SISMID MCMC I

Instructors:

Kari Auranen
M. Elizabeth Halloran
Vladimir Minin
Time Place
July 14, 11:30 am - 2:30 pm Zoom
July 15-16, 8:00 am - 2:30 pm Zoom

View the Project on GitHub vnminin/SISMID_MCMC_I

SISMID 2021, Module 8: MCMC Methods for Infectious Diseases I


2021 webpage moved to a new location: https://vnminin.github.io/sismid_mcmc_one/

Course Description: This module is an introduction to Markov chain Monte Carlo (MCMC) methods with some simple applications in infectious disease studies. The course includes an introduction to Bayesian statistics, Monte Carlo, MCMC, some background theory, and convergence diagnostics. Algorithms include Gibbs sampling, Metropolis-Hastings and their combinations. Familiarity with the R statistical package or other computing language would be helpful.

Course Introduction: pre-recorded video (coming soon)

Time table: mcmc_time_table.pdf

R tutorials: R for Beginners, Swirl (Learn R, in R), SISMID/SISG Introduction to R

Course materials:
Slides/Notes/Videos Practicals/Videos R Code
Intorduction to Bayesian inference and Gibbs sampling
slides_bayesintro.pdf PracticalBayes.pdf (video) bayesintro2021.R
slides_bayesintro_short.pdf PracticalChain_binomial.pdf chainGibbs_reduced.R
bayes_lecture_video live_chain_binomial_video chainGibbs.R
live_bayes_lecture_video live_chain_gibbs_lab_video mychainGibbs.R
Classical Monte Carlo and Markov chain theory
mc_mcmc2021.pdf (pages 8-14) import-sampling-lab.pdf imp_sampl_reduced.R
monday_hand_notes.pdf imp_sampl.R
live_chain_monte_carlo_video ehrenfest_diff-lab.pdf ehrenfest_diff_reduced.R
live_lab_and_markov_theory_video live_ehrenfest_lab_video ehrenfest_diff.R
Metropolis-Hastings algorithm
mc_mcmc2021.pdf (pages 14-18) mh-lab.pdf norm_mh_reduced.R
tuesday_hand_notes.pdf mh_lab_video norm_mh.R
ergodic_theorem_video infect_time_reduced.R
mh_lecture_lab_video infect_time.R
Gibbs sampling and chain binomial model
mc_mcmc2021.pdf (pages 18-20) chainGibbs.R
combine_markov_kernels_video
Metropolis-Hastings and Gibbs combined
mc_mcmc2021.pdf (pages 20-21) betabin-lab.pdf beta_bin_reduced.R
gibbs_lecture_beta_bin_setup_video beta_bin_lab_video beta_bin.R
Chain binomial model revisited
chain_bin_revisited.pdf hierarchical-chain-bin-lab.pdf checkmodel_reduced.R
chain_bin_video checkmodel.R
live_chain_bin_sir_video chain_hierarchical_reduced.R
chain_hierarchical.R
check_hierarchical.R
General epidemic model
sir_lecture.pdf sir-lab.pdf SIRaugmentation_reduced.R
sir_video SIRaugmentation.R
Monte Carlo error and MCMC diagnostics
mc_mcmc2021.pdf (pages 21-22) diagnostics-lab.pdf diagnostics_reduced.R
sir_lab_diagnostic_lecture_lab_video wednesday_hand_notes.pdf diagnostics.R
COVID-19 in Finland
covid19_finland.pdf
Useful Books: Other Resources: