

2
+ J

)]
. (A.11)

Then to achieve an error at most 10−γ , set A =
log [10γ (1 + (3/2 + J )/t]. To provide a rough bound, set t = 1
and γ = 8. Since the truncation index is determined dynamically and J
is not usually known in advance, we specify J = 100, giving A = 23
as a conservative choice of the error tuning constant.

A.2 Error in Computation of E(Uk|Y)

Recall from (14a) that the numerator of E(Uk|Y) is a convolution of
transition probabilities. Let

gk(t) =
∫ t

0
Pak(u) Pk+1,b(t − u) du (A.12)

be the time-domain convolution integral and let Gk(s) =
fak(s)fk+1,b(s) be its Laplace transform. Let g̃k(t) be given by (A.3)
and let ĝk(t) be the same quantity but with truncation of the infinite sum
(A.3) at the Jth term. Fix a small error tolerance ε > 0 and suppose that
for each j, we evaluate the continued fractions fak(sj ) and fk+1,b(sj )
to depths Mj and Nj , respectively, so that the truncation error in the
difference of these convergent products is less than ε,∣∣fak(sj )fk+1,b(sj ) − f

(Mj )
ak (sj )f

(Nj )
k+1,b(sj )

∣∣ ≤ ε (A.13)

using Lemma 1. Using Lemma 2, the discretization error in (A.3) is
approximated by

|gk(t) − g̃k(t)| =
∞∑

j=1

e−jA

∫ (2j+1)t

0
Pak(u) Pk+1,b((2j + 1)t − u) du

≤
∞∑

j=1

e−jA(2j + 1)t

= t
3eA − 1

(eA − 1)2
(A.14)
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since the integrand is less than one. The error due to truncation of the
continued fractions and infinite sum, analogous to (A.9), becomes

|̃gk(t) − ĝk(t)|

= eA/2

t

⎡⎢⎣ ∣∣∣∣12 Re
(
fak(s0)fk+1,b(s0) − f

(M0)
ak (s0)f (N0)

k+1,b(s0)
)∣∣∣∣

+
∣∣∣∣∣∣

J∑
j=1

(−1)j Re
(
fak(sj )fk+1,b(sj ) − f

(Mj )
ab (sj )f

(Nj )
k+1,b(sj )

)∣∣∣∣∣∣
+
∣∣∣∣∣∣

∞∑
j=J+1

(−1)j Re
(
fak(sj )fk+1,b(sj )

)∣∣∣∣∣∣
⎤⎥⎦

≤ eA/2

t

[(
1

2
+ J

)
ε + δ

]
, (A.15)

where J is chosen so that the remainder |ωJ | ≤ δ. Putting these together,
we have the overall numerator error

|gk(t) − ĝk(t)| ≤ |gk(t) − g̃k(t)| + |g̃k(t) − ĝk(t)|
≤ t

3eA − 1

(eA − 1)2
+ eA/2

t

[(
1

2
+ J

)
ε + δ

]
. (A.16)

Now, recall that the quantity we wish to compute is E(Uk|Y) =
λkgk(t)/Pab(t), where the numerator and denominator are evaluated
separately. First we seek a lower bound for Pab(t) in terms of P̂ab(t)
and A. Let

χ = e−A

1 − e−A
+ eA/2

t

[(
1

2
+ J

)
ε + δ

]
(A.17)

be the error bound for |Pab(t) − P̂ab(t)| from (A.10). We assume that
P̂ab(t) − χ > 0 so that P̂ab(t) − χ is a lower bound for Pab(t), that is

Pab(t) ≥ P̂ab − χ > 0. (A.18)

Then the error in the ratio is given by∣∣∣∣ gk(t)

Pab(t)
− ĝk(t)

P̂ab(t)

∣∣∣∣
=
∣∣∣∣gk(t)P̂ab(t) − ĝk(t)Pab(t)

Pab(t)P̂ab(t)

∣∣∣∣
=
∣∣∣∣gk(t)P̂ab(t) − gk(t)Pab(t) + gk(t)Pab(t) − ĝk(t)Pab(t)

Pab(t)P̂ab(t)

∣∣∣∣
≤ gk(t)

Pab(t)P̂ab(t)
|P̂ab(t) − Pab(t)| + 1

P̂ab(t)
|gk(t) − ĝk(t)|

≤ 1

P̂ab(t)

(
t
|P̂ab(t) − Pab(t)|

Pab(t)
+ |gk(t) − ĝk(t)|

)
≤ 1

P̂ab(t)

(
tχ

P̂ab(t) − χ
+ |gk(t) − ĝk(t)|

)
. (A.19)

Now using the transition probability error (A.10), the lower bound for
Pab(t) (A.18), and the error for gk(t) (A.16), we find that

∣∣∣∣ gk(t)

Pab(t)
− ĝk(t)

P̂ab(t)

∣∣∣∣ ≤ 1

P̂ab(t)

⎛⎜⎝ t
[

e−A

1−e−A + eA/2

t

[(
1
2 + J

)
ε + δ

]]
P̂ab(t) − e−A

1−e−A − eA/2

t

[(
1
2 + J

)
ε + δ

]
+ t

3eA − 1

(eA − 1)2
+ eA/2

t

[(
1

2
+ J

)
ε + δ

]⎞⎟⎠.

(A.20)

To find the tuning constant A that keeps the error less than 10−8,
we again approximate e−A ≈ e−A/(1 − e−A) and put δ = ε = e−3A/2,
J = 100, and P̂ab(t) = 1/2 to obtain A = 25.

A.3 Error in Computation of E(U|Y)

We use a slightly different approach for E(U |Y) = ∑∞
k=0 E(Uk|Y)

because the expectation itself incorporates an infinite sum that can only
be evaluated to finitely many terms in practice. Let

g(t) =
∫ t

0

∞∑
k=0

λkPak(u) Pk+1,b(t − u) du (A.21)

be the infinite sum of time-domain convolutions from (32) and let

G(s) =
∞∑

k=0

λkfak(s)fk+1,b(s) (A.22)

be its Laplace transform. Recall from (A.13) that we can choose con-
tinued fraction truncation depths Mjk and Njk so that∣∣fak(sj )fk+1,b(sj ) − f

(Mjk )
ak (sj )f

(Njk )
k+1,b(sj )

∣∣ ≤ ε (A.23)

for every j and k. First, note that the product Pak(u)Pk+1,b(t − u) ≤ 1
for all k. To proceed, we must make two weak assumptions about the
decay of the transition probabilities and the growth of the birth rates
λk . Fix a number η > 0 and C > max(a, b) such that

Pak(u)Pk+1,b(t − u) ≤ e−ηk

and

P̃ak(u)P̃k+1,b(t − u) ≤ e−ηk (A.24)

for k > C. Assume also that there exists � > 0 such that λk ≤ �k2

for k ≥ C, meaning that the birth rates do not grow too rapidly. These
assumptions are intuitively reasonable and agree with our empirical
observations of the decay of (A.24) with k. Indeed, a process whose
birth rates increase faster than O(k2) for large k is likely to be explosive.
These assumptions imply a bound for g(t):

∞∑
k=0

λkgk(t) ≤
(

C−1∑
k=1

λk

)
+

∞∑
k=C

λkgk(t)

≤
(

C−1∑
k=0

λk

)
+

∞∑
k=0

λk+Ce−η(k+C)

≤
(

C−1∑
k=0

λk

)
+ �e−ηC

∞∑
k=0

(k + C)2e−ηk

≤
(

C−1∑
k=0

λk

)
+ �e−ηCξC, (A.25)

where we have used (A.24), λk ≤ �k2 for k ≥ C, and

ξC =
∞∑

k=0

(C + k)2e−ηk

= −2C2eη + C2e2η + 2Ceη + eη + C2 − 2C + 1

(eη − 1)3
. (A.26)

Note that (A.25) holds for
∑

k λkg̃(t) as well. Since the birth rates λk

are known in advance, � can be readily determined or a tighter bound
than �k2 can be found.

The discretization error for the numerator is given by

|g(t) − g̃(t)|

≤
∞∑

j=1

e−jA

∫ (2j+1)t

0

∞∑
k=0

λkPak(u)Pk+1,b((2j + 1)t − u) du

≤
∞∑

j=1

e−jA

∫ (2j+1)t

0

[(
C−1∑
k=0

λk

)
+

∞∑
k=C

λke
−ηk

]
du

≤
[(

C−1∑
k=0

λk

)
+ e−ηC�ξC

]
t

3eA − 1

(eA − 1)2
. (A.27)
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The truncation error for the numerator is

|g̃(t) − ĝ(t)|

= eA/2

t

∣∣∣∣∣∣∣
1

2
Re

[ ∞∑
k=0

λkfak(s0)fk+1,b(s0) −
D∑

k=0

λkf
(M0k )
ak (s0)f (N0k )

k+1,b(s0)

]

+
J∑

j=1

(−1)j Re

[ ∞∑
k=0

λkfak(sj )fk+1,b(sj )

−
D∑

k=0

λkf
(Mjk )
ak (sj )f

(Njk )
k+1,b(sj )

]

+
∞∑

j=J+1

(−1)j Re

[ ∞∑
k=0

λkfak(sj )fk+1,b(sj )

] ∣∣∣∣∣∣∣
= eA/2

t

[
(J + 1/2)

(
D∑

k=0

λk

)
ε +

∞∑
k=D+1

λkg̃k(t)

]

≤ eA/2

t

[
(J + 1/2)

(
D∑

k=0

λk

)
ε + �e−ηDξD

]
, (A.28)

where we have truncated the inversion sum at J and the innermost sum
at k = D > C so that the remainder estimate e−ηDξD is small. Putting
these together, we find that

|g(t) − ĝ(t)| ≤ |g(t) − g̃(t)| + |g̃(t) − ĝ(t)|

≤
[(

C−1∑
k=0

λk

)
+ e−ηC�ξC

]
t

3eA − 1

(eA − 1)2
+ eA/2

t

×
[

(J + 1/2)

(
D∑

k=0

λk

)
ε + �e−ηDξD

]
. (A.29)

Similar to (A.20), the overall error for the numerator obeys the
following inequality:∣∣∣∣ g(t)

Pab(t)
− ĝ(t)

P̂ab(t)

∣∣∣∣
≤ g(t)

Pab(t)P̂ab(t)
|P̂ab(t) − Pab(t)| + 1

P̂ab(t)
|g(t) − ĝ(t)|

≤ 1

P̂ab(t)

((
C−1∑
k=0

λk + �e−ηCξC

)
|P̂ab(t) − Pab(t)|

Pab(t)
+ |g(t) − ĝ(t)|

)

≤ 1

P̂ab(t)

((∑C−1
k=0 λk + �e−ηCξC

)
χ

P̂ab(t) − χ
+ |g(t) − ĝ(t)|

)
, (A.30)

where χ is given by (A.17) and |g(t) − ĝ(t)| is given by (A.29). Then
to find the constant A such that we achieve a total error less than
10−8, we again approximate e−A ≈ e−A/(1 − e−A). As an example,
suppose λk = 2k, so � = 2. Setting C = D = J = 100, P̂ab(t) = 1/2,
and e−ηCξC < 1 we find that a very generous value of A (resulting in a
loose bound and more than enough numerical precision) is A = 34.

[Received July 2012. Revised October 2013.]
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tion of Markov Jump Processes,” Journal of Computational Physics, 227,
353–375. [731,733]

Minin, V., and Suchard, M. (2008), “Counting Labeled Transitions in
Continuous-Time Markov Models of Evolution,” Journal of Mathematical
Biology, 56, 391–412. [731,737]

Moran, P. A. P. (1951), “Estimation Methods for Evolutive Processes,” Journal
of The Royal Statistical Society, Series B, 13, 141–146. [731]

——— (1953), “The Estimation of the Parameters of a Birth and Death Pro-
cess,” Journal of The Royal Statistical Society, Series B, 15, 241–245.
[731]

——— (1958), “Random Processes in Genetics,” Mathematical Proceedings of
the Cambridge, 54, 60–71. [730]

Murphy, J. A., and O’Donohoe, M. R. (1975), “Some Properties of Continued
Fractions With Applications in Markov Processes,” IMA Journal of Applied
Mathematics, 16, 57–71. [730,732]

Murray, J. (2002), Mathematical Biology: An Introduction (Interdisciplinary
Applied Mathematics) (Vol 1.), New York: Springer. [735]

Nee, S. (2006), “Birth-Death Models in Macroevolution,” Annual Review of
Ecology, Evolution, S 37, 1–17. [730]

Nee, S., May, R. M., and Harvey, P. H. (1994), “The Reconstructed Evolutionary
Process,” Philosophical Transactions of the Royal Society, Series B, 344,
305–311. [730]

Novozhilov, A. S., Karev, G. P., and Koonin, E. V. (2006), “Biological Appli-
cations of the Theory of Birth-and-Death Processes,” Brief Bioinformation,
7, 70–85. [730,731]

Oakes, D. (1999), “Direct Calculation of the Information Matrix via the EM,”
Journal of the Royal Statistical Society, Series B, 61, 479–482. [737]

Parthasarathy, P. R., and Sudhesh, R. (2006), “Exact Transient Solution of
a State-Dependent Birth-Death Process,” Journal of Applied Mathematics
and Stochastic Analysis, 82, 1–16. [732]

Press, W. H. (2007), Numerical Recipes: The Art of Scientific Computing, New
York: Cambridge University Press. [736,743]

Renshaw, E. (2011), Stochastic Population Processes: Analysis, Approxima-
tions, Simulations, New York: Oxord University Press. [730,731,740]

Reynolds, J. F. (1973), “On Estimating the Parameters of a Birth-Death Process,”
Australian & New Zealand Journal of Statistics, 15, 35–43. [731,734]

Richard, G. F., Kerrest, A., and Dujon, B. (2008), “Comparative Genomics and
Molecular Dynamics of DNA Repeats in Eukaryotes,” Microbiology and
Molecular Biology Reviews, 72, 686–727. [739]

Rose, O., and Falush, D. (1998), “A Threshold Size for Microsatellite Expan-
sion,” Molecular Biology and Evolution, 15, 613–615. [740]

Rosenberg, N. A., Tsolaki, A. G., and Tanaka, M. M. (2003), “Estimating
Change Rates of Genetic Markers Using Serial Samples: Applications to
the Transposon IS6110 in Mycobacterium Tuberculosis,” Theoretical Pop-
ulation Biology, 63, 347–363. [731]

Sainudiin, R., Durrett, R. T., Aquadro, C. F., and Nielsen, R. (2004), “Mi-
crosatellite Mutation Models,” Genetics, 168, 383–395. [739,740]

Schlötterer, C. (2000), “Evolutionary Dynamics of Microsatellite DNA,” Chro-
mosoma, 109, 365–371. [739]

Tan, W. Y., and Piantadosi, S. (1991), “On Stochastic Growth Processes With
Application to Stochastic Logistic Growth,” Statistica Sinica, 1, 527–540.
[730,735]

Thorne, J., Kishino, H., and Felsenstein, J. (1991), “An Evolutionary Model for
Maximum Likelihood Alignment of DNA Sequences,” Journal of Molecular
Evolution, 33, 114–124. [730]

Vowles, E. J., and Amos, W. (2006), “Quantifying Ascertainment Bias and
Species-Specific Length Differences in Human and Chimpanzee Microsatel-
lites Using Genome Sequences,” Molecular Biology and Evolution, 23,
598–607. [740]

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n 
L

ib
ra

ri
es

] 
at

 1
4:

29
 1

6 
Ju

ne
 2

01
4 



Crawford, Minin, and Suchard: Estimation for General Birth-Death Processes 747

Wall, H. S. (1948), Analytic Theory of Continued Fractions, New York:
University Series in Higher Mathematics, D. Van Nostrand Company,
Inc. [732]

Wanek, L. A., Goradia, T. M., Elashoff, R. M., and Morton, D. L. (1993), “Multi-
Stage Markov Analysis of Progressive Disease Applied to Melanoma,” Bio-
metrical Journal, 35, 967–983. [735]

Webster, M. T., Smith, N. G. C., and Ellegren, H. (2002), “Microsatellite Evo-
lution Inferred From Human and Chimpanzee Genomic Sequence Align-
ments,” Proceedings of the National Academy of Sciences of the United
States of America, 99, 8748–8753. [739,740,741]

Weiger, E. (1989), “Nonlinear Sequence Transformations for the Acceleration
of Convergence and the Summation of Divergent Series,” Computer Physics
Reports, 10, 189–371. [743]

Whittaker, J. C., Harbord, R. M., Boxall, N., Mackay, I., Dawson, G., and Sibly,
R. M. (2003), “Likelihood-Based Estimation of Microsatellite Mutation
Rates,” Genetics, 164, 781–787. [739]

Wolff, R. W. (1965), “Problems of Statistical Inference for Birth and Death
Queuing Models,” Operations Research, 13, 343–357. [731,732]

Zhou, H., Lange, K., and Suchard, M. (2010), “Graphics Processing Units and
High-Dimensional Optimization,” Statistical Science, 25, 311–324. [742]

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n 
L

ib
ra

ri
es

] 
at

 1
4:

29
 1

6 
Ju

ne
 2

01
4 


	Estimation for General Birth-Death Processes
	INTRODUCTION
	GENERAL BDPS AND THEIR EM ALGORITHMS
	Formal Description and Transition Probabilities
	Likelihood Expressions and Surrogate Functions
	Computing the Expectations of the <0:i >E</0:i>@empty -Step
	Maximization Techniques for Various BDPs
	Implementation

	RESULTS
	Laplace Convolution E-Step Comparison
	Synthetic Examples
	Application to Lymphoma Cell Growth
	Application to Microsatellite Evolution

	DISCUSSION
	SOFTWARE
	Transition Probability Error
	Error in Computation of <0:inlinematheqn ><0:equation ><0:texstructure ><?xmlpublish	$@mathbb {E}(U_k|@mathbf {Y})$?></0:texstructure></0:equation></0:inlinematheqn>@empty

	Error in Computation of <0:inlinematheqn ><0:equation ><0:texstructure ><?xmlpublish	$@mathbb {E}(U|@mathbf {Y})$?></0:texstructure></0:equation></0:inlinematheqn>@empty




